CIB - W18

MEETING TWENTY - FIVE

ÅHUS

SWEDEN

AUGUST 1992
CONTENTS

0 List of Participants
1 Chairman's Introduction
2 Cooperation with other Organisations
3 Reports from Sub-Groups
4 Connections Made Using Punched Metal Plate Fasteners
5 Size Effects
6 EUROCODE 5 Part 1 and CEN Support Standards
7 Fire
8 Open Forum
9 Any other Business
10 Venue and Programme for the Next Meeting
11 Close
12 List of CIB W18 Papers/Oxford, United Kingdom 1991
13 Current List of CIB W18 Papers
CIB-W18 Papers 25-6-1 up to 25-102-2
List of Participants
INTERNATIONAL COUNCIL FOR BUILDING RESEARCH STUDIES
AND DOCUMENTATION

WORKING COMMISSION W18 - TIMBER STRUCTURES

MEETING TWENTY-FIVE

ÅHUS, SWEDEN, 24-27 AUGUST 1992

LIST OF PARTICIPANTS

CANADA

B Madsen
University of British Columbia, Vancouver

C K A Stieda
Forintek Canada Corp., Vancouver

DENMARK

A Egerup
Euro-Truss

H J Larsen
Danish Building Research Institute, Hørsholm

FINLAND

J Kangas
Technical Research Centre of Finland, Espoo

A Kevarinmaki
Helsinki University of Technology, Espoo

A Ranta-Maunus
Technical Research Centre of Finland, Espoo

T Poutanan
Consultant

FRANCE

F Rouger
C.T.B.A Paris

GERMANY

H Brüninghoff
University of Wuppertal

F Colling
German Society of Wood Research, Munich

J Ehlbeck
University of Karlsruhe

R Görlicher
University of Karlsruhe

M Schlager
University of Karlsruhe

H Werner
University of Karlsruhe
ISRAEL

U Korin National Building Research Institute, Haifa

ITALY

A Ceccotti University of Florence

JAPAN

M Yasumura Building Research Institute, Tsukuba
K Komatsu Forestry and Forest Products Research Institute

NETHERLANDS

H J Blass Delft University of Technology
J W G van de Kuilen TNO-Building & Construction Research, Delft

NORWAY

E Aasheim Norwegian Institute of Wood Technology, Oslo

POLAND

Z Mielczarek Politechnika Szczencinska, Plastow

SWEDEN

B L O Edlund Chalmers University of Technology, Gothenburg
B Källsner Swedish Institute for Wood Technology Research, Stockholm
J König Swedish Institute for Wood Technology Research, Stockholm
S Thelandersson Lund University
H Petersson Lund University
S Ohlsson Chalmers University of Technology, Gothenburg
P J Gustfsson Lund University
A Mårtensson Lund University

SWITZERLAND

E Gehri Eidgenössische Technische Hochschule, Zürich
UK

A R Abbott TRADA Technology Limited, High Wycombe
B S Choo Nottingham University
A R Fewell Building Research Establishment, Watford
C J Mettem TRADA Technology Limited, High Wycombe
J G Sunley Private Consultant
T D G Canisius Building Research Establishment, Watford

USA

M R O'Halloran American Plywood Association, Tacoma
E G Stern Virginia Polytechnic Institute and State University, Blacksburg
T E McLain Virginia Polytechnic Institute and State University, Blacksburg
D W Green US Forest Products Laboratory, Madison
R Falk US Forest Products Laboratory, Madison
J Showalter National Forest Products Association, Washington DC
T Williamson American Plywood Association, Tacoma
1. Chairman’s Introduction

2. Cooperation with other Organisations

3. Reports from Sub-Groups

4. Connections Made Using Punched Metal Plate Fasteners

5. Size Effects

6. EUROCODE 5 Part 1 and CEN Support Standards

7. Fire

8. Open Forum

9. Any other Business

10. Venue and Programme for the Next Meeting

11. Close
MINUTES

1. CHAIRMAN’S INTRODUCTION

The Chairman, PROFESSOR BLASS, opened the meeting and gave particular welcomes to representatives of other organizations, namely: DR STIEDA, ISO TC165 and formerly coordinator of CIB W18; DR CECCOTTI, RILEM; MR LARSEN and MR SUNLEY, CEN; PROFESSOR EDLUND, IABSE; PROFESSOR MADSEN, IUFRO S5.02, and DR OHLSSON, CIB-W85.

It was pointed out that this would be the first CIB W18 meeting at which the principle agreed in Oxford of planning an agenda on selected topics would apply. A general forum would also be available for papers not fitting into this pattern.

Finally, the Chairman thanked DR KÖNIG for making all the meeting arrangements in the lovely atmosphere of Åhus.

2. COOPERATION WITH OTHER ORGANIZATIONS

a) CIB W18B

DR LEICESTER had been unable to attend this meeting, but had sent a report. It was stated that a meeting of CIB W18B was shortly to take place in Kuala Lumpur. The technical content included suggestions by CSIRO. Some problems with W18B are the difficulty of representatives from developing countries getting funding to attend, and the diversity of the technical problems and topics involving tropical timbers, which it is trying to address.
It was reported that 'state-of-art' papers as well as research topics have been included in the agenda for the W18B meeting.

Additional recent activities of W18B have included a UNIDO Workshop, which was held in March 1992 for the ' Preferential Trade Area' of Southern Africa. Representatives from this group intend forming a working group of CIB W18B.

W18B has also produced an activity list of six items, including proposals to work on regional grading standards and a design code. In addition, based upon the work of CSIRO and Australia Standards Association, information has been distributed on the strength grouping of tropical timbers, on the basis of small clear properties. Funding is being sought to extend this work to cover further south-east Asian and Central and South American timbers. Further 'workshop' meetings are planned.

b) ISO TC165

DR STIEDA reported on the activities of ISO TC165, and announced that a meeting is planned in Prague in the spring of 1993.

c) RILEM

DR CECCOTTI gave a report on the RILEM activities connected with structural timber and furnished the Secretariat with a report. Activities have flourished in the subjects of fracture mechanics and seismic design.

d) CEN

MR SUNLEY reported on the activities of CEN TC38; 103; 112 and 175. By way of introduction, he said that about 200 standards were being prepared. Many of these were now at an advanced stage. They varied in length from one to twenty pages. It was now the case that the technical contents of the key CEN standards relating to EC5 were established, and most could be described as being at the stage where major changes were unlikely. The emphasis is now on how the standards should be implemented in the member countries. This includes contemplating how national standards are to be withdrawn.

Dealing with TC38 Wood Preservation, it was reported that thirty-eight standards were being drafted. These were divided into two groups. Five of these were considered particularly important for the designer referring to EC5, including, for example, the definition of hazard classes. Some drafts which were rejected for the first time were now more likely to be approved on second submission.
The group known as TC103 Wood Adhesives has been disbanded, and absorbed into TC193, general adhesives, acting as a sub-committee. An important standard for timber engineers was produced on a classification system for structural adhesives. Performance levels are defined in the draft. Four test standards are available for structural timber adhesives. Work has recently been started on casein adhesives, as some European countries still use them extensively.

A large programme of about eighty standards is being dealt with by TC112 Wood-based Panel Products. About sixty of these are at the 'technical content unlikely to change' stage. A test method for creep and for long-term loading has been produced. Taking account of procedures to establish characteristic values produced by TC124, TC112 has developed a similar approach for well-established types of panel products. New types, which have not previously been tested, would have to follow a more basic approach to become established using test standards being drafted by TC112.

A number of the standards being drafted by the group TC175 Round and Sawn Timber for Non-Structural Use are 'non-mandated'. MR SUNLEY thought that the timber industries involved might question the necessity for some of these standards, once the amount of work involved in producing them is realized. Sixty-five standards are now in the process of development. It has been found that in general with standards for non-structural use, there are great differences between the regions of the EC. These exist, for example, between Nordic countries and western Europe. Work is proceeding on user requirements for items such as flooring, joinery and packaging.

MR LARSEN reported on the activities of CEN TC124 and TC250. He described the drafting stages of a EN. These involve a first draft; enquiry stage; second draft; editorial stage and voting. Of the thirty-six standards in the programme of TC124, ten are at first draft stage; seven at enquiry stage; six at second draft stage, and thirteen at editorial stages. Two very new topics are glued-in bolts and panel structures.

A paper was tabled at the meeting and made available to those concerned describing the titles and drafting stage status of each standard being dealt with by the CEN TC124 Secretariat, under four working groups.

With regard to TC250/SC5 - Eurocodes - Timber Structures, MR LARSEN reported that the formal title of EC5 : Part 1 was now prENV 1995-1-1, Eurocode 5 - Design of timber structures - Part 1-1 : General rules and rules for buildings. This was at the stage of final circulation for comment prior to a Voting Meeting scheduled for 19-20 November 1992 in Madrid. If approved by voting, the voluntary code would become available
alongside national codes for use in trial design calculations. The Eurocodes are intended to serve as reference documents as a means to prove compliance of building and civil engineering works with the essential requirements of the Construction Products Directive.

