Current List of CIB W18 and INTER Papers

Technical papers presented to CIB-W18(A) are identified by a code CIB-W18(A)/a-b-c, and Technical papers presented to INTER are identified by a code INTER/a-b-c, where:

- a denotes the meeting at which the paper was presented.

**CIB Papers:**

1. Princes Risborough, England; March 1973
2. Copenhagen, Denmark; October 1973
3. Delft, Netherlands; June 1974
4. Paris, France; February 1975
5. Karlsruhe, Federal Republic of Germany; October 1975
6. Aalborg, Denmark; June 1976
7. Stockholm, Sweden; February/March 1977
8. Brussels, Belgium; October 1977
9. Perth, Scotland; June 1978
10. Vancouver, Canada; August 1978
11. Vienna, Austria; March 1979
12. Bordeaux, France; October 1979
13. Otaniemi, Finland; June 1980
14. Warsaw, Poland; May 1981
15. Karlsruhe, Federal Republic of Germany; June 1982
16. Lillehammer, Norway; May/June 1983
17. Rapperswil, Switzerland; May 1984
18. Beit Oren, Israel; June 1985
19. Florence, Italy; September 1986
20. Dublin, Ireland; September 1987
21. Parksville, Canada; September 1988
22. Berlin, German Democratic Republic; September 1989
23. Lisbon, Portugal; September 1990
24. Oxford, United Kingdom; September 1991
25. Åhus, Sweden; August 1992
26. Athens, USA; August 1993
27. Sydney, Australia; July 1994
28. Copenhagen, Denmark; April 1995
29. Bordeaux, France; August 1996
30. Vancouver, Canada; August 1997
31 Savonlinna, Finland; August 1998
32 Graz, Austria, August 1999
33 Delft, The Netherlands; August 2000
34 Venice, Italy; August 2001
35 Kyoto, Japan; September 2002
36 Colorado, USA; August 2003
37 Edinburgh, Scotland; August 2004
38 Karlsruhe, Germany; August 2005
39 Florence, Italy; August 2006
40 Bled, Slovenia; August 2007
41 St. Andrews, Canada; August 2008
42 Dübendorf, Switzerland; August 2009
43 Nelson, New Zealand; August 2010
44 Alghero, Italy; August 2011
45 Växjö, Sweden; August 2012
46 Vancouver, Canada; August 2013

**INTER Papers:**

47 Bath, United Kingdom; August 2014
48 Šibenik, Croatia; August 2015
49 Graz, Austria; August 2016
50 Kyoto, Japan, August 2017
51 Tallinn Estonia, August 2018
52 Tacoma USA, August 2019
53 Online Meeting, August 2020

**b** denotes the subject:

1 Limit State Design
2 Timber Columns
3 Symbols
4 Plywood
5 Stress Grading
6 Stresses for Solid Timber
7 Timber Joints and Fasteners
8 Load Sharing
9 Duration of Load
10 Timber Beams
Listed below, by subjects, are all papers that have to date been presented to W18 and INTER. When appropriate some papers are listed under more than one subject heading.
LIMIT STATE DESIGN

1-1-1 Limit State Design - H J Larsen
1-1-2 The Use of Partial Safety Factors in the New Norwegian Design Code for Timber Structures - O Brynildsen
1-1-3 Swedish Code Revision Concerning Timber Structures - B Noren
1-1-4 Working Stresses Report to British Standards Institution Committee BLCP/17/2

6-1-1 On the Application of the Uncertainty Theoretical Methods for the Definition of the Fundamental Concepts of Structural Safety - K Skov and O Ditlevsen

11-1-1 Safety Design of Timber Structures - H J Larsen

18-1-2 Eurocode 5, Timber Structures - H J Larsen

19-1-1 Duration of Load Effects and Reliability Based Design (Single Member) - R O Foschi and Z C Yao

21-102-1 Research Activities Towards a New GDR Timber Design Code Based on Limit States Design - W Rug and M Badstube

22-1-1 Reliability-Theoretical Investigation into Timber Components Proposal for a Supplement of the Design Concept - M Badstube, W Rug and R Plessow

23-1-1 Some Remarks about the Safety of Timber Structures - J Kuipers
23-1-2 Reliability of Wood Structural Elements: A Probabilistic Method to Eurocode 5 Calibration - F Rouger, N Lheritier, P Racher and M Fogli

31-1-1 A Limit States Design Approach to Timber Framed Walls - C J Mettem, R Bainbridge and J A Gordon

32-1-1 Determination of Partial Coefficients and Modification Factors- H J Larsen, S Svensson and S Thelandersson
32-1-2 Design by Testing of Structural Timber Components - V Enjily and L Whale

33-1-1 Aspects on Reliability Calibration of Safety Factors for Timber Structures – S Svensson and S Thelandersson
33-1-2 Sensitivity studies on the reliability of timber structures – A Ranta-Maunus, M Fonselius, J Kurkela and T Toratti

41-1-1 On the Role of Stiffness Properties for Ultimate Limit State Design of Slender Columns— J Köhler, A Frangi, R Steiger

53-1-1 Review of the Reliability of Timber Structures in the 2020s - R Jockwer, G Fink, J Köhler

TIMBER COLUMNS

2-2-1 The Design of Solid Timber Columns - H J Larsen
3-2-1 The Design of Built-Up Timber Columns - H J Larsen
4-2-1 Tests with Centrally Loaded Timber Columns - H J Larsen and S S Pedersen
4-2-2 Lateral-Torsional Buckling of Eccentrically Loaded Timber Columns- B Johansson
5-9-1  Strength of a Wood Column in Combined Compression and Bending with Respect to Creep - B Källsner and B Norén
5-100-1  Design of Solid Timber Columns (First Draft) - H J Larsen
6-100-1  Comments on Document 5-100-1, Design of Solid Timber Columns - H J Larsen and E Theilgaard
6-2-1  Lattice Columns - H J Larsen
6-2-2  A Mathematical Basis for Design Aids for Timber Columns - H J Burgess
6-2-3  Comparison of Larsen and Perry Formulas for Solid Timber Columns - H J Burgess
7-2-1  Lateral Bracing of Timber Struts - J A Simon
8-15-1  Laterally Loaded Timber Columns: Tests and Theory - H J Larsen
17-2-1  Model for Timber Strength under Axial Load and Moment - T Poutanen
18-2-1  Column Design Methods for Timber Engineering - A H Buchanan, K C Johns, B Madsen
19-2-1  Creep Buckling Strength of Timber Beams and Columns - R H Leicester
19-12-2  Strength Model for Glulam Columns - H J Blaß
20-2-1  Lateral Buckling Theory for Rectangular Section Deep Beam-Columns - H J Burgess
20-2-2  Design of Timber Columns - H J Blaß
21-2-1  Format for Buckling Strength - R H Leicester
21-2-2  Beam-Column Formulae for Design Codes - R H Leicester
21-15-1  Rectangular Section Deep Beam - Columns with Continuous Lateral Restraint - H J Burgess
21-15-3  Simple Approaches for Column Bracing Calculations - H J Burgess
21-15-4  Calculations for Discrete Column Restraints - H J Burgess
22-2-1  Buckling and Reliability Checking of Timber Columns - S Huang, P M Yu and J Y Hong
22-2-2  Proposal for the Design of Compressed Timber Members by Adopting the Second-Order Stress Theory - P Kaiser
30-2-1  Beam-Column Formula for Specific Truss Applications - W Lau, F Lam and J D Barrett
31-2-1  Deformation and Stability of Columns of Viscoelastic Material Wood - P Becker and K Rautenstrauch
34-2-1  Long-Term Experiments with Columns: Results and Possible Consequences on Column
34-2-2  Proposal for Compressive Member Design Based on Long-Term Simulation Studies – P Becker, K Rautenstrauch
35-2-1  Computer Simulations on the Reliability of Timber Columns Regarding Hygrothermal Effects - R Hartnack, K-U Schober, K Rautenstrauch
36-2-1  The Reliability of Timber Columns Based on Stochastical Principles - K Rautenstrauch, R Hartnack
38-2-1  Long-term Load Bearing of Wooden Columns Influenced by Climate – View on Code - R Hartnack, K Rautenstrauch
Design of Timber Columns Based on 2nd Order Structural Analysis - M Theiler, A Frangi, R Steiger

Proposal of a Eurocode-based Method for the Buckling Design of Timber Log-walls - C Bedon, M Frangiaco, C Amadio

Design of Timber Members Subjected to Axial Compression or Combined Axial Compression and Bending Based on 2nd Order Theory - A Frangi, M Theiler, R Steiger

SYMBOLS

Symbols for Structural Timber Design - J Kuipers and B Norén
Symbols for Timber Structure Design - J Kuipers and B Norén
Symbols for Timber and Wood-Based Materials - J Kuipers and B Norén

PLYWOOD

The Presentation of Structural Design Data for Plywood - L G Booth

Standard Methods of Testing for the Determination of Mechanical Properties of Plywood - J Kuipers

Bending Strength and Stiffness of Multiple Species Plywood - C K A Stieda

Standard Methods of Testing for the Determination of Mechanical Properties of Plywood - Council of Forest Industries, B.C.

The Determination of Design Stresses for Plywood in the Revision of CP 112 - L G Booth


The Determination of the Mechanical Properties of Plywood Containing Defects - L G Booth

Comparison of the Size and Type of Specimen and Type of Test on Plywood Bending Strength and Stiffness - C R Wilson and P Eng

Buckling Strength of Plywood: Results of Tests and Recommendations for Calculations - J Kuipers and H Ploos van Amstel

Methods of Test for the Determination of Mechanical Properties of Plywood - L G Booth, J Kuipers, B Norén, C R Wilson

Comments Received on Paper 7-4-1

The Effect of Rate of Testing Speed on the Ultimate Tensile Stress of Plywood - C R Wilson and A V Parasin

Comparison of the Effect of Specimen Size on the Flexural Properties of Plywood Using the Pure Moment Test - C R Wilson and A V Parasin

Sampling Plywood and the Evaluation of Test Results - B Norén

Shear and Torsional Rigidity of Plywood - H J Larsen

The Evaluation of Test Data on the Strength Properties of Plywood - L G Booth

The Sampling of Plywood and the Derivation of Strength Values (Second Draft) - B Norén

On the Use of the CIB/RILEM Plywood Plate Twisting Test: a progress report - L G Booth
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-4-1</td>
<td>Buckling Strength of Plywood</td>
<td>J Dekker, J Kuipers and H Ploos van Amstel</td>
</tr>
<tr>
<td>11-4-1</td>
<td>Analysis of Plywood Stressed Skin Panels with Rigid or Semi-Rigid</td>
<td>I Smith</td>
</tr>
<tr>
<td></td>
<td>Connections</td>
<td></td>
</tr>
<tr>
<td>11-4-2</td>
<td>A Comparison of Plywood Modulus of Rigidity Determined by the ASTM</td>
<td>C R Wilson and A V Parasin</td>
</tr>
<tr>
<td></td>
<td>and RILEM CIB/3-TT Test Methods</td>
<td></td>
</tr>
<tr>
<td>11-4-3</td>
<td>Sampling of Plywood for Testing Strength</td>
<td>B Norén</td>
</tr>
<tr>
<td>12-4-1</td>
<td>Procedures for Analysis of Plywood Test Data and Determination of</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Characteristic Values Suitable for Code Presentation</td>
<td>C R Wilson</td>
</tr>
<tr>
<td>14-4-1</td>
<td>An Introduction to Performance Standards for Wood-base Panel</td>
<td>D H Brown</td>
</tr>
<tr>
<td></td>
<td>Products</td>
<td></td>
</tr>
<tr>
<td>14-4-2</td>
<td>Proposal for Presenting Data on the Properties of Structural Panels</td>
<td>T Schmidt</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-4-1</td>
<td>Planar Shear Capacity of Plywood in Bending</td>
<td>C K A Stieda</td>
</tr>
<tr>
<td>17-4-1</td>
<td>Determination of Panel Shear Strength and Panel Shear Modulus of</td>
<td>J Ehlbeck and F Colling</td>
</tr>
<tr>
<td></td>
<td>Beech-Plywood in Structural Sizes</td>
<td></td>
</tr>
<tr>
<td>17-4-2</td>
<td>Ultimate Strength of Plywood Webs</td>
<td>R H Leicester and L Pham</td>
</tr>
<tr>
<td>20-4-1</td>
<td>Considerations of Reliability - Based Design for Structural</td>
<td>M R O'Halloran, J A Johnson, E G Elias and T P Cunningham</td>
</tr>
<tr>
<td></td>
<td>Composite Products</td>
<td></td>
</tr>
<tr>
<td>21-4-1</td>
<td>Modelling for Prediction of Strength of Veneer Having Knots</td>
<td>Y Hirashima</td>
</tr>
<tr>
<td>22-4-1</td>
<td>Scientific Research into Plywood and Plywood Building Constructions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the Results and Findings of which are Incorporated into Construction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Standard Specifications of the USSR</td>
<td>I M Guskov</td>
</tr>
<tr>
<td>22-4-2</td>
<td>Evaluation of Characteristic values for Wood-Based Sheet Materials</td>
<td>E G Elias</td>
</tr>
<tr>
<td>24-4-1</td>
<td>APA Structural-Use Design Values: An Update to Panel Design</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Capacities</td>
<td></td>
</tr>
</tbody>
</table>

**STRESS GRADING**

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-5-1</td>
<td>Quality Specifications for Sawn Timber and Precision Timber</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Norwegian Standard NS 3080</td>
<td></td>
</tr>
<tr>
<td>1-5-2</td>
<td>Specification for Timber Grades for Structural Use</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- British Standard BS 4978</td>
<td></td>
</tr>
<tr>
<td>4-5-1</td>
<td>Draft Proposal for an International Standard for Stress Grading</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coniferous Sawn Softwood - ECE Timber Committee</td>
<td></td>
</tr>
<tr>
<td>16-5-1</td>
<td>Grading Errors in Practice</td>
<td>B Thunell</td>
</tr>
<tr>
<td>16-5-2</td>
<td>On the Effect of Measurement Errors when Grading Structural Timber</td>
<td>L Nordberg and B Thunell</td>
</tr>
<tr>
<td>19-5-1</td>
<td>Stress-Grading by ECE Standards of Italian-Grown Douglas-Fir Dimension Lumber from Young Thinnings</td>
<td>L Uzielli</td>
</tr>
<tr>
<td>19-5-2</td>
<td>Structural Softwood from Afforestation Regions in Western Norway</td>
<td>R Lackner</td>
</tr>
<tr>
<td>21-5-1</td>
<td>Non-Destructive Test by Frequency of Full Size Timber for Grading</td>
<td>T Nakai</td>
</tr>
<tr>
<td>22-5-1</td>
<td>Fundamental Vibration Frequency as a Parameter for Grading Sawn</td>
<td>T Nakai, T Tanaka and H Nagao</td>
</tr>
<tr>
<td></td>
<td>Timber</td>
<td></td>
</tr>
</tbody>
</table>
24-5-1 Influence of Stress Grading System on Length Effect Factors for Lumber Loaded in Compression - A Campos and I Smith
26-5-1 Structural Properties of French Grown Timber According to Various Grading Methods - F Rouger, C De Lafond and A El Quadrani
28-5-1 Grading Methods for Structural Timber - Principles for Approval - S Ohlsson
28-5-2 Relationship of Moduli of Elasticity in Tension and in Bending of Solid Timber - N Burger and P Glos
29-5-1 The Effect of Edge Knots on the Strength of SPF MSR Lumber - T Courchene, F Lam and J D Barrett
29-5-2 Determination of Moment Configuration Factors using Grading Machine Readings - T D G Canisius and T Isaksson
31-5-1 Influence of Varying Growth Characteristics on Stiffness Grading of Structural Timber - S Ormarsson, H Petersson, O Dahlblom and K Persson
31-5-2 A Comparison of In-Grade Test Procedures - R H Leicester, H Breitinger and H Fordham
32-5-1 Actual Possibilities of the Machine Grading of Timber - K Frühwald and A Bernasconi
32-5-2 Detection of Severe Timber Defects by Machine Grading - A Bernasconi, L Boström and B Schacht
34-5-1 Influence of Proof Loading on the Reliability of Members – F Lam, S Abayakoon, S Svensson, C Gyamfi
36-5-1 Settings for Strength Grading Machines – Evaluation of the Procedure according to prEN 14081, part 2 - C Bengtsson, M Fonselius
36-5-2 A Probabilistic Approach to Cost Optimal Timber Grading - J Köhler, M H Faber
36-7-11 Reliability of Timber Structures, Theory and Dowel-Type Connection Failures - A Ranta-Maunus, A Kevarinmäki
38-5-1 Are Wind-Induced Compression Failures Grading Relevant - M Arnold, R Steiger
39-5-1 A Discussion on the Control of Grading Machine Settings – Current Approach, Potential and Outlook - J Köhler, R Steiger
39-5-2 Tensile Proof Loading to Assure Quality of Finger-Jointed Structural timber - R Katzengruber, G Jeitler, G Schickhofer
40-5-1 Development of Grading Rules for Re-Cycled Timber Used in Structural Applications - K Crews
40-5-2 The Efficient Control of Grading Machine Settings - M Sandomeer, J Köhler, P Linsenmann
41-5-1 Probabilistic Output Control for Structural Timber - Fundamental Model Approach – M K Sandomeer, J Köhler, M H Faber
42-5-1 Machine Strength Grading – a New Method for Derivation of Settings - R Ziethén, C Bengtsson
43-5-1 Quality Control Methods - Application to Acceptance Criteria for a Batch of Timber - F Rouger
44-5-1 Assessment of Different Knot-Indicators to Predict Strength and Stiffness Properties of Timber Boards - G Fink, M Deublein, J Köhler
44-5-2 Adaptive Production Settings Method for Strength Grading - G Turk, A Ranta-Maunus
44-5-3 Initial Settings for Machine Strength Graded Structural Timber - R Zietén, C Bengtsson
45-5-1 Harmonised Tensile Strength Classes - J K Denzler
45-5-2 Visual Strength Grading in Europe - P Stapel, J W G van de Kuilen, O Strehl
47-5-1 Strength Grading of Split Glulam Beams - J Viguier, J-F Boquet, J Dopeux, L Bléron, F Dubois, S Aubert
49-5-1 Strength Grading of European Beech Lamellas for the Production of GLT and CLT - T Ehrhart, G Fink, R Steiger, A Frangi
50-5-1 Assignment of Timber to Bending and Tension Strength Classes - Effects of Calculation Procedures - P Stapel, A Kovryga, J W G van de Kuilen