Eurocode 5 Part 10 Structural Fire Design, Document CEN TC250/SC5 : 44 was produced as a further working draft in April 1992. It contains sections dealing with basic principles, thermo-mechanical material properties and structural fire design. At present it is expected that this may reach voting stage by April 1993.

Another part to the timber Eurocode, provisionally Part 2, is projected to deal with bridges. However, work on this is not planned until 1993.

e) IABSE

PROFESSOR EDLUND reminded delegates of the role of IABSE, describing the activities of Working Commission No. 2, Steel, timber and composite materials. He announced that an IABSE meeting was shortly to take place in Davos, Switzerland, on structural Eurocodes. MR LARSEN would be attending, to speak on EC5. Other forthcoming events included a Colloquium on Remaining Structural Capacity, in Copenhagen on 17-19 March 1993, and another Colloquium on Structural Serviceability, in Sweden in June 1993. A forthcoming edition of the IABSE Journal would carry a feature on timber structures and PROFESSOR EDLUND was encouraging contributions.

MR LARSEN commented that efforts to apply research and to promote timber structures might be better concentrated in CIB and IUFRO groups, rather than attempting to cover the wide-ranging and costly activities of IABSE. PROFESSOR EDLUND replied that the circles which MR LARSEN described tended to inform one another of details in a field in which all the participants were familiar with the principles. IABSE on the other hand represents an opportunity to communicate structural timber concepts to engineers only familiar with other materials.

f) IUFRO

Reporting on the activities of IUFRO group S5.02, PROFESSOR MADSEN described a recent successful meeting in Bordeaux. The sessions had provided good time for discussion of the topics. A number of RILEM activities, on rheology and fracture mechanics, had led to input to the IUFRO timber engineering group. The research on long-term effects had been incorporating moisture effects. Recently obtained results were indicating a pronounced influence of moisture cycling on the creep and duration of load performance of structural composites such as LVL.
IUFRO groups S5.01 (material properties) and S5.02 had recently formed a new working group concerned with non-destructive testing.

g) CIB-W85

DR OHLSSON reported on the activities of CIB-W85 'Structural serviceability'. He explained that the objective of W85 is to provide information relevant to the structural serviceability of buildings with special attention to structural design. The structural serviceability includes those aspects of building serviceability which are mainly governed by the load-bearing structure and its properties. Deformations and vibrations, and damage to non-structural components are the main phenomena of concern.

Four sub-groups are under formation within W85. These are: Serviceability requirements; Design concepts; Deformations of floors and roofs; Floor vibration. The current work programme includes the preparation of a state-of-the-art document, with chapters corresponding to each of the sub-groups listed above. Three meetings have taken place since 1990. An international colloquium is planned to take place in Göteborg, Sweden, on June 9-11 1993. Themes include performance requirements for structural serviceability; design concepts; service loads, and serviceability aspects on whole structural systems.

h) Joint Committee on Structural Safety (JCSS)

No report was available on JCSS, since currently CIB W18 does not have representation.

i) 1993 CIB-W18 Meeting, Atlanta, Georgia

DR O'HALLORAN announced that CIB-W18 would be welcome to meet in the USA in 1993. He had been investigating the possibility of the University of Georgia, Athens, near Atlanta, as the venue. Convention facilities, accommodation and tourist facilities were described.

Suggestions for further years' meetings included Cairns, Australia, in association with a Pacific Timber Engineering Conference in 1994, and Copenhagen in 1995.

3. REPORTS FROM SUB-GROUPS

a) Derivation of Characteristic Values for Panel Products

No report was available. MR SUNLEY mentioned that the topic related
to a subject covered in a paper he was presenting (25-17-2), although he made it clear that he had not been intended to contribute to the Sub-Group.

b) Stability of Structures

PROFESSOR BRÜNINGHOFF reported that this Sub-Group had been unable to meet since the last CIB-W18. However, in the final stages of preparing the EC5 draft it had been noted that several queries regarding clauses concerned with stability had been thrown up. It was proposed, therefore, that the existence of the Sub-Group should be kept on record.

c) Punched Metal Truss Plates

PROFESSOR STERN reported that the Sub-Group had prepared a terminology dealing with the field of punched metal truss plates. A meeting concerning truss plates would shortly be taking place in Kirov, Russia. There was some discussion of the relevance or otherwise of this terminology work, with MR LARSEN suggesting that it would be preferable to direct work towards preparing an international test and evaluation standard.

d) Reliability Based Design (RBD)

There was little to report, although it was noted that a report on RBD had recently been issued as the result of a NATO Workshop on the topic.

4. CONNECTIONS MADE USING PUNCHED METAL PLATE FASTENERS

The following abstracts very briefly the papers which were presented in this subject area, and reports the ensuing discussions:

Paper 25-7-5 "35 years of experience with metal connector plates" was presented by PROFESSOR STERN. It listed 225 publications dealing with such devices. The author described other types of connection device and plates, a number of which have survived in structures more than 35 years old. Improved devices have proliferated in recent years. The industry, as represented for example by the Truss Plate Institute, continues to conduct research.

In answer to a question by DR ROUGER concerning apparent recovery of deflection in one of the author's diagrams, PROFESSOR STERN pointed out that this phenomenon had been observed. It was attributed to changes in humidity causing creep recovery.

Paper 25-14-2 "Design values of anchorage strength of nail plate joints by a two curve method and interpolation" was presented by DR KANGAS. This described
a continuation of research covered by a paper presented at CIB-W18 in 1991 (24-7-1). The new paper led to the derivation of design values for anchorage strength, based on a two-curve method of data analysis, and an interpolation procedure for design purposes. Conclusions included the observation that the influence of an angle parameter was not as pronounced as previously thought for the plates in question. This would affect proposals in the ECS draft. Other angle parameters, however, were more important. A conservative interpolation rule was presented in the paper, together with a revised proposal for EC5.

DR McLAIN asked whether the lack of influence of one of the factors mentioned would be dependent upon the particular plate design. The authors answered that, although three types of plate had been tested, it was possibly as DR McLAIN had suggested. It was not possible to be more definite. It was also questioned whether different angle interactions might be obtained in higher density timbers. Again, this was unknown, as the tests had mainly been concerned with Nordic timbers of a typical density and quality. DR OHLSSON asked whether the interface between the timber members was always especially controlled in the tests and, if so, whether the authors believed that this was a conservative procedure. The answer to both parts of this question was in the affirmative.

Paper 25-14-1 "Moment anchorage capacity and rotational stiffness of nail plates in shear tests" was also presented by DR KANGAS. It described moment anchorage stress calculations which were made essentially by means of elastic theory, with plastic yield taken into account by means of a coefficient. A more comprehensively plastic yield based method devised by DR NOREN had also been assessed. The results of 220 shear tests were used to compare the methods. Eleven different nail plates had been included in the tests. To compare tests with the two theories, tables had been included in the paper, listing a comparison index, with unity representing perfect agreement. Observations and conclusions included the following: only in certain types of plate did contact occur between the timbers, prior to failure; long, narrow plates had the greatest rotation tendency; the presently proposed ECS method was conservative in all cases, especially for long plates; the proposed simplified plastic theory calculations are easier and simpler to perform than the EC5 proposal, and are therefore recommended.

MR LARSEN questioned whether the investigation had included a critical review of other procedures and research papers, since it was important to know this, if a change to the EC5 draft was to be considered. The author confirmed that this was so and also said that both the anchorage failures and the plate buckling failures had been taken into consideration in developing the formulae. It was felt, therefore, that the proposal covered all the important parameters in plate design. A discussion ensued on the extent of tests that would be necessary to obtain European Technical Approval for a particular design of plate. The participants in the discussion, including MR LARSEN and DR AASHEIM, elucidated the parameters which would have to be evaluated for such a purpose.
5. SIZE EFFECTS

The paper 25-6-5 "Size effects for timber" by DR BARRETT was presented by MR FEWELL. A brittle fracture model was evaluated for predicting the variation in bending, compression and tension parallel to the grain strength of visually graded timber. Relationships between width factor, length factor and a constant ratio size factor were introduced. Predictions from the model were compared with published data. Some north American data gave sufficient information for a separate analysis of the length effect. The research suggested that width or depth effects are masked in many sets of test data, because of difficulties in sample matching, grade variations with size and inadequacy of sample sizes. MR FEWELL pointed out the importance of the final conclusion in relation to CEN standard and EC5 drafting. This was that for international harmonization of procedures for adjusting tension, bending and compression strength properties, the width and length size factors can be taken as equal. For bending and tension, $S_W = S_L = 0.2$. For compression, $S_W = S_L = 0.1$.