STRESSES FOR SOLID TIMBER
4-6-1 Derivation of Grade Stresses for Timber in the UK - W T Curry
5-6-1 Standard Methods of Test for Determining some Physical and Mechanical Properties of Timber in Structural Sizes - W T Curry
5-6-2 The Description of Timber Strength Data - J R Tory
5-6-3 Stresses for EC1 and EC2 Stress Grades - J R Tory
6-6-1 Standard Methods of Test for the Determination of some Physical and Mechanical Properties of Timber in Structural Sizes (third draft) - W T Curry
7-6-1 Strength and Long-term Behaviour of Lumber and Glued Laminated Timber under Torsion Loads - K Möhler
9-6-1 Classification of Structural Timber - H J Larsen
9-6-2 Code Rules for Tension Perpendicular to Grain - H J Larsen
9-6-3 Tension at an Angle to the Grain - K Möhler
9-6-4 Consideration of Combined Stresses for Lumber and Glued Laminated Timber - K Möhler
11-6-1 Evaluation of Lumber Properties in the United States - W L Galligan and J H Haskell
11-6-2 Stresses Perpendicular to Grain - K Möhler
11-6-3 Consideration of Combined Stresses for Lumber and Glued Laminated Timber (addition to Paper CIB-W18/9-6-4) - K Möhler
12-6-1 Strength Classifications for Timber Engineering Codes - R H Leicester and W G Keating
12-6-2 Strength Classes for British Standard BS 5268 - J R Tory
13-6-1 Strength Classes for the CIB Code - J R Tory
13-6-2 Consideration of Size Effects and Longitudinal Shear Strength for Uncracked Beams - R O Foschi and J D Barrett
13-6-3 Consideration of Shear Strength on End-Cracked Beams - J D Barrett and R O Foschi
15-6-1 Characteristic Strength Values for the ECE Standard for Timber - J G Sunley
16-6-1 Size Factors for Timber Bending and Tension Stresses - A R Fewell
16-6-2 Strength Classes for International Codes - A R Fewell and J G Sunley
17-6-1 The Determination of Grade Stresses from Characteristic Stresses for BS 5268: Part 2 - A R Fewell
17-6-2 The Determination of Softwood Strength Properties for Grades, Strength Classes and Laminated Timber for BS 5268: Part 2 - A R Fewell
18-6-1 Comment on Papers: 18-6-2 and 18-6-3 - R H Leicester
18-6-2 Configuration Factors for the Bending Strength of Timber - R H Leicester
18-6-3 Notes on Sampling Factors for Characteristic Values - R H Leicester
18-6-4 Size Effects in Timber Explained by a Modified Weakest Link Theory - B Madsen and A H Buchanan
18-6-5 Placement and Selection of Growth Defects in Test Specimens - H Riberholt
18-6-6 Partial Safety-Coefficients for the Load-Carrying Capacity of Timber Structures - B Norén and J-O Nylander
19-6-1 Effect of Age and/or Load on Timber Strength - J Kuipers
19-6-2 Confidence in Estimates of Characteristic Values - R H Leicester
19-6-3 Fracture Toughness of Wood - Mode I - K Wright and M Fonselius
19-6-4 Fracture Toughness of Pine - Mode II - K Wright
19-6-5 Drying Stresses in Round Timber - A Ranta-Maunus
19-6-6 A Dynamic Method for Determining Elastic Properties of Wood - R Görlacher
20-6-1 A Comparative Investigation of the Engineering Properties of "Whitewoods" Imported to Israel from Various Origins - U Korin
20-6-2 Effects of Yield Class, Tree Section, Forest and Size on Strength of Home Grown Sitka Spruce - V Picardo
20-6-3 Determination of Shear Strength and Strength Perpendicular to Grain - H J Larsen
21-6-1 Draft Australian Standard: Methods for Evaluation of Strength and Stiffness of Graded Timber - R H Leicester
21-6-2 The Determination of Characteristic Strength Values for Stress Grades of Structural Timber. Part 1 - A R Fewell and P Glos
21-6-3 Shear Strength in Bending of Timber - U Korin
22-6-1 Size Effects and Property Relationships for Canadian 2-inch Dimension Lumber - J D Barrett and H Griffin
22-6-2 Moisture Content Adjustements for In-Grade Data - J D Barrett and W Lau
22-6-3 A Discussion of Lumber Property Relationships in Eurocode 5 - D W Green and D E Kretschmann
22-6-4 Effect of Wood Preservatives on the Strength Properties of Wood - F Ronai
23-6-1 Timber in Compression Perpendicular to Grain - U Korin
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>24-6-1</td>
<td>Discussion of the Failure Criterion for Combined Bending and Compression</td>
<td>T A C M van der Put</td>
</tr>
<tr>
<td>24-6-3</td>
<td>Effect of Within Member Variability on Bending Strength of Structural Timber</td>
<td>I Czmoch, S Thelandersson and H J Larsen</td>
</tr>
<tr>
<td>24-6-4</td>
<td>Protection of Structural Timber Against Fungal Attack Requirements and Testing</td>
<td>K Jaworska, M Rylko and W Nozynski</td>
</tr>
<tr>
<td>24-6-5</td>
<td>Derivation of the Characteristic Bending Strength of Solid Timber According to CEN-Document prEN 384</td>
<td>A J M Leijten</td>
</tr>
<tr>
<td>25-6-1</td>
<td>Moment Configuration Factors for Simple Beams</td>
<td>T D G Canisius</td>
</tr>
<tr>
<td>25-6-3</td>
<td>Bearing Capacity of Timber</td>
<td>U Korin</td>
</tr>
<tr>
<td>25-6-4</td>
<td>On Design Criteria for Tension Perpendicular to Grain</td>
<td>H Petersson</td>
</tr>
<tr>
<td>26-6-1</td>
<td>Discussion and Proposal of a General Failure Criterion for Wood</td>
<td>T A C M van der Put</td>
</tr>
<tr>
<td>27-6-1</td>
<td>Development of the &quot;Critical Bearing&quot;: Design Clause in CSA-086.1</td>
<td>C Lum and E Karacabayli</td>
</tr>
<tr>
<td>27-6-2</td>
<td>Size Effects in Timber: Novelty Never Ends</td>
<td>F Rouger and T Fewell</td>
</tr>
<tr>
<td>27-6-3</td>
<td>Comparison of Full-Size Sugi (Cryptomeria japonica D.Don) Structural Performance in Bending of Round Timber, Two Surfaces Sawn Timber and Square Sawn Timber</td>
<td>T Nakai, H Nagao and T Tanaka</td>
</tr>
<tr>
<td>28-6-1</td>
<td>Shear Strength of Canadian Softwood Structural Lumber</td>
<td>F Lam, H Yee and J D Barrett</td>
</tr>
<tr>
<td>28-6-2</td>
<td>Shear Strength of Douglas Fir Timbers</td>
<td>B Madsen</td>
</tr>
<tr>
<td>28-6-3</td>
<td>On the Influence of the Loading Head Profiles on Determined Bending Strength</td>
<td>L Muszyñsky and R Szukala</td>
</tr>
<tr>
<td>28-6-4</td>
<td>Effect of Test Standard, Length and Load Configuration on Bending Strength of Structural Timber</td>
<td>T Isaksson and S Thelandersson</td>
</tr>
<tr>
<td>28-6-5</td>
<td>Grading Machine Readings and their Use in the Calculation of Moment Configuration Factors</td>
<td>T Canisius, T Isaksson and S Thelandersson</td>
</tr>
<tr>
<td>28-6-6</td>
<td>End Conditions for Tension Testing of Solid Timber Perpendicular to Grain</td>
<td>T Canisius</td>
</tr>
<tr>
<td>29-6-1</td>
<td>Effect of Size on Tensile Strength of Timber</td>
<td>N Burger and P Glos</td>
</tr>
<tr>
<td>29-6-2</td>
<td>Equivalence of In-Grade Testing Standards</td>
<td>R H Leicester, H O Breitinger and H F Fordham</td>
</tr>
<tr>
<td>30-6-1</td>
<td>Strength Relationships in Structural Timber Subjected to Bending and Tension</td>
<td>N Burger and P Glos</td>
</tr>
<tr>
<td>30-6-2</td>
<td>Characteristic Design Stresses in Tension for Radiata Pine Grown in Canterbury</td>
<td>A Tsehaye, J C F Walker and A H Buchanan</td>
</tr>
<tr>
<td>30-6-3</td>
<td>Timber as a Natural Composite: Explanation of Some Peculiarities in the Mechanical Behaviour</td>
<td>E Gehri</td>
</tr>
<tr>
<td>31-6-1</td>
<td>Length and Moment Configuration Factors</td>
<td>T Isaksson</td>
</tr>
<tr>
<td>31-6-2</td>
<td>Tensile Strength Perpendicular to Grain According to EN 1193</td>
<td>H J Blaß and M Schmid</td>
</tr>
<tr>
<td>31-6-3</td>
<td>Strength of Small Diameter Round Timber</td>
<td>A Ranta-Maunus, U Saarelainen and H Boren</td>
</tr>
</tbody>
</table>
31-6-4 Compression Strength Perpendicular to Grain of Structural Timber and Glulam - L Damkilde, P Hoffmeyer and T N Pedersen

31-6-5 Bearing Strength of Timber Beams - R H Leicester, H Fordham and H Breitinger

32-6-1 Development of High-Resistance Beams and an Attempt to Assign Such Products to the European System of Strength Classes - G Schickhofer and B Obermayr

32-6-2 Length and Load Configuration Effects in the Code Format - T Isaksson

32-6-3 Length Effect on the Tensile Strength of Truss Chord Members - F Lam

32-6-4 Tensile Strength Perpendicular to Grain of Glued Laminated Timber - H J Blaß and M Schmid

32-6-5 On the Reliability-based Strength Adjustment Factors for Timber Design - T D G Canisius

34-6-1 Material Strength Properties for Canadian Species Used in Japanese Post and Beam Construction - J D Barrett, F Lam, S Nakajima

35-6-1 Evaluation of Different Size Effect Models for Tension Perpendicular to Grain Design - S Aicher, G Dill-Langer

35-6-2 Tensile Strength of Glulam Perpendicular to Grain - Effects of Moisture Gradients - J Jonsson, S Thelandersson

36-6-1 Characteristic Shear Strength Values Based on Tests According to EN 1193 - P Glos, J Denzler

37-6-1 Tensile Strength of Nordic Birch - K H Solli

37-6-2 Effect of Test Piece Orientation on Characteristic Bending Strength of Structural Timber - P Glos, J K Denzler

37-6-3 Strength and Stiffness Behaviour of Beech Laminations for High Strength Glulam - P Glos, J K Denzler, P W Linsenmann

37-6-4 A Review of Existing Standards Related to Calculation of Characteristic Values of Timber - F Rouger

37-6-5 Influence of the Rolling-Shear Modulus on the Strength and Stiffness of Structural Bonded Timber Elements - P Fellmoser, H J Blaß

38-6-1 Design Specifications for Notched Beams in AS:1720 - R H Leicester

38-6-2 Characteristic Bending Strength of Beech Glulam - H J Blaß, M Frese

38-6-3 Shear Strength of Glued Laminated Timber - H Klapp, H Brüninghoff

39-6-1 Allocation of Central European hardwoods into EN 1912 - P Glos, J K Denzler

39-6-2 Revisiting EN 338 and EN 384 Basics and Procedures - R Steiger, M Arnold, M Fontana

40-6-1 Bearing Strength Perpendicular to the Grain of Locally Loaded Timber Blocks - A J M Leijten, J C M Schoenmakers

40-6-2 Experimental Study of Compression and Shear Strength of Spruce Timber - M Poussa, P Tukiainen, A Ranta-Maunus

40-6-3 Analysis of Tension and Bending strength of Graded Spruce Timber - A Hanhijärvi, A Ranta-Maunus, H Sarkama, M Kohsaku, M Poussa, J Puttonen

41-6-1 Design of Inclined Glulam Members with an End Notch on the Tension Face - A Asiz, I Smith
A New Design Approach for End-notched Beams - View on Code - K Rautenstrauch, B Franke, S Franke, K U Schober

The Design Rules in Eurocode 5 for Compression Perpendicular to the Grain - Continuous Supported Beams - H J Larsen, T A C M van der Put, A J M Leijten

Size Effects in Bending – J K Denzler, P Glos

Variability of Strength of European Spruce - A Ranta-Maunus, J K Denzler

Impact Loaded Structural Timber Elements Made from Swiss Grown Norway Spruce - R Widmann, R Steiger

Modelling the Bending Strength of Timber Components – Implications to Test Standards - J Köhler, M Sandomeer, T Isáksson, B Källsner

The Bearing Strength of Timber Beams on Discrete Supports - A Jorissen, B de Leijer, A Leijten


Interaction of Shear Stresses and Stresses Perpendicular to the Grain - R Steiger, E Gehri

Enhanced Design Approach for Reinforced Notched Beams - R Jockwer, A Frangi, E Serrano, R Steiger

Compression Strength and Stiffness Perpendicular to the Grain – Influences of the Material Properties, the Loading Situation and the Gauge Length - C Le Levé, R Maderebner, M Flach

Rolling Shear Properties of some European Timber Species with Focus on Cross Laminated Timber (CLT): Test Configuration and Parameter Study - T Ehrhart, R Brandner, G Schickhofer, A Frangi

Shear Strength Values for Soft- and Hardwoods - J W G van de Kuilen, W Gard, G Ravenshorst, V Antonelli, A Kovryga

Modelling the Variation of Mechanical Properties along Oak Boards - C Tapia, S Aicher

TIMBER JOINTS AND FASTENERS

1-7-1 Mechanical Fasteners and Fastenings in Timber Structures - E G Stern

Proposal for a Basic Test Method for the Evaluation of Structural Timber Joints with Mechanical Fasteners and Connectors - RILEM 3TT Committee

Test Methods for Wood Fasteners - K Möhler

Influence of Loading Procedure on Strength and Slip-Behaviour in Testing Timber Joints - K Möhler

Recommendations for Testing Methods for Joints with Mechanical Fasteners and Connectors in Load-Bearing Timber Structures - RILEM 3 TT Committee

CIB-Recommendations for the Evaluation of Results of Tests on Joints with Mechanical Fasteners and Connectors used in Load-Bearing Timber Structures - J Kuipers
<table>
<thead>
<tr>
<th>ID</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-7-1</td>
<td>Recommendations for Testing Methods for Joints with Mechanical Fasteners and Connectors in Load-Bearing Timber Structures (seventh draft) - RILEM 3 TT Committee</td>
</tr>
<tr>
<td>6-7-2</td>
<td>Proposal for Testing Integral Nail Plates as Timber Joints - K Möhler</td>
</tr>
<tr>
<td>6-7-3</td>
<td>Rules for Evaluation of Values of Strength and Deformation from Test Results - Mechanical Timber Joints - M Johansen, J Kuipers, B Norén</td>
</tr>
<tr>
<td>6-7-4</td>
<td>Comments to Rules for Testing Timber Joints and Derivation of Characteristic Values for Rigidity and Strength - B Norén</td>
</tr>
<tr>
<td>7-7-1</td>
<td>Testing of Integral Nail Plates as Timber Joints - K Möhler</td>
</tr>
<tr>
<td>7-7-2</td>
<td>Long Duration Tests on Timber Joints - J Kuipers</td>
</tr>
<tr>
<td>7-7-3</td>
<td>Tests with Mechanically Jointed Beams with a Varying Spacing of Fasteners - K Möhler</td>
</tr>
<tr>
<td>7-100-1</td>
<td>CIB-Timber Code Chapter 5.3 Mechanical Fasteners;CIB-Timber Standard 06 and 07 - H J Larsen</td>
</tr>
<tr>
<td>9-7-1</td>
<td>Design of Truss Plate Joints - F J Keenan</td>
</tr>
<tr>
<td>9-7-2</td>
<td>Staples - K Möhler</td>
</tr>
<tr>
<td>11-7-1</td>
<td>A Draft Proposal for International Standard: ISO Document ISO/TC 165N 38E</td>
</tr>
<tr>
<td>12-7-1</td>
<td>Load-Carrying Capacity and Deformation Characteristics of Nailed Joints - J Ehlbeck</td>
</tr>
<tr>
<td>12-7-2</td>
<td>Design of Bolted Joints - H J Larsen</td>
</tr>
<tr>
<td>12-7-3</td>
<td>Design of Joints with Nail Plates - B Norén</td>
</tr>
<tr>
<td>13-7-1</td>
<td>Polish Standard BN-80/7159-04: Parts 00-01-02-03-04-05.&quot;Structures from Wood and Wood-based Materials. Methods of Test and Strength Criteria for Joints with Mechanical Fasteners&quot;</td>
</tr>
<tr>
<td>13-7-2</td>
<td>Investigation of the Effect of Number of Nails in a Joint on its Load Carrying Ability - W Nozynski</td>
</tr>
<tr>
<td>13-7-3</td>
<td>International Acceptance of Manufacture, Marking and Control of Finger-jointed Structural Timber - B Norén</td>
</tr>
<tr>
<td>13-7-4</td>
<td>Design of Joints with Nail Plates - Calculation of Slip - B Norén</td>
</tr>
<tr>
<td>13-7-5</td>
<td>Design of Joints with Nail Plates - The Heel Joint - B Källsner</td>
</tr>
<tr>
<td>13-7-6</td>
<td>Nail Deflection Data for Design - H J Burgess</td>
</tr>
<tr>
<td>13-7-7</td>
<td>Test on Bolted Joints - P Vermeyden</td>
</tr>
<tr>
<td>13-7-8</td>
<td>Comments to paper CIB-W18/12-7-3 &quot;Design of Joints with Nail Plates&quot;- B Norén</td>
</tr>
<tr>
<td>13-7-9</td>
<td>Strength of Finger Joints - H J Larsen</td>
</tr>
<tr>
<td>13-100-4</td>
<td>CIB Structural Timber Design Code. Proposal for Section 6.1.5 Nail Plates - N I Bovim</td>
</tr>
<tr>
<td>14-7-1</td>
<td>Design of Joints with Nail Plates (second edition) - B Norén</td>
</tr>
<tr>
<td>14-7-2</td>
<td>Method of Testing Nails in Wood (second draft, August 1980) - B Norén</td>
</tr>
<tr>
<td>14-7-3</td>
<td>Load-Slip Relationship of Nailed Joints - J Ehlbeck and H J Larsen</td>
</tr>
<tr>
<td>14-7-4</td>
<td>Wood Failure in Joints with Nail Plates - B Norén</td>
</tr>
<tr>
<td>14-7-5</td>
<td>The Effect of Support Eccentricity on the Design of W- and WW-Trussed with Nail Plate Connectors - B Källsner</td>
</tr>
</tbody>
</table>
Derivation of the Allowable Load in Case of Nail Plate Joints Perpendicular to Grain - K Möhler

Comments on CIB-W18/14-7-1 - T A C M van der Put

Final Recommendation TT-1A: Testing Methods for Joints with Mechanical Fasteners in Load-Bearing Timber Structures. Annex A Punched Metal Plate Fasteners - Joint Committee RILEM/CIB-3TT

Load Carrying Capacity of Dowels - E Gehri

Bolted Timber Joints: A Literature Survey - N Harding

Bolted Timber Joints: Practical Aspects of Construction and Design; a Survey - N Harding

Bolted Timber Joints: Draft Experimental Work Plan - Building Research Association of New Zealand

Mechanical Properties of Nails and their Influence on Mechanical Properties of Nailed Timber Joints Subjected to Lateral Loads - I Smith, L R J Whale, C Anderson and L Held

Notes on the Effective Number of Dowels and Nails in Timber Joints - G Steck

Model Specification for Driven Fasteners for Assembly of Pallets and Related Structures - E G Stern and W B Wallin

The Influence of the Orientation of Mechanical Joints on their Mechanical Properties - I Smith and L R J Whale

Influence of Number of Rows of Fasteners or Connectors upon the Ultimate Capacity of Axially Loaded Timber Joints - I Smith and G Steck

A Detailed Testing Method for Nailplate Joints - J Kangas

Principles for Design Values of Nailplates in Finland - J Kangas

The Strength of Nailplates - N I Bovim and E Aasheim

Behaviour of Nailed and Bolted Joints under Short-Term Lateral Load - Conclusions from Some Recent Research - L R J Whale, I Smith and B O Hilson

Glued Bolts in Glulam - H Riberholt

Effectiveness of Multiple Fastener Joints According to National Codes and Eurocode 5 (Draft) - G Steck

The Prediction of the Long-Term Load Carrying Capacity of Joints in Wood Structures - Y M Ivanov and Y Y Slavic

Slip in Joints under Long-Term Loading - T Feldborg and M Johansen

The Derivation of Design Clauses for Nailed and Bolted Joints in Eurocode 5 - L R J Whale and I Smith

Design of Joints with Nail Plates - Principles - B Norén

Shear Tests for Nail Plates - B Norén

Advances in Technology of Joints for Laminated Timber - Analyses of the Structural Behaviour - M Piazza and G Turrini

Connections Deformability in Timber Structures: A Theoretical Evaluation of its Influence on Seismic Effects - A Ceccotti and A Vignoli

Design of Nailed and Bolted Joints-Proposals for the Revision of Existing Formulae in Draft Eurocode 5 and the CIB Code - L R J Whale, I Smith and H J Larsen
20-7-2 Slip in Joints under Long Term Loading - T Feldborg and M Johansen
20-7-3 Ultimate Properties of Bolted Joints in Glued-Laminated Timber - M Yasumura, T Murota and H Sakai
20-7-4 Modelling the Load-Deformation Behaviour of Connections with Pin-Type Fasteners under Combined Moment, Thrust and Shear Forces - I Smith
21-7-1 Nails under Long-Term Withdrawal Loading - T Feldborg and M Johansen
21-7-2 Glued Bolts in Glulam-Proposals for CIB Code - H Riberholt
21-7-3 Nail Plate Joint Behaviour under Shear Loading - T Poutanen
21-7-4 Design of Joints with Laterally Loaded Dowels. Proposals for Improving the Design Rules in the CIB Code and the Draft Eurocode 5 - J Ehlbeck and H Werner
21-7-5 Axially Loaded Nails: Proposals for a Supplement to the CIB Code - J Ehlbeck and W Siebert
22-7-1 End Grain Connections with Laterally Loaded Steel Bolts A draft proposal for design rules in the CIB Code - J Ehlbeck and M Gerold
22-7-2 Determination of Perpendicular-to-Grain Tensile Stresses in Joints with Dowel-Type Fasteners - A draft proposal for design rules - J Ehlbeck, R Görlacher and H Werner
22-7-3 Design of Double-Shear Joints with Non-Metallic Dowels A proposal for a supplement of the design concept - J Ehlbeck and O Eberhart
22-7-4 The Effect of Load on Strength of Timber Joints at high Working Load Level - A J M Leijten
22-7-5 Plasticity Requirements for Portal Frame Corners - R Gunnewijk and A J M Leijten
22-7-6 Background Information on Design of Glulam Rivet Connections in CSA/CAN3-086.1-M89 - A proposal for a supplement of the design concept - E Karacabeyli and D P Janssens
22-7-7 Mechanical Properties of Joints in Glued-Laminated Beams under Reversed Cyclic Loading - M Yasumura
22-7-8 Strength of Glued Lap Timber Joints - P Glos and H Horstmann
22-7-9 Toothed Rings Type Bistyp 075 at the Joints of Fir Wood - J Kerste
22-7-10 Calculation of Joints and Fastenings as Compared with the International State - K Zimmer and K Lissner
22-7-11 Joints on Glued-in Steel Bars Present Relatively New and Progressive Solution in Terms of Timber Structure Design - G N Zubarev, F A Boitemirov and V M Golovina
22-7-12 The Development of Design Codes for Timber Structures made of Compositive Bars with Plate Joints based on Cyclindrical Nails - Y V Piskunov
22-7-13 Designing of Glued Wood Structures Joints on Glued-in Bars - S B Turkovsky
23-7-1 Proposal for a Design Code for Nail Plates - E Aasheim and K H Solli
23-7-2 Load Distribution in Nailed Joints - H J Blass
24-7-1 Theoretical and Experimental Tension and Shear Capacity of Nail Plate Connections - B Källsner and J Kangas
24-7-2 Testing Method and Determination of Basic Working Loads for Timber Joints with Mechanical Fasteners - Y Hirashima and F Kamiya
24-7-3 Anchorage Capacity of Nail Plate - J Kangas
25-7-2 Softwood and Hardwood Embedding Strength for Dowel type Fasteners - J Ehlbeck and H Werner
25-7-4 A Guide for Application of Quality Indexes for Driven Fasteners Used in Connections in Wood Structures - E G Stern
25-7-5 35 Years of Experience with Certain Types of Connectors and Connector Plates Used for the Assembly of Wood Structures and their Components - E G Stern
25-7-6 Characteristic Strength of Split-ring and Shear-plate Connections - H J Blass, J Ehlbeck and M Schlager
25-7-7 Characteristic Strength of Tooth-plate Connector Joints - H J Blass, J Ehlbeck and M Schlager
25-7-8 Extending Yield Theory to Screw Connections - T E McLain
25-7-9 Determination of $k_{def}$ for Nailed Joints - J W G van de Kuilen
25-7-10 Characteristic Strength of UK Timber Connectors - A V Page and C J Mettem
25-7-11 Multiple-fastener Dowel-type Joints, a Selected Review of Research and Codes - C J Mettem and A V Page
25-7-12 Load Distributions in Multiple-fastener Bolted Joints in European Whitewood Glulam, with Steel Side Plates - C J Mettem and A V Page
26-7-1 Proposed Test Method for Dynamic Properties of Connections Assembled with Mechanical Fasteners - J D Dolan
26-7-2 Validatory Tests and Proposed Design Formulae for the Load-Carrying Capacity of Toothed-Plate Connected Joints - C J Mettem, A V Page and G Davis
26-7-3 Definitions of Terms and Multi-Language Terminology Pertaining to Metal Connector Plates - E G Stern
26-7-4 Design of Joints Based on in V-Shape Glued-in Rods - J Kangas
26-7-5 Tests on Timber Concrete Composite Structural Elements (TCCs) - A U Meierhofer
27-7-1 Glulam Arch Bridge and Design of it's Moment-Resisting Joints - K Komatsu and S Usuku
27-7-2 Characteristic Load - Carrying Capacity of Joints with Dowel-type Fasteners in Regard to the System Properties - H Werner
27-7-3 Steel Failure Design in Truss Plate Joints - T Poutanen
28-7-1 Expanded Tube Joint in Locally DP Reinforced Timber - A J M Leijten, P Ragupathy and K S Virdi
28-7-2 A Strength and Stiffness Model for the Expanded Tube Joint - A J M Leijten
28-7-3 Load-carrying Capacity of Steel-to Timber Joints with Annular Ring Shanked Nails. A Comparison with the ECS Design Method - R Görlacher
28-7-4 Dynamic Effects on Metal-Plate Connected Wood Truss Joints - S Kent, R Gupta and T Miller
28-7-5 Failure of the Timber Bolted Joints Subjected to Lateral Load Perpendicular to Grain - M Yasumura and L Daudeville

28-7-6 Design Procedure for Locally Reinforced Joints with Dowel-type Fasteners - H Werner

28-7-7 Variability and Effects of Moisture Content on the Withdrawal Characteristics for Lumber as Opposed to Clear Wood - J D Dolan and J W Stelmokas

28-7-8 Nail Plate Capacity in Joint Line - A Kevarinmäki and J Kangas

28-7-9 Axial Strength of Glued-In Bolts - Calculation Model Based on Non-Linear Fracture Mechanics - A Preliminary Study - C J Johansson, E Serrano, P J Gustafsson and B Enquist

28-7-10 Cyclic Lateral Dowel Connection Tests for seismic and Wind Evaluation - J D Dolan

29-7-1 A Simple Method for Lateral Load-Carrying Capacity of Dowel-Type Fasteners - J Kangas and J Kurkela

29-7-2 Nail Plate Joint Behaviour at Low Versus High Load Level - T Poutanen

29-7-3 The Moment Resistance of Tee and Butt - Joint Nail Plate Test Specimens - A Comparison with Current Design Methods - A Reffold, L R J Whale and B S Choo

29-7-4 A Critical Review of the Moment Rotation Test Method Proposed in prEN 1075 - M Bettison, B S Choo and L R J Whale

29-7-5 Explanation of the Translation and Rotation Behaviour of Prestressed Moment Timber Joints - A J M Leijten

29-7-6 Design of Joints and Frame Corners using Dowel-Type Fasteners - E Gehri

29-7-7 Quasi-Static Reversed-Cyclic Testing of Nailed Joints - E Karacabeyli and A Ceccotti

29-7-8 Failure of Bolted Joints Loaded Parallel to the Grain: Experiment and Simulation - L Davenne, L Daudeville and M Yasumura

30-7-1 Flexural Behaviour of GLT Beams End-Jointed by Glued-in Hardwood Dowels - K Komatsu, A Koizumi, J Jensen, T Sasaki and Y Iijima

30-7-2 Modelling of the Block Tearing Failure in Nailed Steel-to-Timber Joints - J Kangas, K Aalto and A Kevarinmäki

30-7-3 Cyclic Testing of Joints with Dowels and Slotted-in Steel Plates - E Aasheim

30-7-4 A Steel-to-Timber Dowelled Joint of High Performance in Combination with a High Strength Wood Composite (Parallam) - E Gehri

30-7-5 Multiple Fastener Timber Connections with Dowel Type Fasteners - A Jorissen

30-7-6 Influence of Ductility on Load-Carrying Capacity of Joints with Dowel-Type Fasteners - A Mischler

31-7-1 Mechanical Properties of Dowel Type Joints under Reversed Cyclic Lateral Loading - M Yasumura

31-7-2 Design of Joints with Laterally Loaded Dowels - A Mischler

31-7-3 Flexural Behaviour of Glulam Beams Edge-Jointed by Lagscrews with Steel Splice Plates - K Komatsu

31-7-4 Design on Timber Capacity in Nailed Steel-to-Timber Joints - J Kangas and J Vesa
31-7-5 Timber Contact in Chord Splices of Nail Plate Structures - A Kevarinmäki
31-7-6 The Fastener Yield Strength in Bending - A Jorissen and H J Blaß
31-7-7 A Proposal for Simplification of Johansen’s Formulae, Dealing With the Design of Dowelled-Type Fasteners - F Rouger
31-7-8 Simplified Design of Connections with Dowel-type fasteners - H J Blaß and J Ehlbeck
32-7-1 Behaviour of Wood-Steel-Wood Bolted Glulam Connections - M Mohammad and J H P Quenneville
32-7-2 A new set of experimental tests on beams loaded perpendicular-to-grain by dowel-type joints - M Ballerini
32-7-3 Design and Analysis of Bolted Timber Joints under Lateral Force Perpendicular to Grain - M Yasumura and L Daudeville
32-7-4 Predicting Capacities of Joints with Laterally Loaded Nails - I Smith and P Quenneville
32-7-5 Strength Reduction Rules for Multiple Fastener Joints - A Mischler and E Gehri
32-7-6 The Stiffness of Multiple Bolted Connections - A Jorissen
32-7-7 Concentric Loading Tests on Girder Truss Components - T N Reynolds, A Reffold, V Enjily and L Whale
32-7-8 Dowel Type Connections with Slotted-In Steel Plates - M U Pedersen, C O Clorius, L Damkilde, P Hoffmeyer and L Eskildsen
32-7-9 Creep of Nail Plate Reinforced Bolt Joints - J Vesa and A Kevarinmäki
32-7-10 The Behaviour of Timber Joints with Ring Connectors - E Gehri and A Mischler
32-7-11 Non-Metallic, Adhesiveless Joints for Timber Structures - R D Drake, M P Ansell, C J Mettem and R Bainbridge
32-7-12 Effect of Spacing and Edge Distance on the Axial Strength of Glued-in Rods - H J Blaß and B Laskewitz
32-7-13 Evaluation of Material Combinations for Bonded in Rods to Achieve Improved Timber Connections - C J Mettem, R J Bainbridge, K Harvey, M P Ansell, J G Broughton and A R Hutchinson
33-7-1 Determination of Yield Strength and Ultimate Strength of Dowel-Type Timber Joints – M Yasumura and K Sawata
33-7-2 Lateral Shear Capacity of Nailed Joints – U Korin
33-7-3 Height-Adjustable Connector for Composite Beams – Y V Piskunov and E G Stern
33-7-4 Engineering Ductility Assessment for a Nailed Slotted-In Steel Connection in Glulam – L Stehn and H Johansson
33-7-5 Effective Bending Capacity of Dowel-Type Fasteners - H J Blaß, A Bienhaus and V Krämer
33-7-6 Load-Carrying Capacity of Joints with Dowel-Type Fasteners and Interlayers - H J Blaß and B Laskewitz
33-7-7 Evaluation of Perpendicular to Grain Failure of Beams caused by Concentrated Loads of Joints – T A C M van der Put and A J M Leijten
33-7-8 Test Methods for Glued-In Rods for Timber Structures – C Bengtsson and C J Johansson
33-7-9 Stiffness Analysis of Nail Plates – P Ellegaard
33-7-10  Capacity, Fire Resistance and Gluing Pattern of the Rods in V-Connections – J Kangas
33-7-11  Bonded-In Pultrusions for Moment-Resisting Timber Connections – K Harvey, M P Ansell, C J Mettem, R J Bainbridge and N Alexandre
33-7-12  Fatigue Performance of Bonded-In Rods in Glulam, Using Three Adhesive Types - R J Bainbridge, K Harvey, C J Mettem and M P Ansell
34-7-1  Splitting Strength of Beams Loaded by Connections Perpendicular to Grain, Model Validation – A J M Leijten, A Jorissen
34-7-2  Numerical LEFM analyses for the evaluation of failure loads of beams loaded perpendicular-to-grain by single-dowel connections – M Ballerini, R Bezzi
34-7-3  Dowel joints loaded perpendicular to grain - H J Larsen, P J Gustafsson
34-7-4  Quality Control of Connections based on in V-shape glued-in Steel Rods – J Kangas, A Kevarinmäki
34-7-5  Testing Connector Types for Laminated-Timber-Concrete Composite Elements – M Grosse, S Lehmann, K Rautenstrauch
34-7-6  Behaviour of Axially Loaded Glued-in Rods - Requirements and Resistance, Especially for Spruce Timber Perpendicular to the Grain Direction – A Bernasconi
34-7-7  Embedding characteristics on fibre reinforcement and densified timber joints - P Haller, J Wehsener, T Birk
34-7-8  GIROD – Glued-in Rods for Timber Structures – C Bengtsson, C-J Johansson
34-7-9  Criteria for Damage and Failure of Dowel-Type Joints Subjected to Force Perpendicular to the Grain – M Yasumura
34-7-10  Interaction Between Splitting and Block Shear Failure of Joints – A J M Leijten, A Jorissen, J Kuipers
34-7-11  Limit states design of dowel-fastener joints – Placement of modification factors and partial factors, and calculation of variability in resistance – I Smith, G Foliente
34-7-12  Design and Modelling of Knee Joints - J Nielsen, P Ellegaard
34-7-13  Timber-Steel Shot Fired Nail Connections at Ultimate Limit States - R J Bainbridge, P Larsen, C J Mettem, P Alam, M P Ansell
35-7-1  New Estimating Method of Bolted Cross-lapped Joints with Timber Side Members - M Noguchi, K Komatsu
35-7-2  Analysis on Multiple Lag Screwed Timber Joints with Timber Side Members - K Komatsu, S Takino, M Nakatani, H Tateishi
35-7-3  Joints with Inclined Screws - A Kevarinmäki
35-7-4  Joints with Inclined Screws - I Bejtka, H J Blaß
35-7-5  Effect of distances, Spacing and Number of Dowels in a Row an the Load Carrying Capacity of Connections with Dowels failing by Splitting - M Schmid, R Frasson, H J Blaß
35-7-6  Effect of Row Spacing on the Capacity of Bolted Timber Connections Loaded Perpendicular-to-grain - P Quenneville, M Kasim
35-7-7  Splitting Strength of Beams Loaded by Connections, Model Comparison - A J M Leijten
35-7-8  Load-Carrying Capacity of Perpendicular to the Grain Loaded Timber Joints with Multiple Fasteners - O Borth, K U Schober, K Rautenstrauch
35-7-9  Determination of fracture parameter for dowel-type joints loaded perpendicular to wooden grain and its application - M Yasumura
35-7-10 Analysis and Design of Modified Attic Trusses with Punched Metal Plate Fasteners - P Ellegaard
35-7-11 Joint Properties of Plybamboo Sheets in Prefabricated Housing - G E Gonzalez
35-7-12 Fiber-Reinforced Beam-to-Column Connections for Seismic Applications - B Kasal, A Heiduschke, P Haller
36-7-1 Shear Tests in Timber-LWAC with Screw-Type Connections - L Jorge, H Cruz, S Lopes
36-7-2 Plug Shear Failure in Nailed Timber Connections: Experimental Studies - H Johnsson
36-7-3 Nail-Laminated Timber Elements in Natural Surface-Composite with Mineral Bound Layer - S Lehmann, K Rautenstrauch
36-7-4 Mechanical Properties of Timber-Concrete Joints Made With Steel Dowels - A Dias, J W G van de Kuilen, H Cruz
36-7-5 Comparison of Hysteresis Responses of Different Sheathing to Framing Joints - B Dujić, R Zarnić
36-7-6 Evaluation and Estimation of the Performance of the Nail Joints and Shear Walls under Dry/Humid Cyclic Climate - S Nakajima
36-7-7 Beams Transversally Loaded by Dowel-Type Joints: Influence on Splitting Strength of Beam Thickness and Dowel Size - M Ballerini, A Giovanella
36-7-8 Splitting Strength of Beams Loaded by Connections - J L Jensen
36-7-9 A Tensile Fracture Model for Joints with Rods or Dowels loaded Perpendicular-to-Grain - J L Jensen, P J Gustafsson, H J Larsen
36-7-10 A Numerical Model to Simulate the Load-Displacement Time-History of Multiple-Bolt Connections Subjected to Various Loadings - C P Heine, J D Dolan
36-7-11 Reliability of Timber Structures, Theory and Dowel-Type Connection Failures - A Ranta-Maunus, A Kevarinmäki
37-7-1 Development of the "Displaced Volume Model" to Predict Failure for Multiple-Bolt Timber Joints - D M Carradine, J D Dolan, C P Heine
37-7-2 Mechanical Models of the Knee Joints with Cross-Lapped Glued Joints and Glued in Steel Rods - M Noguchi, K Komatsu
37-7-3 Simplification of the Neural Network Model for Predicting the Load-Carrying Capacity of Dowel-Type Connections - A Cointe, F Rouger
37-7-4 Bolted Wood Connections Loaded Perpendicular-to-Grain- A Proposed Design Approach - M C G Lehoux, J H P Quenneville
37-7-5 A New Prediction Formula for the Splitting Strength of Beams Loaded by Dowel Type Connections - M Ballerini
37-7-6 Plug Shear Failure: The Tensile Failure Mode and the Effect of Spacing - H Johnsson
37-7-7 Block Shear Failure Test with Dowel-Type Connection in Diagonal LVL Structure - M Kairi
37-7-8 Glued-in Steel Rods: A Design Approach for Axially Loaded Single Rods Set Parallel to the Grain - R Steiger, E Gehri, R Widmann
<table>
<thead>
<tr>
<th>Paper Number</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>37-7-9</td>
<td>Glued in Rods in Load Bearing Timber Structures - Status regarding European Standards</td>
<td>B Källander</td>
</tr>
<tr>
<td></td>
<td>for Test Procedures - B Källander</td>
<td></td>
</tr>
<tr>
<td>37-7-10</td>
<td>French Data Concerning Glued-in Rods - C Faye, L Le Magorou, P Morlier, J Surleau</td>
<td></td>
</tr>
<tr>
<td>37-7-11</td>
<td>Enhancement of Dowel-Type Fasteners by Glued Connectors - C O Clorius, A Højman</td>
<td></td>
</tr>
<tr>
<td>37-7-12</td>
<td>Review of Probability Data for Timber Connections with Dowel-Type Fasteners - A J M</td>
<td>A J M Leijten, J Köhler, A Jorissen</td>
</tr>
<tr>
<td></td>
<td>Leijten, J Köhler, A Jorissen</td>
<td></td>
</tr>
<tr>
<td>37-7-13</td>
<td>Behaviour of Fasteners and Glued-in Rods Produced From Stainless Steel - A Kevarinmäki</td>
<td></td>
</tr>
<tr>
<td>37-7-14</td>
<td>Dowel joints in Engineered Wood Products: Assessment of Simple Fracture Mechanics</td>
<td>M Snow, I Smith, A Asiz</td>
</tr>
<tr>
<td></td>
<td>Models - M Snow, I Smith, A Asiz</td>
<td></td>
</tr>
<tr>
<td>37-7-15</td>
<td>Numerical Modelling of Timber and Connection Elements Used in Timber-Concrete-</td>
<td>M Grosse, K Rautenstrauch</td>
</tr>
<tr>
<td></td>
<td>Composite Constructions - M Grosse, K Rautenstrauch</td>
<td></td>
</tr>
<tr>
<td>38-7-1</td>
<td>A Numerical Investigation on the Splitting Strength of Beams Loaded Perpendicular-to-</td>
<td>M Ballerini, M Rizzi</td>
</tr>
<tr>
<td></td>
<td>grain by Multiple-dowel Connections – M Ballerini, M Rizzi</td>
<td></td>
</tr>
<tr>
<td>38-7-2</td>
<td>A Probabilistic Framework for the Reliability Assessment of Connections with Dowel Type</td>
<td>J Köhler</td>
</tr>
<tr>
<td></td>
<td>Fasteners - J Köhler</td>
<td></td>
</tr>
<tr>
<td>38-7-3</td>
<td>Load Carrying Capacity of Curved Glulam Beams Reinforced with self-tapping Screws -</td>
<td>J Jönsson, S Thelandersson</td>
</tr>
<tr>
<td></td>
<td>J Jönsson, S Thelandersson</td>
<td></td>
</tr>
<tr>
<td>38-7-4</td>
<td>Self-tapping Screws as Reinforcements in Connections with Dowel-Type Fasteners- I</td>
<td>H J Blaß</td>
</tr>
<tr>
<td></td>
<td>Bejtka, H J Blaß</td>
<td></td>
</tr>
<tr>
<td>38-7-5</td>
<td>The Yield Capacity of Dowel Type Fasteners - A Jorissen, A Leijten</td>
<td></td>
</tr>
<tr>
<td>38-7-6</td>
<td>Nails in Spruce - Splitting Sensitivity, End Grain Joints and Withdrawal Strength</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- A Kevarinmäki</td>
<td></td>
</tr>
<tr>
<td>38-7-7</td>
<td>Design of Timber Connections with Slotted-in Steel Plates and Small Diameter Steel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tube Fasteners - B Murty, I Smith, A Asiz</td>
<td></td>
</tr>
<tr>
<td>39-7-1</td>
<td>Effective in-row Capacity of Multiple-Fastener Connections - P Quenneville, M</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bickerdike</td>
<td></td>
</tr>
<tr>
<td>39-7-2</td>
<td>Self-tapping Screws as Reinforcements in Beam Supports - I Bejtka, H J Blaß</td>
<td></td>
</tr>
<tr>
<td>39-7-3</td>
<td>Connectors for Timber-concrete Composite-Bridges - A Döhrer, K Rautenstrauch</td>
<td></td>
</tr>
<tr>
<td>39-7-4</td>
<td>Block Shear Failure at Dowelled Double Shear Steel-to-timber Connections - A</td>
<td>A Hanhijärvi, A Kevarinmäki, R Yli-Koski</td>
</tr>
<tr>
<td></td>
<td>Hanhijärvi, A Kevarinmäki, R Yli-Koski</td>
<td></td>
</tr>
<tr>
<td>39-7-5</td>
<td>Load Carrying Capacity of Joints with Dowel Type Fasteners in Solid Wood Panels - T</td>
<td>T Uibel, H J Blaß</td>
</tr>
<tr>
<td></td>
<td>Uibel</td>
<td></td>
</tr>
<tr>
<td>39-7-6</td>
<td>Generalised Canadian Approach for Design of Connections with Dowel Fasteners - P</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Quenneville, I Smith, A Asiz, M Snow, Y H Chui</td>
<td></td>
</tr>
<tr>
<td>40-7-1</td>
<td>Predicting the Strength of Bolted Timber Connections Subjected to Fire - M</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fragiaccomo, A Buchanan, D Carshalton, P Moss, C Austruy</td>
<td></td>
</tr>
<tr>
<td>40-7-2</td>
<td>Edge Joints with Dowel Type Fasteners in Cross Laminated Timber - H J Blaß, T Uibel</td>
<td></td>
</tr>
<tr>
<td>40-7-3</td>
<td>Design Method against Timber Failure Mechanisms of Dowelled Steel-to-Timber Connections</td>
<td>A Hanhijärvi, A Kevarinmäki</td>
</tr>
</tbody>
</table>
40-7-4 A EYM Based Simplified Design Formula for the Load-carrying Capacity of Dowel-type Connections - M Ballerini