DR COLLING asked why it was thought that the European data which were analyzed showed different size effects. Also, he asked whether larger section softwood sizes as used in Germany, for instance, had been analyzed. MR FEWELL said that larger sizes of British-grown softwood had been included in the study, although very thick timbers had not been examined.

MR LARSEN observed that, if length effects were to be introduced specifically into code design procedures, then the implication might also be that there would have to be loading configuration factors in the code, as well. This would lead to considerable complications in design. MR FEWELL felt that there was insufficient agreement amongst researchers as to the nature of the latter to consider their introduction at present.

During these discussions on length and configuration factor effects, PROFESSOR MADSEN made a short presentation on an assessment which he had made of the topic. For bending, he had considered the effect of the moment distribution along the length of the member in relation to studies by A I JOHNSON, Swedish State Committee for Building Research, 1953. PROFESSOR MADSEN showed that it is possible to produce a table of factors for adjusting design strength for load conditions and length to 'standard' conditions.

DR OHLSSON speculated that if ever it became necessary to have so many separately-identified 'adjustment factors' to simple bending theory in design, then it would be very difficult to convince students when teaching structural engineering that, in the simplest model, timber is a straightforward linear elastic material. Perhaps a completely fresh basis for design theory would be necessary.
6. EUROCODE 5 PART 1 AND CEN SUPPORT STANDARDS

MR LARSEN presented paper 25-102-1 "Latest development of Eurocode 5". It was explained that the choice of load factors to be used in conjunction with EC5 had been dictated by writers of other structural materials codes. Furthermore, there was only limited scope for selection of the partial safety factor for materials. A value lower than 1.3 for this would be unlikely to be found acceptable. It was important to study the influence of representative values for variable actions upon load cases, since factors associated with these could have a significant influence upon the economy of the design. Combinations of actions with variable time durations had still not been dealt with to full effect in the EC5 draft.

The method of dealing with depth factors for glulam in both the drafting work on the code and in the associated prEN draft had proved controversial. MR LARSEN felt that a workable solution had now been proposed. However, he still felt that it could not be claimed that design values for glulam were based on any fully accepted and satisfactory theory.

Long discussions had taken place on deflection limits and definitions of deflection, taking into account allowance for creep. In referring to characteristic values, the EC5 draft made use of CEN standards. However, the level of confidence for the fifth-percentile values was now stated in the code itself.

Many final national comments and requests for clarification of draft clauses were expected before the CEN TC250 SC5 meeting in November. However, some pertinent items of the discussion on the EC5 draft which arose from MR LARSEN's presentation were as follows.

MR FEWELL felt that some of the examples given in the table giving modifications related to load duration were misleading. There was a case which inferred that imposed loads could be stipulated as having one particular duration, whereas this was not really so.

DR COLLING commented that he did not agree with the explanation of dissent over glulam design values, which was said to be due to lack of sufficient data. He felt that there were sufficient data, such as a large, recent series of Norwegian beam tests, whose results could be matched well by the Karlsruhe glulam beam model.

The paper 25-102-2 "Control of deflections in timber structures with reference to Eurocode 5" was presented by DR THELANDERSSON. He explained that the studies leading to the paper had arisen as an extension of earlier work at his university on the influences of moisture on creep deflections. The studies had now become more general. New principles and criteria for serviceability aspects of design were now being suggested. Serviceability load combinations could be defined into one of three categories. These were either 'rare combinations','
'frequent combinations' or 'quasi-permanent combinations'. The latter were time-averaged values derived from all permanent and variable loads. Newly recommended deflection limits were included in the paper. Sensitivity studies had been performed on the effect of adopting these as design measures. A less strict criterion was suggested for situations where deflection needed to be limited for reasons of general utility and appearance as opposed to those cases where there was a serious risk of deformation causing damage to other material within the building fabric.

It was also believed that it was now possible to allow for the effects of creep in design more conveniently through adoption of the 'quasi-permanent' load concept. Numerical values for k_{def} were proposed in the paper.

In discussing the paper, MR LARSEN pointed out that EC5 states the principle that serviceability design should include steps to ensure that damage to surrounding material is avoided. He questioned whether it was possible to translate such a principle into firmly stated and fixed deflection limits. The senior author agreed in general with MR LARSEN's views. However, he felt that it was important to give designers examples of suitable values that might be chosen.

DR OHLSSON welcomed the paper, commenting that the topic had been in serious need of attention by timber researchers. Deflections which only occur for short periods may be more acceptable to building owners or users than those which take place more slowly or permanently. Also, it had become well recognised in the concrete industry that local relative differences in levels may be a nuisance. It had been found that it had become necessary to stipulate tolerances on designed pre-camber. Some performance criteria, such as window-jamming, were fairly material independent, he felt, and limits adopted for other material codes should be considered.

DR CECCOTTI congratulated the authors on a rational paper. He agreed with the suggested approach to k_{def}. He felt, however, that the concept of 'quasi-permanent' load combinations was somewhat strange and difficult to justify.

The paper 25-6-1 "Moment Configuration Factors" was presented by DR CANISIUS. The principles set forth in the paper would need to be considered, if length effects were to be adopted in codes such as EC5.

DR THELANDERSSON commented that there seemed to be a marked sensitivity to the length of the element assumed in the model. He noted that beams with overhang, and continuous beams where strength rather than stiffness governs design, would be strongly influenced in design by the author's suggestions.

MR LARSEN noted that the model uses constant lengths between simulated knots. He felt that it would be difficult to expect good correlation with test results, if adopting such an assumption. DR COLLING also commented on this, and
suggested that element lengths more in the order of 150 mm would be preferable. The author noted these comments and said that he wished to attempt to improve the model.

Paper 25-6-4 "On design criteria for tension perpendicular to grain" was presented by DR PETERSSON. The author explained that it dealt with problems where tension perpendicular to grain would be critical in design. The approach was by means of applied fracture mechanics. The background and theory were given in the paper. A difficulty at present appears to be that fracture energy input data for design are not readily available. Present design recommendations for components such as end-notched beams may give the coarsest of guidance. The correlation between fracture energy and density amongst timbers also seems rather poor. The author had found a reasonable basis in GUSTAFSSON's proposals for a test method and for data derivation for EC5. He warned that failure of an end crack in shear is a sudden phenomenon. Hence, one of the fracture parameters needs to assume radically different values, dependent upon whether or not crack propagation occurs.

In discussions on the paper, PROFESSOR EHLBECK observed that the theory and experiments were all restricted to short-term conditions. The author agreed that difficult questions remain unanswered about the influence upon fracture behaviour of longer-term loading and effective reductions in stiffness due to mechano-sorptive creep phenomena. PROFESSOR RANTA-MAUNUS questioned how a decision was made over the value of one of the fracture toughness parameters used in the analysis. It seemed to vary quite radically from 0.5 to 1.0. The author stated that this parameter had been set to values determined in part by judgement, although there was some justification. It is known from other situations, where a suddenly-removed support gives rise to a dynamic force being applied to a member, that this has an influence approximately double the effect of a comparable static load effect. DR COLLING commented on the desirability of analysing glulam ultimate strength behaviour using fracture mechanics. For example, he felt that length effects in glulam beams had to do with the relative volumes over which cracks may propagate in various beams. On the other hand, there were many features of real glulam that would require modelling, such as changes of properties at each finger joint, as well as differences between adjacent laminations. PROFESSOR BRÜNINGHOFF pointed out that researchers should not, however, be deterred. There had been numerous cases in Germany of curved glulam beams failing after periods of ten to fifteen years in service, usually in the spring following a heavy winter snow load.

The paper 25-7-2 "Softwood and hardwood embedding strength for dowel type fasteners" by PROFESSOR EHLBECK and MR WERNER was presented by the latter.
In addition to the quite extensive range of species and hence characteristic densities covered in former test programmes by TRADA and others, further timbers had been added and incorporated in the results analyzed in the paper. Softwood and hardwood embedding strengths now appeared to have been investigated over the full range of timbers likely to be used in structures. Embedding strength relationships had also been established at varying grain angles due to the new work reported here. It was pointed out by the authors that the formulae presented in the paper were only applicable to dowel-type fasteners with round section and a smooth finish. In the discussions, DR KOMATSU mentioned that similar tests in Japan had included tension perpendicular arrangements. PROFESSOR EHLBECK wondered how such tests could avoid the complication of brittle fracture in transverse tension, thus negating a true embedment property. MR METTEM questioned the use of the term 'sensibility' in relation to the splitting propensity of some timbers. Older types of test indicating proneness to splitting, such as cleavage, had shown that dense timbers did not necessarily split more easily, especially if having interlocked grain, such as Ekki. MR LARSEN commented that ideally true material parameters should be aimed for in any such tests. Most of those involved in the discussions agreed, although nobody could suggest a more 'pure' material parameter than that indicated by the embedment test.