40-7-5 Evaluation of the Slip Modulus for Ultimate Limit State Verifications of Timber-Concrete Composite Structures - E Lukaszewska, M Fragiacomo, A Frangi

40-7-6 Models for the Predictions of the Ductile and Brittle Failure Modes (Parallel-to-Grain) of Timber Rivet Connections - M Marjerrison, P Quenneville

40-7-7 Creep of Timber and Timber-Concrete Joints. - J W G van de Kuilen, A M P G Dias

40-7-8 Lag Screwed Timber Joints with Timber Side Members- K Komatsu, S Takino, H Tateishi

41-7-1 Applicability of Existing Design Approaches to Mechanical Joints in Structural Composite Lumber - M Snow, I Smith, A Asiz, M Ballerini

41-7-2 Validation of the Canadian Bolted Connection Design Proposal - P Quenneville, J Jensen

41-7-3 Ductility of Moment Resisting Dowelled Joints in Heavy Timber Structures - A Pola stri, R Tomasi, M Piazza, I Smith


41-7-5 Embedding Strength of European Hardwoods - U Hübner, T Bogensperger, G Schickhofer

42-7-1 Base Parameters of Self-tapping Screws - G Pirnbacher, R Brandner, G Schickhofer

42-7-2 Joints with Inclined Screws and Steel Plates as Outer Members - H Krenn, G Schickhofer

42-7-3 Models for the Calculation of the Withdrawal Capacity of Self-tapping Screws - M Frese, H J Blaß

42-7-4 Embedding Strength of New Zealand Timber and Recommendation for the NZ Standard - S Franke, P Quenneville

42-7-5 Load Carrying Capacity of Timber-Wood Fiber Insulation Board – Joints with Dowel Type Fasteners - G Gebhardt, H J Blaß

42-7-6 Prediction of the Fatigue Resistance of Timber-Concrete-Composite Connections - U Kuhlmann, P Aldi

42-7-7 Using Screws for Structural Applications in Laminated Veneer Lumber - D M Carradine, M P Newcombe, A H Buchanan

42-7-8 Influence of Fastener Spacings on Joint Performance - Experimental Results and Codification - E Gehri

42-7-9 Connections with Glued-in Hardwood Rods Subjected to Combined Bending and Shear Actions - J L Jensen, P Quenneville

43-7-1 Probabilistic Capacity Prediction of Timber Joints under Brittle Failure Modes - T Tannert, T Vallée, and F Lam

43-7-2 Ductility in Timber Structures - A Jorissen, M Fragiacomo

43-7-3 Design of Mechanically Jointed Concrete-Timber Beams Taking into Account the Plastic Behaviour of the Fasteners - H J Larsen, H Riberholt, A Ceccotti
43-7-4 Design of Timber-Concrete Composite Beams with Notched Connections - M Fragiacomo, D Yeoh
43-7-5 Development of Design Procedures for Timber Concrete Composite Floors in Australia and New Zealand - K Crews, C Gerber
43-7-6 Failure Behaviour and Resistance of Dowel-Type Connections Loaded Perpendicular to Grain - B Franke, P Quenneville
43-7-7 Predicting Time Dependent Effects in Unbonded Post-Tensioned Timber Beams and Frames - S Giorgini, A Neale, A Palermo, D Carradine, S Pampanin, A H Buchanan
43-7-8 Simplified Design of Post-tensioned Timber Frames - M Newcombe, M Cusiel, S Pampanin, A Palermo, A H Buchanan
44-7-1 Pull-through Capacity in Plywood and OSB - J Munch-Andersen, J D Sørensen
44-7-2 Design Concept for CLT - Reinforced with Self-Tapping Screws - P Mestek, H Kreuzinger, S Winter
44-7-3 Fatigue Behaviour of the Stud Connector Used for Timber-Concrete Composite Bridges – K Rautenstrauch, J Mueller
44-7-4 The Stiffness of Beam to Column Connections in Post-Tensioned Timber Frames – T Smith, W van Beerschoten, A Palermo, S Pampanin, F C Ponzo
44-7-5 Design Approach for the Splitting Failure of Dowel-Type Connections Loaded Perpendicular to Grain - Bettina Franke, Pierre Quenneville
45-7-1 A Stiffness-based Analytical Model for Wood Strength in Timber Connections loaded Parallel to Grain: Riveted Joint Capacity in Brittle and Mixed Failure - P Zarnani, P Quenneville
45-7-2 Beams Loaded Perpendicular to Grain by Connections – Combined Effect of Edge and End Distance - J L Jensen, P Quenneville, U A Girhammar, B Källsner
45-7-3 L Block Failure of Dowelled Connections Subject to Bending Reinforced with Threaded Rods - J-F Bocquet, C Barthram, A Pineur
45-7-4 Block Shear Failure of Wooden Dowel Connections - G Stapf, S Aicher, N Zisi
45-7-5 Requirements on Ductility in Timber Structures - F Brühl, U Kuhlmann
46-7-1 Comparison of Design Rules for Glued-in rods and Design Rule Proposal for Implementation in European Standards - M Stepinac, F Hunger, R Tomasi, E Serrano, V Rajcic, J-W van de Kuilen
46-7-2 In-service Dynamic Stiffness of Dowel-type Connections - T Reynolds, R Harris Wen-Shao Chang
46-7-3 Design Procedure to Determine the Capacity of Timber Connections under Potential Brittle, Mixed and Ductile Failure Modes - P Zarnani, P Quenneville
46-7-4 Withdrawal Strength of Self-tapping Screws in Hardwoods - Ulrich Hübner
46-7-5 Wood Splitting Capacity in Timber Connections Loaded Transversely: Riveted Joint Strength for Full and Partial Width Failure Modes - P Zarnani, P Quenneville
46-7-6 Design Approach for the Splitting Failure of Dowel-type Connections Loaded Perpendicular to Grain - B Franke, P Quenneville
46-7-7  Beams Loaded Perpendicular to Grain by Connections - J C M Schoenmakers, A J M Leijten, A J M Jorissen
46-7-8  Influence of Fasteners in the Compression Area of Timber Members - M Enders-Comberg, H J Blaß
46-7-9  Design of Shear Reinforcement for Timber Beams - P Dietsch, H Kreuzinger, S Winter
47-7-1  Discussion of testing and Evaluation Methods for the Embedment Behaviour of Connections - S Franke, N Magnière
47-7-2  Dowel-type Connections in LVL Made of Beech Wood - P Kobel, A Frangi, R Steiger
47-7-3  Resistance of Connections in Cross-Laminated Timber under Brittle Block Tear-Out Failure Mode - P Zarnani, P Quenneville
47-7-4  Study on Nail Connections in Deformed State - S Svensson, J Munch-Andersen
47-7-5  Design Model for Inclined Screws under Varying Load to Grain Angles - R Jockwer, R Steiger, A Frangi
48-7-1  A Universal Approach for Withdrawal Properties of Self-Tapping Screws in Solid Timber and Laminated Timber Products - A Ringhofer, R Brandner, G Schickhofer
48-7-2  Characteristic Withdrawal Capacity and Stiffness of Threaded Rods - H Stamatopoulos, K A Malo
48-7-3  Load-carrying Capacity of Dowelled Connections - H J Blass, F Colling
48-7-4  Evaluation of the Reliability of Design Approaches for Connections Perpendicular to the Grain - R Jockwer, R Steiger, A Frangi
48-7-5  Simplified Fatigue Design of Typical Timber-Concrete Composite Road Bridges - K Kudla, U Kuhlmann
49-7-1  Impact of Varying Material Properties and Geometrical Parameters on the Reliability of Shear Connections with Dowel Type Fasteners - R Jockwer
49-7-2  Predicting the Load-Deformation of Bolted Timber Connections up to Failure - Yike Zhang, G M Raftery, P Quenneville
50-7-1  Steel-to-Timber Connections: Failure of Laterally Loaded Dowel-Type Fasteners - H J Blass, C Sandhaas, N Meyer
50-7-2  The Embedment Strength as a System Property - M Yurrita, J M Cabrero
50-7-3  Nailed joints: Investigation on Parameters for Johansen Model - C Sandhaas, R Görlacher
50-7-4  Cyclic Bending Fatigue Properties of Dowel Type Fasteners - K Kobayashi, M Yasumura
51-7-1  Deviations Between Planned and Actual Position of Wood Screws - Consequences for their Spacing - M Frese, M Jordan
51-7-2  Analytical Method to Derive Overstrength of Dowel-Type Connections - L-M Ottenhaus, Minghao Li, T Smith
51-7-3  Pinching-free Timber Connection - P Quenneville, N Chan, P Zarnani
51-7-4  In-plane Shear Connection for CLT Diaphragms - T Schmidt, H J Blaß
51-7-5  Seismic Response of Connections with Glued-in Steel Rods - J Ogrizovic, R Jockwer, A Frangi
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>51-7-6</td>
<td>Cyclic Performance of a Full-scale Timber Column Equipped with Resilient Slip Friction Joints - A Valadbeigi, P Zarnani, P Quenneville</td>
</tr>
<tr>
<td>51-7-7</td>
<td>Load-Deformation Behaviour and Stiffness of Lateral Connections with Multiple Dowel Type Fasteners - R Jockwer, A Jorissen</td>
</tr>
<tr>
<td>51-7-8</td>
<td>Design Parameters of Notched Connections for TCC Structures as Part of Eurocode 5 - U Kuhlmann, S Mönch</td>
</tr>
<tr>
<td>51-7-9</td>
<td>Bond Performance of Glued-in CFRP and GFRP Rods in Timber - E Toumpanaki, M H Ramage</td>
</tr>
<tr>
<td>51-7-10</td>
<td>Multiple Shear Plane Timber Connections with Slotted-in Steel Plates and Dowel-type Fasteners: a Study of the Brittle Failure Mode in the Parallel-to-grain Direction - M Yurrita, J M Cabrero, P Quenneville</td>
</tr>
<tr>
<td>51-7-12</td>
<td>Performance of the Different Models for Brittle Failure in the Parallel-to-Grain Direction for Connections with Dowel-Type Fasteners - J M Cabrero, M Yurrita</td>
</tr>
<tr>
<td>51-7-13</td>
<td>Beam-on-Foundation (BOF) Modelling as an Alternative Design Method for Timber Joints with Dowel-Type Fasteners – Part 1: Strength and Stiffness per Shear Plane of Single-Fastener Joints - R Lemaître, J-F Bocquet, M Schweigler, T K Bader</td>
</tr>
<tr>
<td>52-7-1</td>
<td>Product Characteristics of Self-Tapping Timber Screws - A Ringhofer, G Schickhofer</td>
</tr>
<tr>
<td>52-7-2</td>
<td>Withdrawal Strength of Screws and Screw Groups in European Beech (Fagus s.) Parallel to the Grain - M Westermayr, J W G. van de Kuilen</td>
</tr>
<tr>
<td>52-7-3</td>
<td>Density Variations in Beech LVL - Influence on Insertion Moment and Withdrawal Capacity of Screws - M Frese</td>
</tr>
<tr>
<td>52-7-4</td>
<td>Steel Dowel Connections in Beech Hardwood - S Franke, B Franke</td>
</tr>
<tr>
<td>52-7-5</td>
<td>Effective Thickness of the Wood Member in a Timber-to-steel Connection with Large Diameter under Brittle Failure - M Yurrita, J M Cabrero</td>
</tr>
<tr>
<td>52-7-6</td>
<td>Row Shear and Block Shear Failure of Connections with Axially Loaded Screws - H J Blaß, M Flaig, N Meyer</td>
</tr>
<tr>
<td>52-7-7</td>
<td>New Analytical Model for Brittle Failure in the Parallel-to-grain Direction of Timber Connections with Large Diameter Fasteners - M Yurrita, J M Cabrero</td>
</tr>
<tr>
<td>52-7-8</td>
<td>Embedment Test Analysis and Data in the Context of Phenomenological Modeling for Dowelled Timber Joint Design - M Schweigler, T K Bader, J-F Bocquet, R Lemaître, C Sandhaas</td>
</tr>
<tr>
<td>52-7-9</td>
<td>Beam-on-Foundation Modelling as an Alternative Design Method for Timber Joints with Dowel-Type Fasteners – Part 2: Modelling Techniques for Multiple Fastener Joint or Connection - R Lemaître, J-F Bocquet, M Schweigler, T K Bader</td>
</tr>
<tr>
<td>52-7-10</td>
<td>Transmission of Perpendicular to Grain Forces Using Self-tapping Screws - P Dietsch, S Rodemeier, H J Blaß</td>
</tr>
<tr>
<td>52-7-11</td>
<td>Component Method in Timber Construction – Experimental and Numerical Research - U Kuhlmann, J Gauß</td>
</tr>
<tr>
<td>53-7-1</td>
<td>A Conceptual Model to Predict the Withdrawal Capacity of Screws Inserted Parallel to Grain in Beech, Ash and Spruce - M Westermayr, J W G van de Kuilen</td>
</tr>
</tbody>
</table>
FE Modelling of Timber Connections with Inclined and Cross-Wise Arranged Screws - New Findings on Testing the Shear Stiffness - B Azinović, M Frese

Embedding Strength Prediction for European Hardwood Species - T Benistand, L Bleron, J-F Bocquet

Beam-on-Foundation Modelling as an Alternative Design Method for Timber Joints with Dowel-Type Fasteners – Part 4: Joints Subjected to In-Plane Loading - R Lemaître, J-F Bocquet, M Schweigler, T K Bader

Brittle Failure Mode of Timber Connections with one Row of Fasteners Loaded Parallel-to-grain: a New Model for Splitting Failure - M Yurrita, J M Cabrero

Experimental Analysis of Brittle Failure in Timber-to-Steel Connections with Small Diameter Fasteners Loaded Parallel-to-Grain - M Yurrita, J M Cabrero, H J Blaß

Fatigue Behaviour of Notched Connections for Timber-Concrete-Composite Bridges - S Mönch, U Kuhlmann

LOAD SHARING

3-8-1 Load Sharing - An Investigation on the State of Research and Development of Design Criteria - E Levin

4-8-1 A Review of Load-Sharing in Theory and Practice - E Levin

4-8-2 Load Sharing - B Norén

19-8-1 Predicting the Natural Frequencies of Light-Weight Wooden Floors - I Smith and Y H Chui

20-8-1 Proposed Code Requirements for Vibrational Serviceability of Timber Floors - Y H Chui and I Smith

21-8-1 An Addendum to Paper 20-8-1 - Proposed Code Requirements for Vibrational Serviceability of Timber Floors - Y H Chui and I Smith

21-8-2 Floor Vibrational Serviceability and the CIB Model Code - S Ohlsson

22-8-1 Reliability Analysis of Viscoelastic Floors - F Rouger, J D Barrett and R O Foschi

24-8-1 On the Possibility of Applying Neutral Vibrational Serviceability Criteria to Joisted Wood Floors - I Smith and Y H Chui

25-8-1 Analysis of Glulam Semi-rigid Portal Frames under Long-term Load - K Komatsu and N Kawamoto

34-8-1 System Effect in Sheathed Parallel Timber Beam Structures – M Hansson, T Isaksson

35-8-1 System Effects in Sheathed Parallel Timber Beam Structures part II. - M Hansson, T Isaksson

39-8-1 Overview of a new Canadian Approach to Handling System Effects in Timber Structures - I Smith, Y H Chui, P Quenneville

DURATION OF LOAD

3-9-1 Definitions of Long Term Loading for the Code of Practice - B Norén

4-9-1 Long Term Loading of Trussed Rafters with Different Connection Systems - T Feldborg and M Johansen
5-9-1 Strength of a Wood Column in Combined Compression and Bending with Respect to Creep - B Köllsner and B Norén
6-9-1 Long Term Loading for the Code of Practice (Part 2) - B Norén
6-9-2 Long Term Loading - K Möhler
6-9-3 Deflection of Trussed Rafters under Alternating Loading during a Year - T Feldborg and M Johansen
7-6-1 Strength and Long Term Behaviour of Lumber and Glued-Laminated Timber under Torsion Loads - K Möhler
7-9-1 Code Rules Concerning Strength and Loading Time - H J Larsen and E Theilgaard
17-9-1 On the Long-Term Carrying Capacity of Wood Structures - Y M Ivanov and Y Y Slavic
18-9-1 Prediction of Creep Deformations of Joints - J Kuipers
19-9-1 Another Look at Three Duration of Load Models - R O Foschi and Z C Yao
19-9-2 Duration of Load Effects for Spruce Timber with Special Reference to Moisture Influence - A Status Report - P Hoffmeyer
19-9-3 A Model of Deformation and Damage Processes Based on the Reaction Kinetics of Bond Exchange - T A C M van der Put
19-9-4 Non-Linear Creep Superposition - U Korin
19-9-5 Determination of Creep Data for the Component Parts of Stressed-Skin Panels - R Kliger
19-9-6 Creep an Lifetime of Timber Loaded in Tension and Compression - P Glos
19-1-1 Duration of Load Effects and Reliability Based Design (Single Member) - R O Foschi and Z C Yao
19-6-1 Effect of Age and/or Load on Timber Strength - J Kuipers
19-7-4 The Prediction of the Long-Term Load Carrying Capacity of Joints in Wood Structures - Y M Ivanov and Y Y Slavic
19-7-5 Slip in Joints under Long-Term Loading - T Feldborg and M Johansen
20-7-2 Slip in Joints under Long-Term Loading - T Feldborg and M Johansen
22-9-1 Long-Term Tests with Glued Laminated Timber Girders - M Badstube, W Rug and W Schöne
22-9-2 Strength of One-Layer solid and Lengthways Glued Elements of Wood Structures and its Alteration from Sustained Load - L M Kovaltchuk, I N Boitemirova and G B Uspenskaya
24-9-1 Long Term Bending Creep of Wood - T Toratti
24-9-2 Collection of Creep Data of Timber - A Ranta-Maunus
24-9-3 Deformation Modification Factors for Calculating Built-up Wood-Based Structures - I R Kliger
25-9-2 DVM Analysis of Wood. Lifetime, Residual Strength and Quality - L F Nielsen
26-9-1 Long Term Deformations in Wood Based Panels under Natural Climate Conditions. A Comparative Study - S Thelandersson, J Nordh, T Nordh and S Sandahl
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-9-1</td>
<td>Evaluation of Creep Behavior of Structural Lumber in Natural Environment</td>
<td>R Gupta and R Shen</td>
</tr>
<tr>
<td>30-9-1</td>
<td>DOL Effect in Tension Perpendicular to the Grain of Glulam Depending on Service Classes and Volume</td>
<td>S Aicher and G Dill-Langer</td>
</tr>
<tr>
<td>30-9-2</td>
<td>Damage Modelling of Glulam in Tension Perpendicular to Grain in Variable Climate</td>
<td>G Dill-Langer and S Aicher</td>
</tr>
<tr>
<td>31-9-1</td>
<td>Duration of Load Effect in Tension Perpendicular to Grain in Curved Glulam</td>
<td>A Ranta-Maunus</td>
</tr>
<tr>
<td>32-9-1</td>
<td>Bending-Stress-Redistribution Caused by Different Creep in Tension and Compression and Resulting DOL-Effect</td>
<td>P Becker and K Rautenstrauch</td>
</tr>
<tr>
<td>32-9-2</td>
<td>The Long Term Performance of Ply-Web Beams</td>
<td>R Grantham and V Enjily</td>
</tr>
<tr>
<td>36-9-1</td>
<td>Load Duration Factors for Instantaneous Loads</td>
<td>A J M Leijten, B Jansson</td>
</tr>
<tr>
<td>39-9-1</td>
<td>Simplified Approach for the Long-Term Behaviour of Timber-Concrete Composite Beams According to the Eurocode 5 Provisions</td>
<td>M Fragiacomo, A Ceccotti</td>
</tr>
<tr>
<td>49-9-1</td>
<td>Long-term Behaviour of Moisture Content in Timber Constructions – Relation to Service Classes</td>
<td>B Franke, S Franke, A Müller, M Schiere</td>
</tr>
<tr>
<td>50-9-1</td>
<td>Design Equations to Predict Losses in Post-Tensioned Timber Frames</td>
<td>G Granello, C Leyder, A Palermo, A Frangi, S Pampanin</td>
</tr>
<tr>
<td>52-9-1</td>
<td>Duration of Load Effect on Axially-Loaded Self-Tapping Screws Inserted Parallel to Grain in Soft- and Hardwood</td>
<td>R Brandner, A Ringhofer, R Sieder</td>
</tr>
</tbody>
</table>

**TIMBER BEAMS**

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-10-1</td>
<td>The Design of Simple Beams</td>
<td>H J Burgess</td>
</tr>
<tr>
<td>4-10-2</td>
<td>Calculation of Timber Beams Subjected to Bending and Normal Force</td>
<td>H J Larsen</td>
</tr>
<tr>
<td>5-10-1</td>
<td>The Design of Timber Beams</td>
<td>H J Larsen</td>
</tr>
<tr>
<td>9-10-1</td>
<td>The Distribution of Shear Stresses in Timber Beams</td>
<td>F J Keenan</td>
</tr>
<tr>
<td>9-10-2</td>
<td>Beams Notched at the Ends</td>
<td>K Möhler</td>
</tr>
<tr>
<td>11-10-1</td>
<td>Tapered Timber Beams</td>
<td>H Riberholt</td>
</tr>
<tr>
<td>13-6-2</td>
<td>Consideration of Size Effects in Longitudinal Shear Strength for Uncracked Beams</td>
<td>R O Foschi and J D Barrett</td>
</tr>
<tr>
<td>13-6-3</td>
<td>Consideration of Shear Strength on End-Cracked Beams</td>
<td>J D Barrett and R O Foschi</td>
</tr>
<tr>
<td>18-10-1</td>
<td>Submission to the CIB-W18 Committee on the Design of Ply Web Beams by Consideration of the Type of Stress in the Flanges</td>
<td>J A Baird</td>
</tr>
<tr>
<td>18-10-2</td>
<td>Longitudinal Shear Design of Glued Laminated Beams</td>
<td>R O Foschi</td>
</tr>
<tr>
<td>19-10-1</td>
<td>Possible Code Approaches to Lateral Buckling in Beams</td>
<td>H J Burgess</td>
</tr>
<tr>
<td>19-2-1</td>
<td>Creep Buckling Strength of Timber Beams and Columns</td>
<td>R H Leicester</td>
</tr>
<tr>
<td>20-2-1</td>
<td>Lateral Buckling Theory for Rectangular Section Deep Beam-Columns</td>
<td>H J Burgess</td>
</tr>
<tr>
<td>20-10-1</td>
<td>Draft Clause for CIB Code for Beams with Initial Imperfections</td>
<td>H J Burgess</td>
</tr>
<tr>
<td>Volume</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------------------------------------------------------------------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>20-10-2</td>
<td>Space Joists in Irish Timber</td>
<td>W J Robinson</td>
</tr>
<tr>
<td>20-10-3</td>
<td>Composite Structure of Timber Joists and Concrete Slab</td>
<td>T Poutanen</td>
</tr>
<tr>
<td>21-10-1</td>
<td>A Study of Strength of Notched Beams</td>
<td>P J Gustafsson</td>
</tr>
<tr>
<td>22-10-1</td>
<td>Design of Endnotched Beams</td>
<td>H J Larsen and P J Gustafsson</td>
</tr>
<tr>
<td>22-10-2</td>
<td>Dimensions of Wooden Flexural Members under Constant Loads</td>
<td>A Pozgai</td>
</tr>
<tr>
<td>22-10-3</td>
<td>Thin-Walled Wood-Based Flanges in Composite Beams</td>
<td>J König</td>
</tr>
<tr>
<td>22-10-4</td>
<td>The Calculation of Wooden Bars with flexible Joints in Accordance with the Polish Standart Code</td>
<td>Z Mielczarek</td>
</tr>
<tr>
<td>23-10-1</td>
<td>Tension Perpendicular to the Grain at Notches and Joints</td>
<td>T A C M van der Put</td>
</tr>
<tr>
<td>23-10-2</td>
<td>Dimensioning of Beams with Cracks, Notches and Holes. An Application of Fracture Mechanics</td>
<td>K Riipola</td>
</tr>
<tr>
<td>23-10-3</td>
<td>Size Factors for the Bending and Tension Strength of Structural Timber</td>
<td>J D Barret and A R Fewell</td>
</tr>
<tr>
<td>23-12-1</td>
<td>Bending Strength of Glulam Beams, a Design Proposal</td>
<td>J Ehlbeck and F Colling</td>
</tr>
<tr>
<td>23-12-2</td>
<td>Glulam Beams, Bending Strength in Relation to the Bending Strength of the Finger Joints</td>
<td>H Riberholt</td>
</tr>
<tr>
<td>24-10-1</td>
<td>Shear Strength of Continuous Beams</td>
<td>R H Leicester and F G Young</td>
</tr>
<tr>
<td>25-10-1</td>
<td>The Strength of Norwegian Glued Laminated Beams</td>
<td>K Solli, E Aasheim and R H Falk</td>
</tr>
<tr>
<td>25-10-2</td>
<td>The Influence of the Elastic Modulus on the Simulated Bending Strength of Hyperstatic Timber Beams</td>
<td>T D G Canisius</td>
</tr>
<tr>
<td>27-10-1</td>
<td>Determination of Shear Modulus</td>
<td>R Görllacher and J Kürth</td>
</tr>
<tr>
<td>29-10-1</td>
<td>Time Dependent Lateral Buckling of Timber Beams</td>
<td>F Rouger</td>
</tr>
<tr>
<td>29-10-2</td>
<td>Determination of Modulus of Elasticity in Bending According to EN 408</td>
<td>K H Solli</td>
</tr>
<tr>
<td>29-10-3</td>
<td>On Determination of Modulus of Elasticity in Bending</td>
<td>L Boström, S Ormarsson and O Dahlblom</td>
</tr>
<tr>
<td>29-10-4</td>
<td>Relation of Moduli of Elasticity in Flatwise and Edgewise Bending</td>
<td>C J Johansson, A Steffen and E W Wormuth</td>
</tr>
<tr>
<td>30-10-1</td>
<td>Nondestructive Evaluation of Wood-based Members and Structures with the Help of Modal Analysis</td>
<td>P Kuklik</td>
</tr>
<tr>
<td>30-10-2</td>
<td>Measurement of Modulus of Elasticity in Bending</td>
<td>L Boström</td>
</tr>
<tr>
<td>30-10-3</td>
<td>A Weak Zone Model for Timber in Bending</td>
<td>B Källsner, K Salmela and O Ditlevsen</td>
</tr>
<tr>
<td>30-10-4</td>
<td>Load Carrying Capacity of Timber Beams with Narrow Moment Peaks</td>
<td>T Isaksson and J Freysoldt</td>
</tr>
<tr>
<td>37-10-1</td>
<td>Design of Rim Boards for Use with I-Joists Framing Systems</td>
<td>B Yeh, T G Williamson</td>
</tr>
<tr>
<td>40-10-1</td>
<td>Extension of EC5 Annex B Formulas for the Design of Timber-concrete Composite Structures</td>
<td>J Schänzlin, M Fragiacomo</td>
</tr>
<tr>
<td>40-10-2</td>
<td>Simplified Design Method for Mechanically Jointed Beams</td>
<td>U A Girhammar</td>
</tr>
<tr>
<td>41-10-1</td>
<td>Composite Action of I-Joist Floor Systems</td>
<td>T G Williamson, B Yeh</td>
</tr>
</tbody>
</table>
8-12-1  Testing of Big Glulam Timber Beams - H Kolb and P Frech
8-12-2  Instruction for the Reinforcement of Apertures in Glulam Beams - H Kolb and P Frech
8-12-3  Glulam Standard Part 1: Glued Timber Structures; Requirements for Timber (Second Draft)
9-12-1  Experiments to Provide for Elevated Forces at the Supports of Wooden Beams with Particular Regard to Shearing Stresses and Long-Term Loadings - F Wassipaule and R Lackner
9-12-2  Two Laminated Timber Arch Railway Bridges Built in Perth in 1849 - L G Booth
9-6-4  Consideration of Combined Stresses for Lumber and Glued Laminated Timber - K Möhler
11-6-3  Consideration of Combined Stresses for Lumber and Glued Laminated Timber (addition to Paper CIB-W18/9-6-4) - K Möhler
12-12-1  Glulam Standard Part 2: Glued Timber Structures; Rating (3rd draft)
12-12-2  Glulam Standard Part 3: Glued Timber Structures; Performance (3rd draft)
13-12-1  Glulam Standard Part 3: Glued Timber Structures; Performance (4th draft)
14-12-1  Proposals for CEI-Bois/CIB-W18 Glulam Standards - H J Larsen
14-12-2  Guidelines for the Manufacturing of Glued Load-Bearing Timber Structures - Stevin Laboratory
14-12-3  Double Tapered Curved Glulam Beams - H Riberholt
14-12-4  Comment on CIB-W18/14-12-3 - E Gehri
18-12-1  Report on European Glulam Control and Production Standard - H Riberholt
18-10-2  Longitudinal Shear Design of Glued Laminated Beams - R O Foschi
19-12-1  Strength of Glued Laminated Timber - J Ehlbeck and F Colling
19-12-2  Strength Model for Glulam Columns - H J Blaß
19-12-3  Influence of Volume and Stress Distribution on the Shear Strength and Tensile Strength Perpendicular to Grain - F Colling
19-12-4  Time-Dependent Behaviour of Glued-Laminated Beams - F Zaupa
21-12-1  Modulus of Rupture of Glulam Beam Composed of Arbitrary Laminae - K Komatsu and N Kawamoto
21-12-2  An Appraisal of the Young’s Modulus Values Specified for Glulam in Eurocode 5 - L R J Whale, B O Hilson and P D Rodd
21-12-3  The Strength of Glued Laminated Timber (Glulam): Influence of Lamination Qualities and Strength of Finger Joints - J Ehlbeck and F Colling
21-12-4  Comparison of a Shear Strength Design Method in Eurocode 5 and a More Traditional One - H Riberholt
22-12-1  The Dependence of the Bending Strength on the Glued Laminated Timber Girder Depth - M Badstube, W Rug and W Schöne
22-12-2  Acid Deterioration of Glulam Beams in Buildings from the Early Half of the 1960s - Preliminary summary of the research project; Overhead pictures - B A Hedlund
Experimental Investigation of normal Stress Distribution in Glue Laminated Wooden Arches - Z Mielczarek and W Chanaj

Ultimate Strength of Wooden Beams with Tension Reinforcement as a Function of Random Material Properties - R Candowicz and T Dziuba

Bending Strength of Glulam Beams, a Design Proposal - J Ehlbeck and F Colling

Probability Based Design Method for Glued Laminated Timber - M F Stone

Glulam Beams, Bending Strength in Relation to the Bending Strength of the Finger Joints - H Riberholt

Glued Laminated Timber - Strength Classes and Determination of Characteristic Properties - H Riberholt, J Ehlbeck and A Fewell

Contribution to the Determination of the Bending Strength of Glulam Beams - F Colling, J Ehlbeck and R Görlacher

Influence of Perpendicular-to-Grain Stressed Volume on the Load-Carrying Capacity of Curved and Tapered Glulam Beams - J Ehlbeck and J Kürth

Determination of Characteristic Bending Values of Glued Laminated Timber. EN-Approach and Reality - E Gehri

Norwegian Bending Tests with Glued Laminated Beams-Comparative Calculations with the "Karlsruhe Calculation Model" - E Aasheim, K Solli, F Colling, R H Falk, J Ehlbeck and R Görlacher

Simulation Analysis of Norwegian Spruce Glued-Laminated Timber - R Hernandez and R H Falk

Investigation of Laminating Effects in Glued-Laminated Timber - F Colling and R H Falk

Comparing Design Results for Glulam Beams According to Eurocode 5 and to the French Working Stress Design Code (CB71) - F Rouger


Common Design Practice for Timber Bridges in the United Kingdom - C J Mettem, J P Marcroft and G Davis

Influence of Weak Zones on Stress Distribution in Glulam Beams - E Serrano and H J Larsen

Determination of Characteristic Bending Strength of Glued Laminated Timber - E Gehri

Size Factor of Norwegian Glued Laminated Beams - E Aasheim and K H Solli

Design of Glulam Beams with Holes - K Riipola

Compression Resistance of Glued Laminated Timber Short Columns - U Korin

Development of Efficient Glued Laminated Timber - G Schickhofer

Experimental Investigation and Analysis of Reinforced Glulam Beams - K Oiger

Depth Factor for Glued Laminated Timber-Discussion of the Eurocode 5 Approach - B Källsner, O Carling and C J Johansson

The bending stiffness of nail-laminated timber elements in transverse direction - T Wolf and O Schäfer
33-12-1 Internal Stresses in the Cross-Grain Direction of Wood Induced by Climate Variation – J Jönsson and S Svensson
34-12-1 High-Strength I-Joist Compatible Glulam Manufactured with LVL Tension Laminations – B Yeh, T G Williamson
34-12-2 Evaluation of Glulam Shear Strength Using A Full-Size Four-Point Test Method – B Yeh, T G Williamson
34-12-3 Design Model for FRP Reinforced Glulam Beams – M Romani, H J Blaß
34-12-4 Moisture induced stresses in glulam cross sections – J Jönsson
34-12-5 Load Carrying Capacity of Nail-Laminated Timber under Concentrated Loads – V Krämer, H J Blaß
34-12-6 Determination of Shear Strength Values for GLT Using Visual and Machine Graded Spruce Laminations – G Schickhofer
34-12-7 Mechanically Jointed Beams: Possibilities of Analysis and some special Problems – H Kreuzinger
35-12-1 Glulam Beams with Round Holes – a Comparison of Different Design Approaches vs. Test Data - S Aicher L Höflin
36-12-1 Problems with Shear and Bearing Strength of LVL in Highly Loaded Structures - H Bier
36-12-2 Weibull Based Design of Round Holes in Glulam - L Höflin, S Aicher
37-12-1 Development of Structural LVL from Tropical Wood and Evaluation of Their Performance for the Structural Components of Wooden Houses. Part-1. Application of Tropical LVL to a Roof Truss - K Komatsu, Y Idris, S Yuwasdiki, B Subiyakto, A Firmanti
37-12-2 Reinforcement of LVL Beams With Bonded-in Plates and Rods - Effect of Placement of Steel and FRP Reinforcements on Beam Strength and Stiffness - P Alam, M P Ansell, D Smedley
39-12-1 Recommended Procedures for Determination of Distribution Widths in the Design of Stress Laminated Timber Plate Decks - K Crews
39-12-2 In-situ Strengthening of Timber Structures with CFRP - K U Schober, S Franke, K Rautenstrauch
39-12-3 Effect of Checking and Non-Glued Edge Joints on the Shear Strength of Structural Glued Laminated Timber Beams - B Yeh, T G Williamson, Z A Martin
39-12-4 A Contribution to the Design and System Effect of Cross Laminated Timber (CLT) - R Jöbstl, T Moosbrugger, T Bogensperger, G Schickhofer
39-12-5 Behaviour of Glulam in Compression Perpendicular to Grain in Different Strength Grades and Load Configurations - M Augustin, A Ruli, R Brandner, G Schickhofer
40-12-1 Development of New Constructions of Glulam Beams in Canada - F Lam, N Mohadevan
40-12-2 Determination of Modulus of Shear and Elasticity of Glued Laminated Timber and Related Examination - R Brandner, E Gehri, T Bogensperger, G Schickhofer
40-12-3 Comparative Examination of Creep of GTL and CLT-Slabs in Bending - R A Jöbstl, G Schickhofer,
40-12-4 Standard Practice for the Derivation of Design Properties of Structural Glued Laminated Timber in the United States - T G Williamson, B Yeh
Creep and Creep-Rupture Behaviour of Structural Composite Lumber Evaluated in Accordance with ASTM D 6815 - B Yeh, T G Williamson.