DR OHLSSON reminded any researchers planning or conducting embedment tests or similar fastener tests that, due to the need for earthquake design data, upper-bound parameters should be reported, as well as characteristic values. It was often necessary to have such information when calculating the energy dissipation potential of groups of fasteners.

Paper 25-7-6 "Characteristic strength of split-ring and shear-plate connections" was presented by PROFESSOR BLASS. It was explained that a calculation model had been developed, describing the load carrying capacity of split-ring and shear-plate connectors. Old test data had been re-evaluated, to assess how well the model described such results. The model assumes a block shear failure mode for joints loaded in tension. The influence of the bolt on the load-bearing capacity is neglected. Joints loaded at angles to the grain had also been examined, and compression loading had been considered. It was hoped that the results of the evaluation might serve as a basis for determining characteristic values for publication in a European standard under preparation. The work related to discussions which are taking place in Working Group 4 of CEN TC124. It was explained by the presenter that connector spacing rules, member thickness effects and similar variations were not considered in the paper. These would have to be covered by additional rules which would be devised for EC5.

PROFESSOR MADSEN and PROFESSOR STERN both made comments on the latter aspect, during the discussions on the paper. Evidently, in North American codes, quite significant reduction factors are applied when a number of connectors act in line to resist tension forces. DR MCLAIN said that under a
current draft revision, the US code may be introducing more severe penalties for groups of connectors. Increased connector stiffness seemed to make the situation worse.

Paper 25-7-7 "Characteristic strength of tooth-plate connector joints" was presented by the same author, covering a similar theme, but for tooth-plate connectors. With this type, it had not been possible to develop a 'mechanical calculation model', since it had to be recognised that significant load-sharing occurs, between the connector and the bolt, before full failure develops. Comparisons had been made between a set of proposed empirical formulae for characteristic strengths, and Dutch test results, plus adjusted information taken from existing Dutch and German codes. The model assumes a load-sharing between the bolt and the tooth-plate connector.

In answer to a question from PROFESSOR STERN, it was confirmed that these types of connector were still used quite extensively in various European countries. As with the split-ring and shear-plate characteristic strengths paper, described above, it was intended that this work would be disseminated via WG4 of CEN TC124. Additional information on the performance of these types of connector would be welcomed by those involved in the Working Group.

Paper 25-7-9 "Determination of k_{def} for nailed joints" was presented by the author, MR van de KUILEN. It dealt with a deformation factor, which could be proposed for use in design with codes such as EC5, and which would adjust the calculated instantaneous deformation of nailed joints for conditions of loading such as permanent load, and for designated service classes. The creep equations proposed in the paper were based on tests which were started in Delft University in 1962, and which were extended in 1983. A range of load levels had been incorporated in these tensile creep tests.

The discussions on this paper were concerned mainly with mechano-sorptive influences on the creep of mechanically fastened joints. PROFESSOR EHLBECK asked how the author felt that the laboratory environment in which the creep tests had been taking place compared with other conditions that EC5 designers would normally treat as Service Class 2. The author felt that, although he recognised that deformation factors in codes need not necessarily be quite so severe as research would suggest, due to influences such as the intermittent nature of high loads in real structures, nevertheless the k_{def} values in EC5 draft, for nailed joints, ought to be increased.

The paper 25-7-10 "Characteristic Strength of UK Timber Connectors" was presented by MR METTEM. The paper described work which had been carried out to review the basis for permissible loads for connected connectors in BS 5268, and to re-assess the test data upon which the permissible stress design code had been based, so that characteristic strength equations could be produced. Ring connectors, plate connectors and toothed-plate connectors had all been covered.
Formulae had been developed for calculating characteristic load-carrying capacities parallel to the grain. The formulae allowed for the size and shape of each type of connector, and for the density and thickness of the timber. References were given to the origins of the test data. For ring connectors, some tests on dense Malaysian hardwoods had been reviewed. Results from the proposed formulae were compared with nominal characteristic values derived from the basic loads tabulated in the British timber design code. The comparison indices were nearly all within ten percent of unity.

PROFESSOR EHLBECK commented that it was very encouraging to note that this work, which like that of papers 25-7-6 and 25-7-7 related to the WG4 discussions, was showing good agreement between British, Dutch and German proposals. There was some discussion on the influence of very high density timbers on the performance of connectored joints. It was agreed that modes of failure such as rupture of the connector itself should be provided for. The author stated that a programme of confirmatory tests was being planned, to make a direct assessment of the formulae proposed, in addition to the old data upon which they are presently based.

Papers 25-7-11 and 25-7-12 dealt with a literature and code review, and a series of tests respectively, on multiple-fastener bolted joints. Bolted joints in European whitewood glulam with steel side plates had been tested, and a finite element model had also been used. It was pointed out in the first paper that, although ECS requires it to be taken into account that the load-carrying capacity of a multiple-fastener joint will be less than the sum of the individual fastener capacities, the modifications for this effect in the application rules given in the draft code are remarkably modest. For example, for one to six bolts in line, no reduction is recommended by ECS, and even for nine bolts, a reduction of only 0.89 is obtained by the relevant code formula. Much larger reductions had been found by the authors, in North American codes, for example. A previous CIB paper (20-7-3) was also cited, which had led to larger reductions than those given in ECS, for bolts with glulam, in the Japanese code.

The tests and analytical investigations in paper 25-7-12 showed that the proportions of load carried by four bolts, compared with a single bolt joint, were very uneven, especially in the perpendicular to grain case. Deductions from the combined results of testing and analysis led the authors to recommend a reduction factor of 0.5 for four bolts loaded perpendicular to the grain, when steel plates were used in conjunction with bolts and glulam.

During the discussions, it was explained that the analysis was purely within the elastic range, and that the matching test arrangements had deliberately been planned to be as near-perfect as possible. For example, precisely aligned holes had been used, and the specimens were of a type in which embedment failures would occur. Previous researchers, including those referenced in the review, had adopted a different approach, and had deliberately tested 'real' bolt assemblies.
The result of this had been that extremely variable load distributions from one bolt to another had been measured. It was agreed that the ratio of member thickness to bolt diameter also affected the load distribution. This had been covered in the research by YASUMURA, and was reflected in formulae in the Canadian code for example. PROFESSOR EHLBECK commented that he would like to see the results of further testing, in which loading was carried to failure, and plastic re-distribution amongst the bolts was considered. This would be more likely to convince the ECS drafting panel to change the rules.

The paper 25-12-1 "Determination of characteristic bending values of glued laminated timber, EN approach and reality" was presented by PROFESSOR GEHRI. The paper discussed the analytical models used for the bending strength of glulam in developing the clauses given in EN TC124.207 'Glulam strength classes and characteristic properties'. The coefficients used in equations to allow for the influence on bending strength of the finger joints in the laminations were reviewed. Size effects were also reconsidered, the author arguing that both the length and the depth of the beam should be allowed for, when adjusting strengths found from tests, on glulam at other than the reference depth. Tests previously conducted at the Federal Institute of Technology in Zürich had been reviewed in the light of the EN proposals. It was concluded from these studies that the EN draft proposal led to an over-estimate of the wood strength of the unjointed laminations of 25%. Also, there was an over-estimate of the finger joint strength, by 40%. Alternative proposals for the relevant EN equations were suggested.

During the discussions on this paper, MR LARSEN stated that the drafters of the EN had, in general, adopted proposals in previous CIB papers. It was necessary to achieve consistency between the production standard for glulam and the EN listing the strength classes. The drafting committee had agreed not to include depth factors in the EN, in the case of beam depths less than 600 mm. DR COLLING felt that the Swiss tests had shown unusually weak finger joints, in relation to the reported moduli of elasticity of the associated laminations. Reference was made to a succeeding paper on the agenda, by DR AASHEIM and DR FALK, on a large test series on Norwegian glulam. In view of the interest in the topic during the discussions, and the fact that minds were focused on the subject, it was decided to treat this out of agenda order.

Paper 25-10-1 "The strength of Norwegian glued laminated beams" was presented by DR FALK. The paper dealt with the characterization and the performance of glulam beams manufactured from machine stress graded Norwegian spruce. The results were analyzed in relation to the proposal for glulam strength classes and determination of characteristic properties which are being developed as a draft CEN standard. Material testing was carried out on the parent population of laminations. These tests indicated that the laminating timber, which consisted of Norway spruce, could be represented by two of the proposed EN strength classes. There was approximately an even share of the grade yield between each of the two classes. Beams constructed from these grades were laid up into three
different beam combinations, two homogeneous layups and one combined layup. Tests on the beams confirmed that in general all of the beams failed as expected, by tension in the outer lamination. The locations of all finger joints were carefully recorded.