Bending Strength of Combined Beech-Spruce Glulam - M Frese, H J Blaß

Quality Control of Glulam: Shear Tests of Glue Lines - R Steiger, E Gehri

Paper withdrawn by the author

Bending Strength of Spruce Glulam: New Models for the Characteristic Bending Strength - M Frese, H J Blass,

In-Plane Shear Strength of Cross Laminated Timber - R A Joebstl, T Bogensperger, G Schickhofer

Strength of Glulam Beams with Holes - Tests of Quadratic Holes and Literature Test Results Compilation - H Danielsson, P J Gustafsson

Glulam Beams with Holes Reinforced by Steel Bars – S Aicher, L Höfflin

Analysis of X-lam Panel-to-Panel Connections under Monotonic and Cyclic Loading - C Sandhaas, L Boukes, J W G van de Kuilen, A Ceccotti

Laminating Lumber and End Joint Properties for FRP-Reinforced Glulam Beams - T G Williamson, B Yeh

Validity of Bending Tests on Strip-Shaped Specimens to Derive Bending Strength and Stiffness Properties of Cross-Laminated Solid Timber (CLT) - R Steiger, A Gülzow

Mechanical Properties of Stress Laminated Timber Decks - Experimental Study - K Karlsson, R Crocetti, R Kliger

Fatigue Behaviour of Finger Jointed Lumber - S Aicher, G Stapf

Experimental and Numerical Investigation on the Shear Strength of Glulam - R Crocetti, P J Gustafsson, H Danielsson, A Emilsson, S Ormarsson

System Effects in Glued Laminated Timber in Tension and Bending - M Frese, H J Blaß

Experimental Investigations on Mechanical Behaviour of Glued Solid timber - C Faye, F Rouger, P Garcia

Properties of CLT-Panels Exposed to Compression Perpendicular to their Plane - T Bogensperger, M Augustin, G Schickhofer

Strength of Spruce Glulam Subjected to Longitudinal Compression – M Frese, M Enders-Comberg, H J Blaß, P Glos

Glued Laminated Timber: A proposal for New Beam Layups - F Rouger, P Garcia

Glulam Beams with Internally and Externally Reinforced Holes – Test, Detailing and Design – S Aicher

Size Effect of Bending Strength in Glulam Beam - F Lam

Asymmetrically Combined Glulam - Simplified Verification of the Bending Strength - M Frese, H J Blaß

Determination of Shear Strength of Structural and Glued Laminated Timber - R Brandner, W Gatternig, G Schickhofer

Shear Resistance of Glulam Beams with Cracks - A Pousette, M Ekevad

Experimental Investigation on in-plane Behaviour of Cross-laminated Timber Elements - M Andreolli, A Polastri, R Tomasi
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>46-12-1</td>
<td>Modelling the Bending Strength of Glued Laminated Timber - Considering the Natural Growth Characteristics of Timber</td>
<td>G Fink, A Frangi, J Kohler</td>
</tr>
<tr>
<td>46-12-2</td>
<td>In-Plane Shear Strength of Cross Laminated Timber (CLT): Test Configuration, Quantification and Influencing Parameters</td>
<td>R Brandner, T Bogensperger, G Schickhofer</td>
</tr>
<tr>
<td>46-12-3</td>
<td>Shear Strength and Shear Stiffness of CLT-beams Loaded in Plane</td>
<td>M Flaig, H J Blaß</td>
</tr>
<tr>
<td>46-12-4</td>
<td>Stiffness of Screw-Reinforced LVL in Compression Perpendicular to the Grain</td>
<td>C Watson, W van Beerschoten, T Smith, S Pampanin, A H Buchanan</td>
</tr>
<tr>
<td>47-12-1</td>
<td>Calculation of Cylindrical Shells from Wood or Wood Based Products and Consideration of the Stress Relaxation</td>
<td>P Aondio, S Winter, H Kreuzinger</td>
</tr>
<tr>
<td>47-12-2</td>
<td>Hybrid Glulam Beams Made of Beech LVL and Spruce Laminations</td>
<td>M Frese</td>
</tr>
<tr>
<td>47-12-3</td>
<td>Design for the Spreading under a Compressive Stress in Glued Laminated Timber</td>
<td>D Lathuilliere, L Bléron, J-F Bocquet, F Varacca, F Dubois</td>
</tr>
<tr>
<td>47-12-4</td>
<td>Design of CLT Beams with Rectangular Holes or Notches</td>
<td>M Flaig</td>
</tr>
<tr>
<td>47-12-5</td>
<td>Properties of Cross Laminated Timber (CLT) in Compression Perpendicular to Grain</td>
<td>R Brandner, G Schickhofer</td>
</tr>
<tr>
<td>48-12-1</td>
<td>Concentrated Load Introduction in CLT Elements Perpendicular to Plane</td>
<td>T Bogensperger, R A Jöbstl</td>
</tr>
<tr>
<td>48-12-2</td>
<td>Shear Properties of Cross Laminated Timber (CLT) under in-plane Load: Test Configuration and Experimental Study</td>
<td>R Brandner, P Dietsch, J Dröscher, M Schulte-Wrede, H Kreuzinger, M Sieder, G Schickhofer, S Winter</td>
</tr>
<tr>
<td>48-12-3</td>
<td>Advanced Modelling for Design Helping of Heterogeneous CLT Panels in Bending</td>
<td>L Franzoni, A Lebée, F Lyon, G Foret</td>
</tr>
<tr>
<td>48-12-4</td>
<td>Performance of Canadian Glulam Columns with New Laminae E Requirements</td>
<td>F Lam, Jung Kwon Oh, BJ Yeh, Jun-Jae Lee</td>
</tr>
<tr>
<td>48-12-5</td>
<td>Design of CLT Beams with Large Finger Joints at Different Angles</td>
<td>M Flaig</td>
</tr>
<tr>
<td>49-12-1</td>
<td>Displacement Based Determination of Laterally Loaded Cross Laminated Timber (CLT) Wall Systems</td>
<td>G Flatscher, G Schickhofer</td>
</tr>
<tr>
<td>49-12-2</td>
<td>Structural Analysis of In-Plane Loaded CLT Beams with Holes: FE-Analyses and Parameter Studies</td>
<td>M Jelec, V Rajcic, H Danielsson, E Serrano</td>
</tr>
<tr>
<td>50-12-1</td>
<td>In-Grade Evaluation of U.S. Glulam Beams, End Joints, and Tension Laminations</td>
<td>B Yeh, J Chen, T Skaggs</td>
</tr>
<tr>
<td>50-12-2</td>
<td>In-plane Loaded CLT Beams – Tests and Analysis of Element Lay-up</td>
<td>H Danielsson, E Serrano, M Jelec, V Rajcic</td>
</tr>
<tr>
<td>50-12-3</td>
<td>Experimental Investigation on the Mechanical Behaviour of Glued Laminated Beams Made of Oak</td>
<td>C Faye, G Legrand, D Reuling, J-D Lanvin</td>
</tr>
<tr>
<td>50-12-4</td>
<td>Effective Flange Width of a CLT Slab in Timber Composite Beams</td>
<td>R Masoudnia, A Hashemi, P Quenneville</td>
</tr>
<tr>
<td>50-12-5</td>
<td>Improved Design Equations for the Resultant Tensile Forces in Glulam Beams with Holes - C Tapia Camú, S Aicher</td>
<td></td>
</tr>
<tr>
<td>50-12-6</td>
<td>Round Holes in Glulam Beams Arranged Eccentrically or in Groups - M Danzer, P Dietsch, S Winter</td>
<td></td>
</tr>
<tr>
<td>50-12-7</td>
<td>Two-way Spanning CLT-Concrete-Composite-Slab - S Loebus, P Dietsch, S Winter</td>
<td></td>
</tr>
<tr>
<td>51-12-1</td>
<td>CLT under In-Plane Loads: Investigation on Stress Distribution and Creep - M Gräfe, P Dietsch, S Winter</td>
<td></td>
</tr>
<tr>
<td>51-12-2</td>
<td>Tensile and Compression Strength of Small Cross Section Beech (Fagus s.) Glulam Members - M Westermayr, P Stapel, J W G van de Kuilen</td>
<td></td>
</tr>
<tr>
<td>51-12-3</td>
<td>Behaviour of Glulam and LVL Beams Loaded Perpendicular to the Grain - L Windeck, H J Blaß</td>
<td></td>
</tr>
<tr>
<td>51-12-4</td>
<td>Mechanical Properties of European Beech Glued Laminated Timber - T Ehrhart, R Steiger, P Palma, A Frangi</td>
<td></td>
</tr>
<tr>
<td>51-12-5</td>
<td>Cross Laminated Timber at in-plane Beam Loading – New Analytical Model Predictions and Relation to EC5 - M Jeleć, H Danielsson, E Serrano, V Rajčić</td>
<td></td>
</tr>
<tr>
<td>52-12-1</td>
<td>Compressive Strength and Buckling Resistance of GLT Columns Made of European Beech - T Ehrhart, R Steiger, P Palma, E Gehri, A Frangi</td>
<td></td>
</tr>
<tr>
<td>52-12-2</td>
<td>Cross Laminated Timber at In-Plane Shear Loading – Comparison of Model Predictions - H Danielsson, E Serrano</td>
<td></td>
</tr>
<tr>
<td>52-12-3</td>
<td>Net-section Tension and Shear Strength of In-plane Loaded CLT Panels - T Tannert, C Loss, M Popovski, H Mpidi Bita</td>
<td></td>
</tr>
<tr>
<td>52-12-4</td>
<td>Prediction of Load-Bearing Capacity of Notched Cross Laminated Timber Plates - E Serrano, P J Gustafsson, H Danielsson</td>
<td></td>
</tr>
<tr>
<td>52-12-5</td>
<td>Compressive Strength and Stiffness of End Grain Contact Joints in Softwood Glulam and CLT - M Flaig, T Schmidt, H J Blaß</td>
<td></td>
</tr>
<tr>
<td>52-12-6</td>
<td>From Testing to Codification: Post-Tensioned Cross Laminated Timber Rocking Walls - S Pei, J D Dolan, R B Zimmerman, E McDonnel, A Busch P Line, M Popovski</td>
<td></td>
</tr>
<tr>
<td>53-12-1</td>
<td>Shrinkage Behaviour of Reinforced Glulam Members - M Danzer, P Dietsch, S Winter</td>
<td></td>
</tr>
<tr>
<td>53-12-3</td>
<td>Prediction of Torsional Stress at In-plane Shear Loading of Cross Laminated Timber - H Danielsson, M Jeleć, E Serrano</td>
<td></td>
</tr>
</tbody>
</table>

**PARTICLE AND FIBRE BUILDING BOARDS**

| 7-13-1 | Fibre Building Boards for CIB Timber Code (First Draft)- O Brynildsen |
| 9-13-1 | Determination of the Bearing Strength and the Load-Deformation Characteristics of Particleboard - K Möhler, T Budianto and J Ehlbeck |
| 9-13-2 | The Structural Use of Tempered Hardboard - W W L Chan |
| 11-13-1 | Tests on Laminated Beams from Hardboard under Short- and Longterm Load - W Nozynski |
| 11-13-2 | Determination of Deformation of Special Densified Hardboard under Long-term Load and Varying Temperature and Humidity Conditions - W Halfar |
11-13-3 Determination of Deformation of Hardboard under Long-term Load in Changing Climate - W Halfar

14-4-1 An Introduction to Performance Standards for Wood-Base Panel Products - D H Brown

14-4-2 Proposal for Presenting Data on the Properties of Structural Panels - T Schmidt

16-13-1 Effect of Test Piece Size on Panel Bending Properties - P W Post

20-4-1 Considerations of Reliability - Based Design for Structural Composite Products - M R O'Halloran, J A Johnson, E G Elias and T P Cunningham

20-13-1 Classification Systems for Structural Wood-Based Sheet Materials - V C Kearley and A R Abbott

21-13-1 Design Values for Nailed Chipboard - Timber Joints - A R Abbott

25-13-1 Bending Strength and Stiffness of Izopanel Plates - Z Mielczarek

28-13-1 Background Information for "Design Rated Oriented Strand Board (OSB)" in CSA Standards - Summary of Short-term Test Results - E Karacabeyli, P Lau, C R Henderson, F V Meakes and W Deacon

28-13-2 Torsional Stiffness of Wood-Hardboard Composed I-Beam - P Olejniczak

TRUSSED RAFTERS

4-9-1 Long-term Loading of Trussed Rafters with Different Connection Systems - T Feldborg and M Johansen

6-9-3 Deflection of Trussed Rafters under Alternating Loading During a Year - T Feldborg and M Johansen

7-2-1 Lateral Bracing of Timber Struts - J A Simon

9-14-1 Timber Trusses - Code Related Problems - T F Williams

9-7-1 Design of Truss Plate Joints - F J Keenan

10-14-1 Design of Roof Bracing - The State of the Art in South Africa - P A V Bryant and J A Simon

11-14-1 Design of Metal Plate Connected Wood Trusses - A R Egerup

12-14-1 A Simple Design Method for Standard Trusses - A R Egerup

13-14-1 Truss Design Method for CIB Timber Code - A R Egerup

13-14-2 Trussed Rafters, Static Models - H Riberholt

13-14-3 Comparison of 3 Truss Models Designed by Different Assumptions for Slip and E-Modulus - K Möhler

14-14-1 Wood Trussed Rafter Design - T Feldborg and M Johansen

14-14-2 Truss-Plate Modelling in the Analysis of Trusses - R O Foschi

14-14-3 Cantilevered Timber Trusses - A R Egerup

14-7-5 The Effect of Support Eccentricity on the Design of W- and WW-Trusses with Nail Plate Connectors - B Källsner

15-14-1 Guidelines for Static Models of Trussed Rafters - H Riberholt

15-14-2 The Influence of Various Factors on the Accuracy of the Structural Analysis of Timber Roof Trusses - F R P Pienaar

15-14-3 Bracing Calculations for Trussed Rafter Roofs - H J Burgess
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>33-14-1</td>
<td>Moment Capacity of Timber Beams Loaded in Four-Point Bending and Reinforced with Punched Metal Plate Fasteners – J Nielsen</td>
<td></td>
</tr>
<tr>
<td>36-14-1</td>
<td>Effect of Chord Splice Joints on Force Distribution in Trusses with Punched Metal Plate Fasteners - P Ellegaard</td>
<td></td>
</tr>
<tr>
<td>36-14-2</td>
<td>Monte Carlo Simulation and Reliability Analysis of Roof Trusses with Punched Metal Plate Fasteners - M Hansson, P Ellegaard</td>
<td></td>
</tr>
<tr>
<td>36-14-3</td>
<td>Truss Trouble – R H Leicester, J Goldfinch, P Paevere, G C Foliente</td>
<td></td>
</tr>
<tr>
<td>40-14-1</td>
<td>Timber Trusses with Punched Metal Plate Fasteners - Design for Transport and Erection - H J Blaß</td>
<td></td>
</tr>
<tr>
<td>45-14-1</td>
<td>Robustness Analysis of Timber Truss Systems - D Čizmar, V Rajčić</td>
<td></td>
</tr>
</tbody>
</table>

**STRUCTURAL STABILITY**

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-15-1</td>
<td>Laterally Loaded Timber Columns: Tests and Theory - H J Larsen</td>
<td></td>
</tr>
<tr>
<td>16-15-1</td>
<td>Determination of Bracing Structures for Compression Members and Beams - H Brüninghoff</td>
<td></td>
</tr>
<tr>
<td>17-15-1</td>
<td>Proposal for Chapter 7.4 Bracing - H Brüninghoff</td>
<td></td>
</tr>
<tr>
<td>17-15-2</td>
<td>Seismic Design of Small Wood Framed Houses - K F Hansen</td>
<td></td>
</tr>
<tr>
<td>18-15-1</td>
<td>Full-Scale Structures in Glued Laminated Timber, Dynamic Tests: Theoretical and Experimental Studies - A Ceccotti and A Vignoli</td>
<td></td>
</tr>
<tr>
<td>18-15-2</td>
<td>Stabilizing Bracings - H Brüninghoff</td>
<td></td>
</tr>
<tr>
<td>19-15-2</td>
<td>The Bracing of Trussed Beams - M H Kessel and J Natterer</td>
<td></td>
</tr>
<tr>
<td>19-15-3</td>
<td>Racking Resistance of Wooden Frame Walls with Various Openings - M Yasumura</td>
<td></td>
</tr>
<tr>
<td>19-15-5</td>
<td>Non-Destructive Vibration Tests on Existing Wooden Dwellings - Y Hirashima</td>
<td></td>
</tr>
<tr>
<td>20-15-1</td>
<td>Behaviour Factor of Timber Structures in Seismic Zones. - A Ceccotti and A Vignoli</td>
<td></td>
</tr>
<tr>
<td>21-15-1</td>
<td>Rectangular Section Deep Beam - Columns with Continuous Lateral Restraint - H J Burgess</td>
<td></td>
</tr>
<tr>
<td>21-15-3</td>
<td>Simple Approaches for Column Bracing Calculations - H J Burgess</td>
<td></td>
</tr>
<tr>
<td>21-15-4</td>
<td>Calculations for Discrete Column Restraints - H J Burgess</td>
<td></td>
</tr>
<tr>
<td>21-15-5</td>
<td>Behaviour Factor of Timber Structures in Seismic Zones (Part Two) - A Ceccotti and A Vignoli</td>
<td></td>
</tr>
<tr>
<td>22-15-2</td>
<td>Research and Development of Timber Frame Structures for Agriculture in Poland - S Kus and J Kerste</td>
<td></td>
</tr>
</tbody>
</table>
22-15-3 Ensuring of Three-Dimensional Stiffness of Buildings with Wood Structures - A K Shenghelia
22-15-6 The Robustness of Timber Structures - C J Mettem and J P Marcroft
22-15-7 Influence of Geometrical and Structural Imperfections on the Limit Load of Wood Columns - P Dutko
23-15-1 Calculation of a Wind Girder Loaded also by Discretely Spaced Braces for Roof Members - H J Burgess
23-15-3 A Brief Description of Formula of Beam-Columns in China Code - S Y Huang
23-15-4 Seismic Behavior of Braced Frames in Timber Construction - M Yasumura
23-15-6 Disproportionate Collapse of Timber Structures - C J Mettem and J P Marcroft
23-15-7 Performance of Timber Frame Structures During the Loma Prieta California Earthquake - M R O'Halloran and E G Elias
24-15-2 Discussion About the Description of Timber Beam-Column Formula - S Y Huang
24-15-3 Seismic Behavior of Wood-Framed Shear Walls - M Yasumura
25-15-1 Structural Assessment of Timber Framed Building Systems - U Korin
25-15-3 Mechanical Properties of Wood-framed Shear Walls Subjected to Reversed Cyclic Lateral Loading - M Yasumura
26-15-1 Bracing Requirements to Prevent Lateral Buckling in Trussed Rafters - C J Mettem and P J Moss
26-15-3 Hurricane Andrew - Structural Performance of Buildings in South Florida - M R O'Halloran, E L Keith, J D Rose and T P Cunningham
29-15-1 Lateral Resistance of Wood Based Shear Walls with Oversized Sheathing Panels - F Lam, H G L Prion and M He
29-15-4 Current Developments in Medium-Rise Timber Frame Buildings in the UK - C J Mettem, G C Pitts, P J Steer, V Enjily
30-15-1 Cyclic Performance of Perforated Wood Shear Walls with Oversize Oriented Strand Board Panels - Ming He, H Magnusson, F Lam, and H G L Prion
30-15-2 A Numerical Analysis of Shear Walls Structural Performances - L Davenne, L Daudeville, N Kawai and M Yasumura
30-15-4 Evaluation of Wood Framed Shear Walls Subjected to Lateral Load - M Yasumura and N Kawai
31-15-1 Seismic Performance Testing On Wood-Framed Shear Wall - N Kawai
31-15-4 Force Modification Factors for Braced Timber Frames - H G L Prion, M Popovski and E Karacabeyli
32-15-1 Three-Dimensional Interaction in Stabilisation of Multi-Storey Timber Frame Buildings - S Andreasson
32-15-2 Application of Capacity Spectrum Method to Timber Houses - N Kawai
32-15-3 Design Methods for Shear Walls with Openings - C Ni, E Karacabeyli and A Ceccotti
32-15-4 Static Cyclic Lateral Loading Tests on Nailed Plywood Shear Walls - K Komatsu, K H Hwang and Y Itou
33-15-1 Lateral Load Capacities of Horizontally Sheathed Unblocked Shear Walls – C Ni, E Karacabeyli and A Ceccotti
33-15-3 Eurocode 5 Rules for Bracing – H J Larsen
34-15-1 A simplified plastic model for design of partially anchored wood-framed shear walls – B Källsner, U A Girhammar, Liping Wu
34-15-2 The Effect of the Moisture Content on the Performance of the Shear Walls – S Nakajima
34-15-3 Evaluation of Damping Capacity of Timber Structures for Seismic Design – M Yasumura
35-15-2 A Plastic Design Model for Partially Anchored Wood-framed Shear Walls with Openings - U A Girhammar, L Wu, B Källsner
35-15-3 Evaluation and Estimation of the Performance of the Shear Walls in Humid Climate - S Nakajima
35-15-5 Cyclic and Seismic Performances of a Timber-Concrete System - Local and Full Scale Experimental Results - E Fournely, P Racher
35-15-6 Design of timber-concrete composite structures according to EC5 - 2002 version - A Ceccotti, M Fragiacomo, R M Gutkowski
35-15-7 Design of timber structures in seismic zones according to EC8- 2002 version - A Ceccotti, T Toratti, B Dujić
35-15-8 Design Methods to Prevent Premature Failure of Joints at Shear Wall Corners - N Kawai, H Okiura
<table>
<thead>
<tr>
<th>Paper No.</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>36-15-2</td>
<td>Applicability of Design Methods to Prevent Premature Failure of Joints at Shear Wall Corners in Case of Post and Beam Construction</td>
<td>N Kawai, H Isoda</td>
</tr>
<tr>
<td>36-15-3</td>
<td>Effects of Screw Spacing and Edge Boards on the Cyclic Performance of Timber Frame and Structural Insulated Panel Roof Systems</td>
<td>D M Carradine, J D Dolan, F E Woeste</td>
</tr>
<tr>
<td>36-15-4</td>
<td>Pseudo-Dynamic Tests on Conventional Timber Structures with Shear Walls</td>
<td>M Yasumura</td>
</tr>
<tr>
<td>36-15-6</td>
<td>Effect of Test Configurations and Protocols on the Performance of Shear Walls</td>
<td>F Lam, D Jossen, J Gu, N Yamaguchi, H G L Prion</td>
</tr>
<tr>
<td>36-15-7</td>
<td>Comparison of Monotonic and Cyclic Performance of Light-Frame Shear Walls</td>
<td>J D Dolan, A J Toothman</td>
</tr>
<tr>
<td>37-15-2</td>
<td>Testing of Racking Behavior of Massive Wooden Wall Panels</td>
<td>B Dujić, J Pucelj, R Žarnić</td>
</tr>
<tr>
<td>37-15-4</td>
<td>Bracing of Timber Members in Compression</td>
<td>J Munch-Andersen</td>
</tr>
<tr>
<td>37-15-5</td>
<td>Acceptance Criteria for the Use of Structural Insulated Panels in High Risk Seismic Areas</td>
<td>B Yeh, T D Skaggs, T G Williamson Z A Martin</td>
</tr>
<tr>
<td>37-15-6</td>
<td>Predicting Load Paths in Shearwalls</td>
<td>Hongyong Mi, Ying-Hei Chui, I Smith, M Mohammad</td>
</tr>
<tr>
<td>38-15-1</td>
<td>Background Information on ISO STANDARD 16670 for Cyclic Testing of Connections</td>
<td>E Karacabeyli, M Yasumura, G C Foliente, A Ceccotti</td>
</tr>
<tr>
<td>38-15-4</td>
<td>Design of Shear Walls without Hold-Downs</td>
<td>Chun Ni, E Karacabeyli</td>
</tr>
<tr>
<td>38-15-5</td>
<td>Plastic design of partially anchored wood-framed wall diaphragms with and without openings</td>
<td>B Källsner, U A Girhammar</td>
</tr>
<tr>
<td>38-15-6</td>
<td>Racking of Wooden Walls Exposed to Different Boundary Conditions</td>
<td>B Dujić, S Aicher, R Žarnić</td>
</tr>
<tr>
<td>38-15-7</td>
<td>A Portal Frame Design for Raised Wood Floor Applications</td>
<td>T G Williamson, Z A Martin, B Yeh</td>
</tr>
<tr>
<td>38-15-8</td>
<td>Linear Elastic Design Method for Timber Framed Ceiling, Floor and Wall Diaphragms</td>
<td>Jarmo Leskelä</td>
</tr>
<tr>
<td>39-15-1</td>
<td>Effect of Transverse Walls on Capacity of Wood-Framed Wall Diaphragms</td>
<td>U A Girhammar, B Källsner</td>
</tr>
</tbody>
</table>

Laminated Timber Frames under dynamic Loadings - A Heiduschke, B Kasal, P Haller


Design of Safe Timber Structures – How Can we Learn from Structural Failures? - S Thelandersson, E Frühwald

Effect of Transverse Walls on Capacity of Wood-Framed Wall Diaphragms - Part 2 - U A Girhammar, B Källsner


Seismic Behaviour of Tall Wood-Frame Walls - M Popovski, A Peterson, E Karacabeyli

International Standard Development of Lateral Load Test Method for Shear Walls - M Yasumura, E Karacabeyli

Influence of Openings on Shear Capacity of Wooden Walls - B Dujič, S Klobcar, R Žarnić

Need for a Harmonized Approach for Calculations of Ductility of Timber Assemblies - W Muñoz, M Mohammad, A Salenikovich, P Quenneville

Plastic Design of Wood Frame Wall Diaphragms in Low and Medium Rise Buildings - B Källsner, U A Girhammar

Failure Analysis of Light Wood Frame Structures under Wind Load - A Asiz, Y H Chui, I Smith

Combined Shear and Wind Uplift Resistance of Wood Structural Panel Shearwalls - B Yeh, T G Williamson

Behaviour of Prefabricated Timber Wall Elements under Static and Cyclic Loading – P Schädle, H J Blass

Design Aspects on Anchoring the Bottom Rail in Partially Anchored Wood-Framed Shear Walls - U A Girhammar, B Källsner

New Seismic Design Provisions for Shearwalls and Diaphragms in the Canadian Standard for Engineering Design in Wood - M Popovski, E Karacabeyli, Chun Ni, P Lepper, G Doudák

Stability Capacity and Lateral Bracing Force of Metal Plate Connected Wood Truss Assemblies - Xiaobin Song, F Lam, Hao Huang, Minjuan He

Improved Method for Determining Braced Wall Requirements for Conventional Wood-Frame Buildings - Chun Ni, H Rainer, E Karacabeyli

Influence of the Boundary Conditions on the Racking Strength of Shear Walls with an Opening - M Yasumura

Influence of Different Standards on the Determination of Earthquake Properties of Timber Shear Wall Systems - P Schädle, H J Blaß

Full-Scale Shear Wall Tests for Force Transfer Around Openings - T Skaggs, B Yeh, F Lam

Optimized Anchor-Bolt Spacing for Structural Panel Shearwalls Subjected to Combined Shear and Wind Uplift Forces - B Yeh, E Keith, T Skaggs
A Proposal for Revision of the Current Timber Part (Section 8) of Eurocode 8 Part 1 - M Follesa, M Fragiacomo, M P Lauriola

Influence of Vertical Loads on Lateral Resistance and Deflections of Light-Frame Shear Walls - M Payeur, A Salenikovich, W Muñoz

Modelling Force Transfer Around Openings of Full-Scale Shear Walls - T Skaggs, B Yeh, F Lam, Minghao Li, D Rammer, J Wacker


Notes on Deformation and Ductility Requirements in Timber Structures. - K A Malo, P Ellingsbø, C Stamatopoulos

Enhanced Model of the Nonlinear Load-bearing Behaviour of Wood Shear Walls and Diaphragms - M H Kessel, C Hall

Seismic Performance of Cross-Laminated Wood Panels - M Popovski, E Karacabeyli

Evaluation of Plywood Sheathed Shear Walls with Screwed Joints Tested According to ISO 21581 - K Kobayashi, M Yasumura

Influence of Connection Properties on the Ductility and Seismic Resistance of Multi-Storey Cross-Lam Buildings - I Sustersic, M Fragiacomo, B Dujic

Performance Based Design and Force Modification Factors for CLT Structures - S Pei, M Popovski, J van de Lindt

Seismic Behaviour of Wood-Concrete Frame Shear-wall System and Comparison with Code Provisions - L Pozza, R Scotta, A Polastri, A Ceccotti

Determination of Failure Mechanism of CLT Shear Walls Subjected to Seismic Action - M Yasumura

Seismic Response of Timber Frames with Laminated Glass Glass Infill - V Rajičić, R Žarnić

Modeling Wood Structural Panel Portal Frame Response - T Skaggs, B Yeh

Simplified Cross-laminated Timber Wall Modeling for Linear-elastic Seismic Analysis - I Sustersic, B Dujic

Experimental Investigations on Seismic Behaviour of Conventional Timber Frame Wall with OSB Sheathing - Proposal of Behaviour Factor - C Faye, L Le Magorou, P Garcia, J-C Duccini

Capacity Seismic Design of X-Lam Wall Systems Based on Connection Mechanical Properties - I Gavric, M Fragiacomo, A Ceccotti

An Approach to Derive System Seismic Force Modification Factor for Buildings Containing Different LLRS’s - Z Chen, C Ni, Y-H Chui, G Doudak, M Mohammad

Connections and Anchoring for Wall and Slab Elements in Seismic Design - M Schick, T Vogt, W Seim

Analytical Formulation Based on Extensive Numerical Simulations of Behavior Factor q for CLT buildings - L Pozza, R Scotta, D Trutalli, A Ceccotti, A Polastri

Proposal for the q-factor of Moment Resisting Timber Frames with High Ductility Dowel Connectors - D Wrzesniak, G Rinaldin, M Fragiacomo, C Amadio
46-15-7 Wind Tunnel Tests for Wood Structural Panels Used as Nailable Sheathing - B Yeh, A Cope, E Keith
47-15-1 Advanced Modelling of Timber-framed Wall Elements for Application in Engineering Practice - T Vogt, W Seim
47-15-2 A Buckling Design Approach for ‘Blockhaus’ Timber Walls Under In-plane Vertical Loads - C Bedon, M Fragiacomo, C Amadio, A Battisti
47-15-3 Capacity Design Approach for Multi-storey Timber-frame Buildings - D Casagrande, T Sartori, R Tomasi
47-15-4 Design Models for CLT Shearwalls and Assemblies Based on Connection Properties - I Gavric, M Popovski
47-15-6 An Elastoplastic Solution for Earthquake Resistant Rigid Timber Shear Walls - Wei Yuen Loo, P Quenneville, Nawawi Chouw
47-15-7 In-Plane Racking Tests of Continuous Sheathed Wood Structural Panel Wall Bracing - T Skaggs, E Keith, Borjen Yeh, P Line, N Waltz
48-15-2 Simplified Wall Bracing Method Using Wood Structural Panel Continuous Sheathing - T Skaggs, B J Yeh, E Keith
48-15-3 Structural Characterization of Multi-storey CLT Buildings Braced with Cores and Additional Shear Walls. - A Polastri, L Pozza, C Loss, I Smith
49-15-2 q-factor Estimation for Timber Blockhaus Buildings - C Bedon, G Rinaldin, M Izzi, M Fragiacomo
49-15-4 Seismic Performance of CLT Low-rise Structures with Small and Large Wall Elements with Opening - M Yasumura, K Kobayashi, M Okabe
49-15-5 Performance of Full-Scale I-Joist Diaphragms - B J Yeh, B Herzog, T Skaggs
49-15-6 Advanced Modelling of CLT Wall Systems for Earthquake Resistant Timber Structures - M Izzi, A Polastri, M Fragiacomo
50-15-1 Shake Table Tests on Large-Scale Hybrid Steel Frame and Timber Shear Wall System with Slotted-Bolted Friction Dampers - Hanlin Dong, Zheng Li, Qi Luo, Minjuan He
50-15-2 Dissipative Joints for CLT Shear Walls - T Schmidt, H Blass
50-15-3 Required Seismic Performance of CLT Panel Buildings from Japanese
Standard - T Miyake, M Yasumura, N Kawai, H Isoda, M Koshihara, T
Tsuchimoto, Y Araki, T Nakagawa

50-15-4 Shaking Table Tests for Verification of Seismic Design of CLT Panel
Buildings - H Isoda, N Kawai, T Miyake, M Yasumura, M Koshihara, T
Tsuchimoto, Y Araki, T Nakagawa

50-15-5 Capacity Design of CLT Structures with Traditional or Innovative
Seismic-Resistant Brackets - R Scotta; D Trutalli; L Marchi, L Pozza, A
Ceccotti

50-15-6 Post-Tensioned CLT Wall Systems with Multiple Rocking Segments - D
Sanscartier Pilon, A Salenikovich, A Palermo, F Sarti

51-15-1 Seismic Resilient CLT buildings Using Resilient Slip Friction Joints (RSFJs)
with Collapse Prevention Mechanism: Ductility, Behaviour Factor,
Design Methods and Numerical Validation - A Hashemi, P Zarnani, F M
Darani, S M M Yousef-Beik, P Quenneville

52-15-1 Seismic Performance of End Brace Connections in Ductile Braced
Timber Frame - H Daneshvar, J Niederwestberg, C Dickof, J Spencer, J-P
Letarte, Y H Chui

52-15-2 Lateral Resistance and Deflection of CLT Shear Walls - Md Shahnewaz,
M Popovski, T Tannert

52-15-3 Development of Timber Buckling-Restrained Braces for Mass Timber
Braced Frames - C Murphy, C P Pantelides H-E Blomgren, D R Rammer

53-15-1 Assessment of Seismic Design Factors and Proposal of Modification to
Chilean Seismic Building Design Code (NCH 433) for Mid-Rise Wood
Frame Buildings - H Santa María, Á Salinas, J Montaño, J J Ugarte, J L
Almazán, P Guindos, A Opazo, F Benedetti, V Rosales, X Estrella, F
Guiñez, S Berwart, S Cárcamo, A Jara

FIRE

12-16-1 British Standard BS 5268 the Structural Use of Timber: Part 4 Fire
Resistance of Timber Structures


19-16-1 Simulation of Fire in Tests of Axially Loaded Wood Wall Studs - J König

24-16-1 Modelling the Effective Cross Section of Timber Frame Members
Exposed to Fire - J König

25-16-1 The Effect of Density on Charring and Loss of Bending Strength in Fire -
J König

25-16-2 Tests on Glued-Laminated Beams in Bending Exposed to Natural Fires -
F Bolonius Olesen and J König

26-16-1 Structural Fire Design According to Eurocode 5, Part 1.2 - J König

31-16-1 Revision of ENV 1995-1-2: Charring and Degradation of Strength and
Stiffness - J König

33-16-1 A Design Model for Load-carrying Timber Frame Members in Walls and
Floors Exposed to Fire - J König

33-16-2 A Review of Component Additive Methods Used for the Determination
of Fire Resistance of Separating Light Timber Frame Construction - J
König, T Oksanen and K Towler
33-16-3 Thermal and Mechanical Properties of Timber and Some Other Materials Used in Light Timber Frame Construction - B Källsner and J König
34-16-1 Influence of the Strength Determining Factors on the Fire Resistance Capability of Timber Structural Members – I Totev, D Dakov
34-16-2 Cross section properties of fire exposed rectangular timber members - J König, B Källsner
34-16-3 Pull-Out Tests on Glued-in Rods at High Temperatures – A Mischler, A Frangi
35-16-1 Basic and Notional Charring Rates - J König
37-16-1 Effective Values of Thermal Properties of Timber and Thermal Actions During the Decay Phase of Natural Fires - J König
37-16-2 Fire Tests on Timber Connections with Dowel-type Fasteners - A Frangi, A Mischler
38-16-1 Fire Behaviour of Multiple Shear Steel-to-Timber Connections with Dowels - C Erchinger, A Frangi, A Mischler
38-16-2 Fire Tests on Light Timber Frame Wall Assemblies - V Schleifer, A Frangi
39-16-1 Fire Performance of FRP Reinforced Glulam - T G Williamson, B Yeh
39-16-2 An Easy-to-use Model for the Design of Wooden I-joists in Fire - J König, B Källsner
39-16-3 A Design Model for Timber Slabs Made of Hollow Core Elements in Fire - A Frangi, M Fontana
40-16-1 Bonded Timber Deck Plates in Fire - J König, J Schmid
40-16-2 Design of Timber Frame Floor Assemblies in Fire - A Frangi, C Erchinger
41-16-1 Effect of Adhesives on Finger Joint Performance in Fire - J König, J Norén, M Sterley
42-16-1 Advanced Calculation Method for the Fire Resistance of Timber Framed Walls - S Winter, W Meyn
42-16-2 Fire Design Model for Multiple Shear Steel-to-Timber Dowelled Connections - C Erchinger, A Frangi, M Fontana
42-16-3 Comparison between the Conductive Model of Eurocode 5 and the Temperature Distribution Within a Timber Cross-section Exposed to Fire - M Fragiacomo, A Menis, P Moss, A Buchanan, I Clemente
43-16-1 Light Timber Frame Construction with Solid Timber Members – Application of the Reduced Cross-section Method - J König, J Schmid
43-16-3 Timber-Concrete Composite Floors in Fire - J O'Neill, D Carradine, R Dhakal, P J Moss, A H Buchanan, M Fragiacomo
44-16-1 Gypsum Plasterboards and Gypsum Fibreboards – Protective Times for Fire Safety Design of Timber Structures – A Just, J Schmid, J König
45-16-1 The Reduced Cross Section Method for Timber Members Subjected to Compression, Tension and Bending in Fire - M Klippel, J Schmid, A Frangi
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>47-16-1</td>
<td>Fire Design of Glued-laminated Timber Beams with Regard to the Adhesive Performance Using the Reduced Cross-Section Method</td>
<td>M Klippel, J Schmid, A Frangi, G Fink</td>
</tr>
<tr>
<td>48-16-1</td>
<td>Analysis of Fire Resistance Tests on Timber Members in Compression with Respect to the Reduced Cross-Section Method</td>
<td>J Schmid, M Klippel, A Liew, A Just, A Frangi</td>
</tr>
<tr>
<td>49-16-1</td>
<td>A Stiffness-Based Approach to Predict the Fire Behavior of Cross Laminated Timber Floors</td>
<td>L Franzoni, D Dhima, A Lebée, F Lyon, G Foret</td>
</tr>
<tr>
<td>49-16-2</td>
<td>Fire Design of Timber Connections – Assessment of Current Design Rules and Improvement Proposals</td>
<td>P Palma, A Frangi</td>
</tr>
<tr>
<td>49-16-3</td>
<td>Improved Fire Design Model for Timber Frame Assemblies</td>
<td>A Just, M Tiso</td>
</tr>
<tr>
<td>50-16-1</td>
<td>Design Parameters for Timber Members Protected by Clay Plaster at Elevated Temperatures</td>
<td>J Liblik, A Just</td>
</tr>
<tr>
<td>50-16-2</td>
<td>Parametric Fire Design – Zero-Strength-Layers and Charring Rates</td>
<td>D Brandon, A Just, D Lange, M Tiso</td>
</tr>
<tr>
<td>50-16-4</td>
<td>Improved Fire Resistance of Connected Nail-Plate Trusses</td>
<td>G Glasø, K Nore, A Sagen</td>
</tr>
<tr>
<td>50-16-5</td>
<td>Protection by Fire Rated Claddings in the Component Additive Method</td>
<td>K N Mäger, A Just, A Frangi, D Brandon</td>
</tr>
<tr>
<td>51-16-1</td>
<td>An Improved Design Model for Fire Exposed Cross Laminated Timber Floors</td>
<td>J Schmid, M Klippel, R Fahrni, A Frangi, N Werther, A Just</td>
</tr>
<tr>
<td>52-16-1</td>
<td>Preliminary Design Model for Wooden I-Joists in Fire</td>
<td>K N Mäger, A Just</td>
</tr>
<tr>
<td>52-16-2</td>
<td>Code Calibration for Timber in Fire – On the Use of 20% Fractiles for the Strength</td>
<td>R Fahrni, G De Sanctis, A Frangi</td>
</tr>
<tr>
<td>53-16-1</td>
<td>Fire Design of I-joists in Wall Assemblies</td>
<td>K N Mäger, A Just, T Persson, A Wikner</td>
</tr>
</tbody>
</table>