At the fifth percentile level, the better grade, homogeneous layup had a similar strength to the combined layup. The ratio of the characteristic strength of the beams to that of the finger joints was similar to the value 0.8, found previously in other tests by COLLING.

There was some discussion, in relation to the Norwegian glulam beam tests, of the precise machine grading techniques used to pre-select the laminations. DR FALK agreed with MR FEWELL's suggestion that higher precision grading machines, possibly used with more enhanced software, could further improve the performance of glulam containing machine graded timber, provided that finger joint performance could also be raised to match. DR AASHEIM explained that the data from the project were still being analyzed, using both the 'Karlsruhe Model' and the US 'PROLAM Model'. A full report would in due course be available from the Norwegian Institute of Wood Technology.

The paper 25-17-2 "A body for confirming the declaration of characteristic values" was presented by MR SUNLEY. It was explained that, although the chief objective of the Single European Act is to produce an open market, most of the current activity in the construction sector is aimed at implementing the Construction Products Directive. As a result, regulatory matters appear to be taking precedence over the aim of free trade.

An outline solution proposed by the paper was to set up an independent organization free from EC or national government control which would be able to approve grading bodies, grading machines and the allocation of characteristic values for timber materials, etc. Possible bases for such organizations were, the author suggested, CIB/W18, CEN committees, Eurowood and EOTC. The latter would depend upon clarifying the aim of the organization.

During the discussions, MR LARSEN spoke strongly in favour of considering EOTC for the role. However, he felt that the approval requirements discussed in the paper could not be satisfied by a body whose membership is voluntary. Also, he considered that it would have to be set up in such a manner that the producers of the goods would pay for the administration of approvals.

The author did not agree that the role could not be fulfilled by a body, membership of which would be voluntary. There were precedents in the UK. Further discussions included the proposition that various producers might claim that materials or products that were inherently similar or identical belonged to different EN material property classes, according to national interpretation of standards or even commercial bias. It was agreed that an informal group would
discuss the subject, and that its members would exchange correspondence. The author of the paper took note of the proposed group membership.

7. FIRE

Paper 25-16-1 "The effect of density on charring and loss of bending strength in fire" was presented by its author, DR KÖNIG. The paper described studies on the influence of density on the charring of timber exposed to standard fire conditions. Effective and measured charring rates varied by about 10 per cent in the density range of softwoods from 290 to 420 kg/m³. There was no influence of density on the loss of bending strength.

During the discussions, DR COLLING described various size effects that might be expected to have an influence on charring rates of a timber at a given density. MR METTELEM mentioned that work carried out by TRADA some 18 years ago measured charring rates over a significant range of timbers with varying density. This had led to different charring rates for hardwoods being stated in the British code.

The second paper on fire topics, 25-16-2 "Tests on glued-laminated beams in bending at natural fire exposure" was also presented by DR KÖNIG. A series of fire tests with so-called natural fire exposure (increasing temperature and a cooling period, see paper for details) had been carried out on glulam beams. The time-temperature relationship was determined by an energy balance method. Fire load densities were varied, together with assumed areas of openings. The tests showed that there was a loss of strength and stiffness in the residual cross sections of the beams. These losses continued through the cooling period. They were ascribed to heat flow within the cross-section. In discussing the paper, DR THELANDERSSON remarked that the opening factor design method has considerable complications. 'Natural' fire curves were developed through calibrations against laboratory tests which were performed in small, cubic ovens. The assumed opening factor has a big influence on the resulting calculations, but he believed that evidence from the measured results of real fires in actual buildings did not support this effect.

8. OPEN FORUM

Papers 25-6-3 "Bearing capacity of timber" was presented by DR KORIN. It described work which was being continued on the basis of a paper presented at CIB W18A in 1990. Tests were being conducted using small clear specimens, and also structural-sized test pieces of varying species of softwood. Differing widths of bearing were being assessed. PROFESSOR MADSEN drew attention to remarks on compression perpendicular to grain published in his recent textbook.
Paper 25-7-4 "A guide for application of quality indexes for driven fasteners used in connections in wood structures" was presented by PROFESSOR STERN. Quality indexes for driven fasteners were originally developed for the design of pallets. The paper explained how the principle could be extended to cover the use of factors in a wider range of structural companies. The Chairman thanked the author for the clarity of his paper and exposition; there were no questions. Paper 25-7-8 "Extending yield theory to screw connections" was presented by DR McLAIN. In this paper, new design criteria for lag screw or coach screw connections to timber members were proposed. The theory was based on the yield theory method for dowel-type fasteners which have been adapted for ECS. A fixed ratio R of the yield moment in the screw thread to that in the shank was assessed in order to produce three simplified evaluations covering a wide range of geometry. Alternative methods of arriving at simplified formulae were considered including an "effective diameter" basis. In discussions on the paper, PROFESSOR EHLBECK commented that this effective diameter procedure had also been considered for some of the Eurocode formulae. In answer to a question of MR METTEM on the proposed procedure in the US Design Code (under revision) for a number of lag screw fasteners in line, fixing steel side plates to glulam or timber, the author commented that a reduction factor would be included similar to that proposed for a number of bolts in line.

Paper 25-8-1 "Analysis of glulam semi-rigid portal frames under long-term load" was presented by DR KOMATSU. Analysis by means of the minimum energy principle and the virtual work method was conducted on portal frames which contained mechanically fastened haunch joints. Testing was also carried out, and good agreement between test and prediction was obtained, particularly in the case of nailed joints. During the discussions, DR THELANDERSSON commented that the long-term behaviour of such frames might be affected by variable climatic conditions. Test conditions were such that a normal laboratory environment was involved.

Paper 25-9-2 "DVM analysis of wood" was presented by DR NIELSEN. It set out theoretical methods based upon a combination of visco-elastic creep theories and fracture mechanics principles, to describe the entire behaviour of wood as an engineering material. Time dependency under load is related to wood quality; short-term strength is related to time under load, and life expectancy of wood under stress is influenced by strength distributions.

PROFESSOR RANTA-MAUNUS asked the author which method he preferred for dealing with the influences of changing moisture content on the DVM model. This was said to have been dealt with in one of the author's recent papers delivered at IUFRO/S5.02 'Timber Engineering Meeting', Bordeaux 1992. Answering a question by MR van de KUILEN on how to deal with non-linear crack propagation effects related to very short duration of failure, the author agreed that these are very difficult to measure due to the masking of such effects by the stiffness of the testing machine itself.
Paper 25-10-2 "Influence of elastic modulus on the simulated bending strength of hyperstatic timber beams" was presented by DR CANISIUS. The importance of considering lengthwise variation of the elastic modulus in calculating the strength of statically intermediate beams was discussed. After the presentation of the paper some remarks were made on the length of the effectively simulated segments in the analysis, in relation to segments of real timber stressed in a grading machine. MR FEWELL said that it was hoped that in future more precise simulations could be achieved by using models containing more elements.

Paper 25-13-1 "Bending strength and stiffness of Izopanel type plates" was presented by DR MIELCZAREK. The purpose of the investigations described was to investigate the strength, stiffness and rheological behaviour of composite panels acting under load perpendicular to their surface. Answering a question from DR CANISIUS, the author agreed that low shear stiffness might be influencing creep behaviour adversely under certain conditions. He said that in future, tests would be included to check on this.

Paper 25-15-1 "Structural assessment of timber framed building systems" was presented by DR KORIN. It described steps that are being taken in Israel to introduce the option to developers of using timber framed housing as an alternative to reinforced concrete structures and block masonry. Steps to draw up performance specifications and a list of items requiring design approval were discussed.

Paper 25-15-2 "A simplified theoretical analytic method for timber beams-columns" was not presented, as the author was unable to attend.

Paper 25-15-3 "Mechanical property of wood-framed shear walls subjected to reversed cyclic lateral loading" was presented by DR YASUMURA. Timber framed shear walls sheathed in various ways were subjected to reversed cyclic lateral loading. The walls were classified into three groups according to their potential seismic resistance capacity. In answer to a question from DR CECCOTTI, the author said that equivalent viscous damping factors were compiled for each type of sheathing investigated. The evd factor ranged from 15 to 20%, depending on the construction. It remained about constant irrespective of sheathing type once a certain number of reversed cycles had been achieved.

Paper 25-17-3 "Moisture content adjustment procedures for engineering standards" was presented by DR GREEN. This paper discussed alternative analytical models which had been developed at the US Forest Products Laboratory for adjusting modulus of elasticity and modulus of rupture values from test results to values suitable for use in design. Five species had been tested, each in two grades and at three levels of conditioned moisture content, to evaluate alternative models. One of the simpler models for MOE adjustment that the tests showed to have been justified was that given in ASTM D1990. In answer to a
question by MR SUNLEY on whether the well-known theory of B. Madsen that lower grades were less influenced by moisture content changes was upheld, the author said that this was so. Since there are certain applications for structural timber where it is more efficient to use lower grades, he felt it was important to include them in such research.

9. ANY OTHER BUSINESS

The relative inactivity of the CIB W18 Sub-Groups (see Minutes, item 3) was discussed. The causes related to travelling difficulties under harsh economic circumstances, were understood. It was felt that rather than deciding to abandon the sub-groups immediately, their aims and ability to function should be reviewed again at CIB W18, 1993 meeting. This suggestion by the Chairman was welcomed and generally agreed.

10. VENUE AND PROGRAMME FOR NEXT MEETING

Following preliminary discussions earlier in the meeting (see Item 2i), the invitation was accepted which was offered by DR O'HALLORAN of APA to organize, in collaboration with F.P.L. MADISON, a meeting at the University of Georgia, Athens, near Atlanta. The proposed dates were 21 - 26 August 1993. Outline plans for CIB W18 meetings in subsequent years were also discussed. Suggestions included a meeting related to the Pacific Timber Engineering Conference, Queensland, Australia, which is taking place 11 - 15 July 1994. In 1995, a meeting of CIB W18 may be planned to take place in Copenhagen, in April of that year.

Topics for CIB W18, 1993, were discussed and the following list was agreed:

Reconstituted wood-based products, including panel products and structural members.

Structural Eurocodes, including EC5.

Serviceability considerations in structural timber design.

Seismic design in timber.

Mechanical timber joints.

General topics.
11. CLOSE

PROFESSOR BLASS thanked all participants and authors for their lively contributions and discussions. Appreciation was expressed to the staff of Hotel Åhus Strand for an exceptionally agreeable and well-run venue.

DR KÖNIG and his fellow Swedes were again thanked for all the smoothly run meeting arrangements and the interesting technical and social visits.

The Chairman then closed the 25th Meeting of CIB W18, and said that he looked forward to seeing members in Georgia, USA in 1993.
12. List of CIB-W18 Papers,
Åhus, Sweden 1992
<table>
<thead>
<tr>
<th>Paper</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>25-6-1</td>
<td>Moment Configuration Factors for Simple Beams - T D G Canisius</td>
</tr>
<tr>
<td>25-6-3</td>
<td>Bearing Capacity of Timber - U Korin</td>
</tr>
<tr>
<td>25-6-4</td>
<td>On Design Criteria for Tension Perpendicular to Grain - H Petersson</td>
</tr>
<tr>
<td>25-7-2</td>
<td>Softwood and Hardwood Embedding Strength for Dowel type Fasteners - J Ehlbeck and H Werner</td>
</tr>
<tr>
<td>25-7-4</td>
<td>A Guide for Application of Quality Indexes for Driven Fasteners Used in Connections in Wood Structures - E G Stern</td>
</tr>
<tr>
<td>25-7-5</td>
<td>35 Years of Experience with Certain Types of Connectors and Connector Plates Used for the Assembly of Wood Structures and their Components - E G Stern</td>
</tr>
<tr>
<td>25-7-6</td>
<td>Characteristic Strength of Split-ring and Shear-plate Connections - H J Blass, J Ehlbeck and M Schlager</td>
</tr>
<tr>
<td>25-7-7</td>
<td>Characteristic Strength of Tooth-plate Connector Joints - H J Blass, J Ehlbeck and M Schlager</td>
</tr>
<tr>
<td>25-7-8</td>
<td>Extending Yield Theory to Screw Connections - T E McLain</td>
</tr>
<tr>
<td>25-7-9</td>
<td>Determination of k_{def} for Nailed Joints - J W G van de Kuilen</td>
</tr>
<tr>
<td>25-7-10</td>
<td>Characteristic Strength of UK Timber Connectors - A V Page and C J Mettem</td>
</tr>
<tr>
<td>25-7-11</td>
<td>Multiple-fastener Dowel-type Joints, a Selected Review of Research and Codes - C J Mettem and A V Page</td>
</tr>
<tr>
<td>25-7-12</td>
<td>Load Distributions in Multiple-fastener Bolted Joints in European Whitewood Glulam, with Steel Side Plates - C J Mettem and A V Page</td>
</tr>
<tr>
<td>25-8-1</td>
<td>Analysis of Glulam Semi-rigid Portal Frames under Long-term Load - K Komatsu and N Kawamoto</td>
</tr>
<tr>
<td>25-9-2</td>
<td>DVM Analysis of Wood. Lifetime, Residual Strength and Quality - L F Nielsen</td>
</tr>
<tr>
<td>25-10-1</td>
<td>The Strength of Norwegian Glued Laminated Beams - K Solli, E Aasheim and R H Falk</td>
</tr>
<tr>
<td>25-10-2</td>
<td>The Influence of the Elastic Modulus on the Simulated Bending Strength of Hyperstatic Timber Beams - T D G Canisius</td>
</tr>
<tr>
<td>25-12-1</td>
<td>Determination of Characteristic Bending Values of Glued Laminated Timber. EN-Approach and Reality - E Gehri</td>
</tr>
<tr>
<td>25-13-1</td>
<td>Bending Strength and Stiffness of Izopanel Plates - Z Mielezarek</td>
</tr>
<tr>
<td>25-14-1</td>
<td>Moment Anchorage Capacity of Nail Plates in Shear Tests - A Kevärinmaki and J. Kangas</td>
</tr>
<tr>
<td>25-14-2</td>
<td>Design Values of Anchorage Strength of Nail Plate Joints by 2-curve Method and Interpolation - J Kangas and A Kevärinmaki</td>
</tr>
<tr>
<td>25-15-1</td>
<td>Structural Assessment of Timber Framed Building Systems - U Korin</td>
</tr>
<tr>
<td>25-15-3</td>
<td>Mechanical Properties of Wood-framed Shear Walls Subjected to Reversed Cyclic Lateral Loading - M Yasumura</td>
</tr>
<tr>
<td>25-16-1</td>
<td>The Effect of Density on Charring and Loss of Bending Strength in Fire - J König</td>
</tr>
<tr>
<td>25-16-2</td>
<td>Tests on Glued-Laminated Beams in Bending Exposed to Natural Fires - F Bolonius Olesen and J König</td>
</tr>
<tr>
<td>25-17-2</td>
<td>A Body for Confirming the Declaration of Characteristic Values - J Sunley</td>
</tr>
<tr>
<td>25-17-3</td>
<td>Moisture Content Adjustment Procedures for Engineering Standards - D W Green and J W Evans</td>
</tr>
<tr>
<td>25-102-1</td>
<td>Latest Development of Eurocode 5 - H J Larsen</td>
</tr>
<tr>
<td>25-102-2</td>
<td>Control of Deflections in Timber Structures with Reference to Eurocode 5 - A Martensson and S Thelandersson</td>
</tr>
</tbody>
</table>
13. Current List of CIB-W18(A) Papers
13. CURRENT LIST OF CIB-W18(A) PAPERS

Technical papers presented to CIB-W18(A) are identified by a code CIB-W18(A)/a-b-c, where:

- a denotes the meeting at which the paper was presented.
- Meetings are classified in chronological order:

1. Princes Risborough, England; March 1973
2. Copenhagen, Denmark; October 1973
3. Delft, Netherlands; June 1974
4. Paris, France; February 1975
5. Karlsruhe, Federal Republic of Germany; October 1975
6. Aalborg, Denmark; June 1976
7. Stockholm, Sweden; February/March 1977
8. Brussels, Belgium; October 1977
9. Perth, Scotland; June 1978
10. Vancouver, Canada; August 1978
11. Vienna, Austria; March 1979
12. Bordeaux, France; October 1979
13. Otaniemi, Finland; June 1980
14. Warsaw, Poland; May 1981
15. Karlsruhe, Federal Republic of Germany; June 1982
16. Lillehammer, Norway; May/June 1983
17. Rapperswil, Switzerland; May 1984
18. Beit Oren, Israel; June 1985
19. Florence, Italy; September 1986
20. Dublin, Ireland; September 1987
21. Parksville, Canada; September 1988
22. Berlin, German Democratic Republic; September 1989
23. Lisbon, Portugal; September 1990
24. Oxford, United Kingdom; September 1991
25. Åhus, Sweden; August 1992
b denotes the subject:

1 Limit State Design
2 Timber Columns
3 Symbols
4 Plywood
5 Stress Grading
6 Stresses for Solid Timber
7 Timber Joints and Fasteners
8 Load Sharing
9 Duration of Load
10 Timber Beams
11 Environmental Conditions
12 Laminated Members
13 Particle and Fibre Building Boards
14 Trussed Rafters
15 Structural Stability
16 Fire
17 Statistics and Data Analysis
18 Glued Joints
19 Fracture Mechanics
100 CIB Timber Code
101 Loading Codes
102 Structural Design Codes
103 International Standards Organisation
104 Joint Committee on Structural Safety
105 CIB Programme, Policy and Meetings
106 International Union of Forestry Research Organisations

c is simply a number given to the papers in the order in which they appear:

Example: CIB-W18/4-102-5 refers to paper 5 on subject 102 presented at the fourth meeting of W18.