**STATISTICS AND DATA ANALYSIS**

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>13-17-1</td>
<td>On Testing Whether a Prescribed Exclusion Limit is Attained</td>
<td>W G Warren</td>
</tr>
<tr>
<td>16-17-1</td>
<td>Notes on Sampling and Strength Prediction of Stress Graded Structural Timber</td>
<td>P Glos</td>
</tr>
<tr>
<td>16-17-2</td>
<td>Sampling to Predict by Testing the Capacity of Joints, Components and Structures</td>
<td>B Norén</td>
</tr>
<tr>
<td>16-17-3</td>
<td>Discussion of Sampling and Analysis Procedures</td>
<td>P W Post</td>
</tr>
<tr>
<td>17-17-1</td>
<td>Sampling of Wood for Joint Tests on the Basis of Density</td>
<td>I Smith, L R J Whale</td>
</tr>
<tr>
<td>17-17-2</td>
<td>Sampling Strategy for Physical and Mechanical Properties of Irish Grown Sitka Spruce</td>
<td>V Picardo</td>
</tr>
<tr>
<td>18-17-1</td>
<td>Sampling of Timber in Structural Sizes</td>
<td>P Glos</td>
</tr>
<tr>
<td>18-6-3</td>
<td>Notes on Sampling Factors for Characteristic Values</td>
<td>R H Leicester</td>
</tr>
<tr>
<td>19-17-1</td>
<td>Load Factors for Proof and Prototype Testing</td>
<td>R H Leicester</td>
</tr>
<tr>
<td>19-6-2</td>
<td>Confidence in Estimates of Characteristic Values</td>
<td>R H Leicester</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Author(s)</td>
</tr>
<tr>
<td>------</td>
<td>----------------------------------------------------------------------</td>
<td>-----------------------------------------------</td>
</tr>
<tr>
<td>21-6-1</td>
<td>Draft Australian Standard: Methods for Evaluation of Strength and Stiffness of Graded Timber</td>
<td>R H Leicester</td>
</tr>
<tr>
<td>21-6-2</td>
<td>The Determination of Characteristic Strength Values for Stress Grades of Structural Timber. Part 1</td>
<td>A R Fewell and P Glos</td>
</tr>
<tr>
<td>22-17-1</td>
<td>Comment on the Strength Classes in Eurocode 5 by an Analysis of a Stochastic Model of Grading - A proposal for a supplement of the design concept</td>
<td>M Kiesel</td>
</tr>
<tr>
<td>24-17-1</td>
<td>Use of Small Samples for In-Service Strength Measurement</td>
<td>R H Leicester and F G Young</td>
</tr>
<tr>
<td>24-17-2</td>
<td>Equivalence of Characteristic Values</td>
<td>R H Leicester and F G Young</td>
</tr>
<tr>
<td>24-17-3</td>
<td>Effect of Sampling Size on Accuracy of Characteristic Values of Machine Grades</td>
<td>Y H Chui, R Turner and I Smith</td>
</tr>
<tr>
<td>24-17-4</td>
<td>Harmonisation of LSD Codes</td>
<td>R H Leicester</td>
</tr>
<tr>
<td>25-17-1</td>
<td>A Body for Confirming the Declaration of Characteristic Values</td>
<td>J Sunley</td>
</tr>
<tr>
<td>25-17-2</td>
<td>Moisture Content Adjustment Procedures for Engineering Standards</td>
<td>D W Green and J W Evans</td>
</tr>
<tr>
<td>27-17-1</td>
<td>Statistical Control of Timber Strength</td>
<td>R H Leicester and H O Breitinger</td>
</tr>
<tr>
<td>30-17-1</td>
<td>A New Statistical Method for the Establishment of Machine Settings</td>
<td>F Rouger</td>
</tr>
<tr>
<td>35-17-1</td>
<td>Probabilistic Modelling of Duration of Load Effects in Timber Structures</td>
<td>J Köhler, S Svenson</td>
</tr>
<tr>
<td>38-17-1</td>
<td>Analysis of Censored Data - Examples in Timber Engineering Research</td>
<td>R Steiger, J Köhler</td>
</tr>
<tr>
<td>39-17-1</td>
<td>Possible Canadian / ISO Approach to Deriving Design Values from Test Data</td>
<td>I Smith, A Asiz, M Snow, Y H Chui</td>
</tr>
<tr>
<td>44-17-1</td>
<td>Influence of Sample Size on Assigned Characteristic Strength Values –</td>
<td>P Stapel, G J P Ravenshorst, J W G van de Kuilen</td>
</tr>
<tr>
<td>49-17-1</td>
<td>Reliability of Large Glulam Members - Part 1: Data for the Assessment of Partial Safety Factors for the Bending Strength</td>
<td>M Frese, H J Blaß</td>
</tr>
<tr>
<td>50-17-1</td>
<td>Reliability of Large Glulam Members - Part 2: Data for the Assessment of Partial Safety Factors for the Tensile Strength</td>
<td>M Frese, S Egner, H J Blaß</td>
</tr>
</tbody>
</table>

GLUED JOINTS

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-18-1</td>
<td>Wood Materials under Combined Mechanical and Hygral Loading</td>
<td>A Martensson and S Thelandersson</td>
</tr>
<tr>
<td>20-18-2</td>
<td>Analysis of Generalized Volkersen - Joints in Terms of Linear Fracture Mechanics</td>
<td>P J Gustafsson</td>
</tr>
<tr>
<td>20-18-3</td>
<td>The Complete Stress-Slip Curve of Wood-Adhesives in Pure Shear</td>
<td>H Wernersson and P J Gustafsson</td>
</tr>
<tr>
<td>22-18-1</td>
<td>Perspective Adhesives and Protective Coatings for Wood Structures</td>
<td>A S Freidin</td>
</tr>
<tr>
<td>34-18-1</td>
<td>Performance Based Classification of Adhesives for Structural Timber Applications</td>
<td>R J Bainbridge, C J Mettem, J G Broughton, A R Hutchinson</td>
</tr>
</tbody>
</table>
Creep Testing Wood Adhesives for Structural Use - C Bengtsson, B Källander

Adhesive Performance at Elevated Temperatures for Engineered Wood Products - B Yeh, B Herzog, T G Williamson

Comparison of the Pull-out Strength of Steel Bars Glued in Glulam Elements Obtained Experimentally and Numerically - V Rajčić, A Bjelanović, M Rak

The Influence of the Grading Method on the Finger Joint Bending Strength of Beech - M Frese, H J Blaß

Comparison of API, RF and MUF Adhesives Using a Draft Australian/New Zealand Standard - B Walford

Press Glued Connections - Research Results for Discussion and Standardization - S Franke, M Schiere, B Franke

Investigations Concerning Screw-Press Gluing of Assemblies with CLT - K Bratulic, M Augustin, G Schickhofer

FRACTURE MECHANICS

A Study of Strength of Notched Beams - P J Gustafsson

Design of Endnotched Beams - H J Larsen and P J Gustafsson

Tension Perpendicular to the Grain at Notches and Joints - T A C M van der Put

Dimensioning of Beams with Cracks, Notches and Holes. An Application of Fracture Mechanics - K Riipola

Determination of the Fracture Energie of Wood for Tension Perpendicular to the Grain - W Rug, M Badstube and W Schöne

The Fracture Energy of Wood in Tension Perpendicular to the Grain. Results from a Joint Testing Project - H J Larsen and P J Gustafsson

Application of Fracture Mechanics to Timber Structures - A Ranta-Maunus

The Fracture Energy of Wood in Tension Perpendicular to the Grain - H J Larsen and P J Gustafsson

Fracture of Wood in Tension Perpendicular to the Grain: Experiment and Numerical Simulation by Damage Mechanics - L Daudeville, M Yasumura and J D Lanvin

A New Method of Determining Fracture Energy in Forward Shear along the Grain - H D Mansfield-Williams

Fracture Design Analysis of Wooden Beams with Holes and Notches. Finite Element Analysis based on Energy Release Rate Approach - H Petersson

Design of Timber Beams with Holes by Means of Fracture Mechanics - S Aicher, J Schmidt and S Brunold

Failure Analysis of Single-Bolt Joints - L Daudeville, L Davenne and M Yasumura

Determination of Fracture Mechanics Parameters for Wood with the Help of Close Range Photogrammetry - S Franke, B Franke, K Rautenstrauch
First Evaluation Steps of Design Rules in the European and German codes of Transverse Tension Areas - S Franke, B Franke, K Rautenstrauch

A Beam Theory Fracture Mechanics Approach for Strength Analysis of Beams with a Hole - H Danielsson, P J Gustafsson

A Strongest Link Model Applied to Fracture Propagating Along Grain - P J Gustafsson, R Jockwer, E Serrano, R Steiger

SERVICEABILITY

Codification of Serviceability Criteria - R H Leicester

On the Experimental Determination of Factor $k_{def}$ and Slip Modulus $k_{ser}$ from Short- and Long-Term Tests on a Timber-Concrete Composite (TCC) Beam - S Capretti and A Ceccotti

Serviceability Limit States: A Proposal for Updating Eurocode 5 with Respect to Eurocode 1 - P Racher and F Rouger

Creep Behavior of Timber under External Conditions - C Le Govic, F Rouger, T Toratti and P Morlier

Design Principles for Timber in Compression Perpendicular to Grain - S Thelandersson and A Mårtensson

Serviceability Performance of Timber Floors - Eurocode 5 and Full Scale Testing - R J Bainbridge and C J Mettem

Floor Vibrations - B Mohr

A New Design Method to Control Vibrations Induced by Foot Steps in timber Floors - Lin J Hu, Y H Chui

Serviceability Limit States of Wooden Footbridges. Vibrations Caused by Pedestrians - P Hamm

The Long Term Instrumentation of a Timber Building in Nelson NZ - the Need for Standardisation - H W Morris, S R Uma, K Gledhill, P Omenzetter, M Worth

CLT and Floor Vibrations: a Comparison of Design Methods - A Thiel, S Zimmer, M Augustin, G Schickhofer

Need to Consider Modal Participation in Vibration Serviceability Design of Cross-Laminated-Timber Slabs - E Ussher, J Weckendorf, K Arjomandi, I Smith

Design Parameters for Lateral Vibration of Multi-Storey Timber Buildings - T Reynolds, A Feldmann, M Ramage, Wen-Shao Chang, R Harris, P Dietsch

Design of Timber Floor for Vibration: Some design and Test Questions - Wen-Shao Chang, Haoyu Huang, R Harris

A New Design Method for Timber Floors – Peak Acceleration Approach - Wen-Shao Chang, T Goldsmith, R Harris

Development of a Floor Vibration Design Method for Eurocode 5 - I K Abeyesekera, P Hamm, T Toratti, A Lawrence

Vibrations of Floors – Comparison of Measured Data and Suggested Design - P Hamm, J Marcroft, T Toratti
TEST METHODS

31-21-1 Development of an Optimised Test Configuration to Determine Shear Strength of Glued Laminated Timber - G Schickhofer and B Obermayr

31-21-2 An Impact Strength Test Method for Structural Timber. The Theory and a Preliminary Study - T D G Canisius

35-21-1 Full-Scale Edgewise Shear Tests for Laminated Veneer Lumber - B Yeh, T G Williamson

39-21-1 Timber Density Restrictions for Timber Connection Tests According to EN28970/ISO8970 - A Leijten, J Köhler, A Jorissen

39-21-2 The Mechanical Inconsistence in the Evaluation of the Modulus of Elasticity According to EN384 - T Bogensperger, H Unterwieser, G Schickhofer

40-21-1 ASTM D198 - Interlaboratory Study for Modulus of Elasticity of Lumber in Bending - A Salenikovich

40-21-2 New Test Configuration for CLT-Wall-Elements under Shear Load - T Bogensperger, T Moosbrugger, G Schickhofer

41-21-1 Determination of Shear Modulus by Means of Standardized Four-Point Bending Tests - R Brandner, B Freytag, G Schickhofer

43-21-1 Estimation of Load-Bearing Capacity of Timber Connections - J Munch-Andersen, J D Sørensen, F Sørensen

43-21-2 A New Method to Determine Suitable Spacings and Distances for Self-tapping Screws - T Uibel, H J Blaß

45-21-1 Evaluation of Shear Modulus of Structural Timber Utilizing Dynamic Excitation and FE Analysis - A Olsson, B Källsner

53-21-1 Revision of Testing Standards to Determine the Seismic Capacity of Timber Connections According to Eurocode 8 - C Sigrist, D Casagrande, M Piazza

ROBUSTNESS

52-22-1 Catenary Action for Cross-laminated Timber Floor Systems - H Mpidi Bita, T Tannert

52-22-2 Addressing Robustness in the 2nd-Generation EN 1995-1-1 Eurocode 5 - P Palma, R Steiger, R Jockwer

52-22-3 Robustness in Tall Timber Buildings - An Improved Framework - K Voulpiotis, J Köhler, R Jockwer, A Frangi

53-22-1 Quantifying Robustness in Tall Timber Buildings - K Voulpiotis, J Köhler, R Jockwer, A Frangi

CIB TIMBER CODE

2-100-1 A Framework for the Production of an International Code of Practice for the Structural Use of Timber - W T Curry

5-100-1 Design of Solid Timber Columns (First Draft) - H J Larsen

5-100-2 A Draft Outline of a Code for Timber Structures - L G Booth

6-100-1 Comments on Document 5-100-1; Design of Solid Timber Columns - H J Larsen and E Theilgaard

6-100-2 CIB Timber Code: CIB Timber Standards - H J Larsen and E Theilgaard
7-100-1  CIB Timber Code Chapter 5.3 Mechanical Fasteners; CIB Timber Standard 06 and 07 - H J Larsen
8-100-1  CIB Timber Code - List of Contents (Second Draft) - H J Larsen
9-100-1  The CIB Timber Code (Second Draft)
11-100-1  CIB Structural Timber Design Code (Third Draft)
11-100-2  Comments Received on the CIB Code - U Saarelainen; Y M Ivanov, R H Leicester, W Nozynski, W R A Meyer, P Beckmann; R Marsh
11-100-3  CIB Structural Timber Design Code; Chapter 3 - H J Larsen
12-100-1  Comment on the CIB Code - Sous-Commission Glulam
12-100-2  Comment on the CIB Code - R H Leicester
12-100-3  CIB Structural Timber Design Code (Fourth Draft)
13-100-1  Agreed Changes to CIB Structural Timber Design Code
13-100-2  CIB Structural Timber Design Code. Chapter 9: Performance in Fire
13-100-3a  Comments on CIB Structural Timber Design Code
13-100-3b  Comments on CIB Structural Timber Design Code - W R A Meyer
13-100-3c  Comments on CIB Structural Timber Design Code - British Standards Institution
13-100-4  CIB Structural Timber Design Code. Proposal for Section 6.1.5 Nail Plates - N I Bovim
14-103-2  Comments on the CIB Structural Timber Design Code - R H Leicester
15-103-1  Resolutions of TC 165-meeting in Athens 1981-10-12/13
21-100-1  CIB Structural Timber Design Code. Proposed Changes of Sections on Lateral Instability, Columns and Nails - H J Larsen
22-100-1  Proposal for Including an Updated Design Method for Bearing Stresses in CIB W18 - Structural Timber Design Code - B Madsen
22-100-2  Proposal for Including Size Effects in CIB W18A Timber Design Code - B Madsen
22-100-3  CIB Structural Timber Design Code - Proposed Changes of Section on Thin-Flanged Beams - J König
22-100-4  Modification Factor for "Aggressive Media" - a Proposal for a Supplement to the CIB Model Code - K Erler and W Rug
22-100-5  Timber Design Code in Czechoslovakia and Comparison with CIB Model Code - P Dutko and B Kozelouh

LOADING CODES
4-101-1  Loading Regulations - Nordic Committee for Building Regulations
4-101-2  Comments on the Loading Regulations - Nordic Committee for Building Regulations
37-101-1  Action Combination Processing for the Eurocodes Basis of Software to Assist the Engineer - Y Robert, A V Page, R Thépaut, C J Mettem
43-101-1  Dependant Versus Independent Loads in Structural Design - T Poutanen
STRUCTURAL DESIGN CODES

1-102-1 Survey of Status of Building Codes, Specifications etc., in USA - E G Stern
1-102-2 Australian Codes for Use of Timber in Structures - R H Leicester
1-102-3 Contemporary Concepts for Structural Timber Codes - R H Leicester
1-102-4 Revision of CP 112 - First Draft, July 1972 - British Standards Institution
4-102-1 Comparison of Codes and Safety Requirements for Timber Structures in EEC Countries - Timber Research and Development Association
4-102-3 Proposal for Safety Codes for Load-Carrying Structures - Nordic Committee for Building Regulations
4-102-4 Comments to Proposal for Safety Codes for Load-Carrying Structures - Nordic Committee for Building Regulations
4-102-5 Extract from Norwegian Standard NS 3470 "Timber Structures"
4-102-6 Draft for Revision of CP 112 "The Structural Use of Timber" - W T Curry
8-102-1 Polish Standard PN-73/B-03150: Timber Structures; Statistical Calculations and Designing
8-102-2 The Russian Timber Code: Summary of Contents
9-102-1 Svensk Byggnorm 1975 (2nd Edition); Chapter 27: Timber Construction
11-102-1 Eurocodes - H J Larsen
13-102-1 Program of Standardisation Work Involving Timber Structures and Wood-Based Products in Poland
17-102-1 Safety Principles - H J Larsen and H Riberholt
17-102-2 Partial Coefficients Limit States Design Codes for Structural Timberwork - I Smith
18-102-1 Antiseismic Rules for Timber Structures: an Italian Proposal - G Augusti and A Ceccotti
18-1-2 Eurocode 5, Timber Structures - H J Larsen
19-102-1 Eurocode 5 - Requirements to Timber - Drafting Panel Eurocode 5
19-102-2 Eurocode 5 and CIB Structural Timber Design Code - H J Larsen
19-102-3 Comments on the Format of Eurocode 5 - A R Fewell
19-7-3 Effectiveness of Multiple Fastener Joints According to National Codes and Eurocode 5 (Draft) - G Steck
19-7-6 The Derivation of Design Clauses for Nailed and Bolted Joints in Eurocode 5 - L R J Whale and I Smith
19-14-1 Annex on Simplified Design of W-Trusses - H J Larsen
21-102-1 Research Activities Towards a New GDR Timber Design Code Based on Limit States Design - W Rug and M Badstube
22-102-1 New GDR Timber Design Code, State and Development - W Rug, M Badstube and W Kofent

22-102-3 Norwegian Timber Design Code - Extract from a New Version - E Aasheim and K H Solli

23-7-1 Proposal for a Design Code for Nail Plates - E Aasheim and K H Solli

24-102-2 Timber Footbridges: A Comparison Between Static and Dynamic Design Criteria - A Ceccotti and N de Robertis

25-102-1 Latest Development of Eurocode 5 - H J Larsen


25-102-2 Control of Deflections in Timber Structures with Reference to Eurocode 5 - A Martensson and S Thelandersson


28-102-2 Racking Strength of Wall Diaphragms - Discussion of the Eurocode 5 Approach - B Källsner


30-102-1 Concepts for Drafting International Codes and Standards for Timber Constructions - R H Leicester

33-102-1 International Standards for Bamboo – J J A Janssen

35-102-1 Design Characteristics and Results According to EUROCODE 5 and SNiP Procedures - L Ozola, T Keskküla

35-102-2 Model Code for the Reliability-Based Design of Timber Structures - H J Larsen

36-102-1 Predicted Reliability of Elements and Classification of Timber Structures - L Ozola, T Keskküla

36-102-2 Calibration of Reliability-Based Timber Design Codes: Choosing a Fatigue Model - I Smith


38-102-2 Uncertainties Involved in Structural Timber Design by Different Code Formats - L Ozola, T Keskküla

38-102-3 Comparison of the Eurocode 5 and Actual Croatian Codes for Wood Classification and Design With the Proposal for More Objective Way of Classification - V Rajcic A Bjelanovic

39-102-1 Calibration of Partial Factors in the Danish Timber Code - H Riberholt

41-102-1 Consequences of EC 5 for Danish Best Practise - J Munch-Andersen

41-102-2 Development of New Swiss standards for the Assessment of Existing Load Bearing Structures – R Steiger, J Köhler

41-102-3 Measuring the CO2 Footprint of Timber Buildings – A Buchanan, S John

45-102-1 Assessment of Relevant Eurocode Based Design Equations in Regard to Structural Reliability - J Köhler, R Steiger

48-102-1 A Proposal for a new Background Document of Chapter 8 of Eurocode 8 - M Follesa, M Fragiacomo, D Vassallo, M Piazza, R Tomasi, S Rossi, D Casagrande
INTERNATIONAL STANDARDS ORGANISATION

3-103-1 Method for the Preparation of Standards Concerning the Safety of Structures (ISO/DIS 3250) - International Standards Organisation ISO/TC98

4-103-1 A Proposal for Undertaking the Preparation of an International Standard on Timber Structures - International Standards Organisation

5-103-1 Comments on the Report of the Consultion with Member Bodies Concerning ISO/TC/P129 - Timber Structures - Dansk Ingeniorforening

7-103-1 ISO Technical Committees and Membership of ISO/TC 165

8-103-1 Draft Resolutions of ISO/TC 165

12-103-1 ISO/TC 165 Ottawa, September 1979

13-103-1 Report from ISO/TC 165 - A Sorensen

14-103-1 Comments on ISO/TC 165 N52 "Timber Structures; Solid Timber in Structural Sizes; Determination of Some Physical and Mechanical Properties"

14-103-2 Comments on the CIB Structural Timber Design Code - R H Leicester

21-103-1 Concept of a Complete Set of Standards - R H Leicester

JOINT COMMITTEE ON STRUCTURAL SAFETY

3-104-1 International System on Unified Standard Codes of Practice for Structures - Comité Européen du Béton (CEB)

7-104-1 Volume 1: Common Unified Rules for Different Types of Construction and Material - CEB

37-104-1 Proposal for a Probabilistic Model Code for Design of Timber Structures - J Köhler, H Faber

CIB PROGRAMME, POLICY AND MEETINGS

1-105-1 A Note on International Organisations Active in the Field of Utilisation of Timber - P Sonnemans

5-105-1 The Work and Objectives of CIB-W18-Timber Structures - J G Sunley

10-105-1 The Work of CIB-W18 Timber Structures - J G Sunley

15-105-1 Terms of Reference for Timber - Framed Housing Sub-Group of CIB-W18

19-105-1 Tropical and Hardwood Timbers Structures - R H Leicester

21-105-1 First Conference of CIB-W18B, Tropical and Hardwood Timber Structures Singapore, 26 - 28 October 1987 - R H Leicester

INTERNATIONAL UNION OF FORESTRY RESEARCH ORGANISATIONS

7-106-1 Time and Moisture Effects - CIB W18/IUFRO 55.02-03 Working Party