Listed below, by subjects, are all papers that have to date been presented to W18. When appropriate some papers are listed under more than one subject heading.
LIMIT STATE DESIGN

1-1-1 Limit State Design - H J Larsen

1-1-2 The Use of Partial Safety Factors in the New Norwegian Design Code for Timber Structures - O Brynildsen

1-1-3 Swedish Code Revision Concerning Timber Structures - B Noren

1-1-4 Working Stresses Report to British Standards Institution Committee BLCP/17/2

6-1-1 On the Application of the Uncertainty Theoretical Methods for the Definition of the Fundamental Concepts of Structural Safety - K Skov and O Ditlevsen

11-1-1 Safety Design of Timber Structures - H J Larsen

18-1-2 Eurocode 5, Timber Structures - H J Larsen

19-1-1 Duration of Load Effects and Reliability Based Design (Single Member) - R O Foschi and Z C Yao

21-102-1 Research Activities Towards a New GDR Timber Design Code Based on Limit States Design - W Rug and M Badstube

22-1-1 Reliability-Theoretical Investigation into Timber Components Proposal for a Supplement of the Design Concept - M Badstube, W Rug and R Plessow

23-1-1 Some Remarks about the Safety of Timber Structures - J Kuipers

23-1-2 Reliability of Wood Structural Elements: A Probabilistic Method to Eurocode 5 Calibration - F Rouger, N Lheritier, P Racher and M Fogli
TIMBER COLUMNS

2-2-1 The Design of Solid Timber Columns - H J Larsen

3-2-1 The Design of Built-Up Timber Columns - H J Larsen

4-2-1 Tests with Centrally Loaded Timber Columns - H J Larsen and S S Pedersen

4-2-2 Lateral-Torsional Buckling of Eccentrically Loaded Timber Columns - B Johansson

5-9-1 Strength of a Wood Column in Combined Compression and Bending with Respect to Creep - B Källsner and B Norén

5-100-1 Design of Solid Timber Columns (First Draft) - H J Larsen

6-100-1 Comments on Document 5-100-1, Design of Solid Timber Columns - H J Larsen and E Theilgaard

6-2-1 Lattice Columns - H J Larsen

6-2-2 A Mathematical Basis for Design Aids for Timber Columns - H J Burgess

6-2-3 Comparison of Larsen and Perry Formulas for Solid Timber Columns - H J Burgess

7-2-1 Lateral Bracing of Timber Struts - J A Simon

8-15-1 Laterally Loaded Timber Columns: Tests and Theory - H J Larsen

17-2-1 Model for Timber Strength under Axial Load and Moment - T Poutanen

18-2-1 Column Design Methods for Timber Engineering - A H Buchanan, K C Johns, B Madsen

19-2-1 Creep Buckling Strength of Timber Beams and Columns - R H Leicester

19-12-2 Strength Model for Glulam Columns - H J Blaß
<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-2-1</td>
<td>Lateral Buckling Theory for Rectangular Section Deep Beam-Columns</td>
<td>H J Burgess</td>
</tr>
<tr>
<td>20-2-2</td>
<td>Design of Timber Columns</td>
<td>H J Blaß</td>
</tr>
<tr>
<td>21-2-1</td>
<td>Format for Buckling Strength</td>
<td>R H Leicester</td>
</tr>
<tr>
<td>21-2-2</td>
<td>Beam-Column Formulae for Design Codes</td>
<td>R H Leicester</td>
</tr>
<tr>
<td>21-15-1</td>
<td>Rectangular Section Deep Beam - Columns with Continuous Lateral</td>
<td>H J Burgess</td>
</tr>
<tr>
<td></td>
<td>Restraint</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Columns</td>
<td></td>
</tr>
<tr>
<td>21-15-3</td>
<td>Simple Approaches for Column Bracing Calculations</td>
<td>H J Burgess</td>
</tr>
<tr>
<td>21-15-4</td>
<td>Calculations for Discrete Column Restraints</td>
<td>H J Burgess</td>
</tr>
<tr>
<td>22-2-1</td>
<td>Buckling and Reliability Checking of Timber Columns</td>
<td>S Huang, P M Yu, J Y Hong</td>
</tr>
<tr>
<td>22-2-2</td>
<td>Proposal for the Design of Compressed Timber Members by Adopting the</td>
<td>P Kaiser</td>
</tr>
<tr>
<td></td>
<td>Second-Order Stress Theory</td>
<td></td>
</tr>
</tbody>
</table>

SYMBOLS

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-3-1</td>
<td>Symbols for Structural Timber Design</td>
<td>J Kuipers and B Norén</td>
</tr>
<tr>
<td>4-3-1</td>
<td>Symbols for Timber Structure Design</td>
<td>J Kuipers and B Norén</td>
</tr>
<tr>
<td>1</td>
<td>Symbols for Use in Structural Timber Design</td>
<td></td>
</tr>
</tbody>
</table>
PLYWOOD

2-4-1 The Presentation of Structural Design Data for Plywood - L G Booth

3-4-1 Standard Methods of Testing for the Determination of Mechanical Properties of Plywood - J Kuipers

3-4-2 Bending Strength and Stiffness of Multiple Species Plywood - C K A Stieda

4-4-4 Standard Methods of Testing for the Determination of Mechanical Properties of Plywood - Council of Forest Industries, B.C.

5-4-1 The Determination of Design Stresses for Plywood in the Revision of CP 112 - L G Booth

5-4-2 Veneer Plywood for Construction - Quality Specifications - ISO/TC 139. Plywood, Working Group 6

6-4-1 The Determination of the Mechanical Properties of Plywood Containing Defects - L G Booth

6-4-2 Comparison of the Size and Type of Specimen and Type of Test on Plywood Bending Strength and Stiffness - C R Wilson and P Eng

6-4-3 Buckling Strength of Plywood: Results of Tests and Recommendations for Calculations - J Kuipers and H Ploos van Amstel

7-4-1 Methods of Test for the Determination of Mechanical Properties of Plywood - L G Booth, J Kuipers, B Norén, C R Wilson

7-4-2 Comments Received on Paper 7-4-1

7-4-3 The Effect of Rate of Testing Speed on the Ultimate Tensile Stress of Plywood - C R Wilson and A V Parasin

7-4-4 Comparison of the Effect of Specimen Size on the Flexural Properties of Plywood Using the Pure Moment Test - C R Wilson and A V Parasin

8-4-1 Sampling Plywood and the Evaluation of Test Results - B Norén

9-4-1 Shear and Torsional Rigidity of Plywood - H J Larsen
9-4-2 The Evaluation of Test Data on the Strength Properties of Plywood - L G Booth

9-4-3 The Sampling of Plywood and the Derivation of Strength Values (Second Draft) - B Norén

9-4-4 On the Use of the CIB/RILEM Plywood Plate Twisting Test: a progress report - L G Booth

10-4-1 Buckling Strength of Plywood - J Dekker, J Kuipers and H Ploos van Amstel

11-4-1 Analysis of Plywood Stressed Skin Panels with Rigid or Semi-Rigid Connections - I Smith

11-4-2 A Comparison of Plywood Modulus of Rigidity Determined by the ASTM and RILEM CIB/3-TT Test Methods - C R Wilson and A V Parasin

11-4-3 Sampling of Plywood for Testing Strength - B Norén

12-4-1 Procedures for Analysis of Plywood Test Data and Determination of Characteristic Values Suitable for Code Presentation - C R Wilson

14-4-1 An Introduction to Performance Standards for Wood-base Panel Products - D H Brown

14-4-2 Proposal for Presenting Data on the Properties of Structural Panels - T Schmidt

16-4-1 Planar Shear Capacity of Plywood in Bending - C K A Stieda

17-4-1 Determination of Panel Shear Strength and Panel Shear Modulus of Beech-Plywood in Structural Sizes - J Ehlbeck and F Colling

17-4-2 Ultimate Strength of Plywood Webs - R H Leicester and L Pham

20-4-1 Considerations of Reliability - Based Design for Structural Composite Products - M R O'Halloran, J A Johnson, E G Elias and T P Cunningham

21-4-1 Modelling for Prediction of Strength of Veneer Having Knots - Y Hirashima
22-4-1 Scientific Research into Plywood and Plywood Building Constructions the Results and Findings of which are Incorporated into Construction Standard Specifications of the USSR - I M Guskov

22-4-2 Evaluation of Characteristic values for Wood-Based Sheet Materials - E G Elias

24-4-1 APA Structural-Use Design Values: An Update to Panel Design Capacities - A L Kuchar, E G Elias, B Yeh and M R O'Halloran

STRESS GRADING

1-5-1 Quality Specifications for Sawn Timber and Precision Timber - Norwegian Standard NS 3080

1-5-2 Specification for Timber Grades for Structural Use - British Standard BS 4978

4-5-1 Draft Proposal for an International Standard for Stress Grading Coniferous Sawn Softwood - ECE Timber Committee

16-5-1 Grading Errors in Practice - B Thunell

16-5-2 On the Effect of Measurement Errors when Grading Structural Timber - L Nordberg and B Thunell

19-5-1 Stress-Grading by ECE Standards of Italian-Grown Douglas-Fir Dimension Lumber from Young Thinnings - L Uzielli

19-5-2 Structural Softwood from Afforestation Regions in Western Norway - R Lackner

21-5-1 Non-Destructive Test by Frequency of Full Size Timber for Grading - T Nakai

22-5-1 Fundamental Vibration Frequency as a Parameter for Grading Sawn Timber - T Nakai, T Tanaka and H Nagao

24-5-1 Influence of Stress Grading System on Length Effect Factors for Lumber Loaded in Compression - A Campos and I Smith
STRESSES FOR SOLID TIMBER

4-6-1 Derivation of Grade Stresses for Timber in the UK - W T Curry

5-6-1 Standard Methods of Test for Determining some Physical and Mechanical Properties of Timber in Structural Sizes - W T Curry

5-6-2 The Description of Timber Strength Data - J R Tory

5-6-3 Stresses for EC1 and EC2 Stress Grades - J R Tory

6-6-1 Standard Methods of Test for the Determination of some Physical and Mechanical Properties of Timber in Structural Sizes (third draft) - W T Curry

7-6-1 Strength and Long-term Behaviour of Lumber and Glued Laminated Timber under Torsion Loads - K Möhler

9-6-1 Classification of Structural Timber - H J Larsen

9-6-2 Code Rules for Tension Perpendicular to Grain - H J Larsen

9-6-3 Tension at an Angle to the Grain - K Möhler

9-6-4 Consideration of Combined Stresses for Lumber and Glued Laminated Timber - K Möhler

11-6-1 Evaluation of Lumber Properties in the United States - W L Galligan and J H Haskell

11-6-2 Stresses Perpendicular to Grain - K Möhler

11-6-3 Consideration of Combined Stresses for Lumber and Glued Laminated Timber (addition to Paper CIB-W18/9-6-4) - K Möhler

12-6-1 Strength Classifications for Timber Engineering Codes - R H Leicester and W G Keating

12-6-2 Strength Classes for British Standard BS 5268 - J R Tory

13-6-1 Strength Classes for the CIB Code - J R Tory
13-6-2 Consideration of Size Effects and Longitudinal Shear Strength for Uncracked Beams - R O Foschi and J D Barrett

13-6-3 Consideration of Shear Strength on End-Cracked Beams - J D Barrett and R O Foschi

15-6-1 Characteristic Strength Values for the ECE Standard for Timber - J G Sunley

16-6-1 Size Factors for Timber Bending and Tension Stresses - A R Fewell

16-6-2 Strength Classes for International Codes - A R Fewell and J G Sunley

17-6-1 The Determination of Grade Stresses from Characteristic Stresses for BS 5268: Part 2 - A R Fewell

17-6-2 The Determination of Softwood Strength Properties for Grades, Strength Classes and Laminated Timber for BS 5268: Part 2 - A R Fewell

18-6-1 Comment on Papers: 18-6-2 and 18-6-3 - R H Leicester

18-6-2 Configuration Factors for the Bending Strength of Timber - R H Leicester

18-6-3 Notes on Sampling Factors for Characteristic Values - R H Leicester

18-6-4 Size Effects in Timber Explained by a Modified Weakest Link Theory - B Madsen and A H Buchanan

18-6-5 Placement and Selection of Growth Defects in Test Specimens - H Riberholt

18-6-6 Partial Safety-Coefficients for the Load-Carrying Capacity of Timber Structures - B Norén and J-O Nylander

19-6-1 Effect of Age and/or Load on Timber Strength - J Kuipers

19-6-2 Confidence in Estimates of Characteristic Values - R H Leicester

19-6-3 Fracture Toughness of Wood - Mode I - K Wright and M Fonselius

19-6-4 Fracture Toughness of Pine - Mode II - K Wright
19-6-5 Drying Stresses in Round Timber - A Ranta-Maunus

19-6-6 A Dynamic Method for Determining Elastic Properties of Wood - R Görlacher

20-6-1 A Comparative Investigation of the Engineering Properties of "Whitewoods" Imported to Israel from Various Origins - U Korin

20-6-2 Effects of Yield Class, Tree Section, Forest and Size on Strength of Home Grown Sitka Spruce - V Picardo

20-6-3 Determination of Shear Strength and Strength Perpendicular to Grain - H J Larsen

21-6-1 Draft Australian Standard: Methods for Evaluation of Strength and Stiffness of Graded Timber - R H Leicester

21-6-2 The Determination of Characteristic Strength Values for Stress Grades of Structural Timber, Part 1 - A R Fewell and P Glos

21-6-3 Shear Strength in Bending of Timber - U Korin

22-6-1 Size Effects and Property Relationships for Canadian 2-inch Dimension Lumber - J D Barrett and H Griffin

22-6-2 Moisture Content Adjustements for In-Grade Data - J D Barrett and W Lau

22-6-3 A Discussion of Lumber Property Relationships in Eurocode 5 - D W Green and D E Kretschmann

22-6-4 Effect of Wood Preservatives on the Strength Properties of Wood - F Ronal

23-6-1 Timber in Compression Perpendicular to Grain - U Korin

24-6-1 Discussion of the Failure Criterion for Combined Bending and Compression - T A C M van der Put

24-6-3 Effect of Within Member Variability on Bending Strength of Structural Timber - I Czmoch, S Thelandersson and H J Larsen
24-6-4 Protection of Structural Timber Against Fungal Attack Requirements and Testing - K Jaworska, M Rylko and W Nozynski

24-6-5 Derivation of the Characteristic Bending Strength of Solid Timber According to CEN-Document prEN 384 - A J M Leijten

25-6-1 Moment Configuration Factors for Simple Beams - T D G Canisius

25-6-3 Bearing Capacity of Timber - U Korin

25-6-4 On Design Criteria for Tension Perpendicular to Grain - H Petersson

TIMBER JOINTS AND FASTENERS

1-7-1 Mechanical Fasteners and Fastenings in Timber Structures - E G Stern

4-7-1 Proposal for a Basic Test Method for the Evaluation of Structural Timber Joints with Mechanical Fasteners and Connectors - RILEM 3TT Committee

4-7-2 Test Methods for Wood Fasteners - K Möhler

5-7-1 Influence of Loading Procedure on Strength and Slip-Behaviour in Testing Timber Joints - K Möhler

5-7-2 Recommendations for Testing Methods for Joints with Mechanical Fasteners and Connectors in Load-Bearing Timber Structures - RILEM 3 TT Committee

5-7-3 CIB-Recommendations for the Evaluation of Results of Tests on Joints with Mechanical Fasteners and Connectors used in Load-Bearing Timber Structures - J Kuipers

6-7-1 Recommendations for Testing Methods for Joints with Mechanical Fasteners and Connectors in Load-Bearing Timber Structures (seventh draft) - RILEM 3 TT Committee

6-7-2 Proposal for Testing Integral Nail Plates as Timber Joints - K Möhler
6-7-3 Rules for Evaluation of Values of Strength and Deformation from Test Results - Mechanical Timber Joints - M Johansen, J Kuipers, B Norén
6-7-4 Comments to Rules for Testing Timber Joints and Derivation of Characteristic Values for Rigidity and Strength - B Norén
7-7-1 Testing of Integral Nail Plates as Timber Joints - K Möhler
7-7-2 Long Duration Tests on Timber Joints - J Kuipers
7-7-3 Tests with Mechanically Jointed Beams with a Varying Spacing of Fasteners - K Möhler
7-100-1 CIB-Timber Code Chapter 5.3 Mechanical Fasteners; CIB-Timber Standard 06 and 07 - H J Larsen
9-7-1 Design of Truss Plate Joints - F J Keenan
9-7-2 Staples - K Möhler
11-7-1 A Draft Proposal for International Standard: ISO Document ISO/TC 165N 38E
12-7-1 Load-Carrying Capacity and Deformation Characteristics of Nailed Joints - J Ehlbeck
12-7-2 Design of Bolted Joints - H J Larsen
12-7-3 Design of Joints with Nail Plates - B Norén
13-7-1 Polish Standard BN-80/7159-04: Parts 00-01-02-03-04-05. "Structures from Wood and Wood-based Materials. Methods of Test and Strength Criteria for Joints with Mechanical Fasteners"
13-7-2 Investigation of the Effect of Number of Nails in a Joint on its Load Carrying Ability - W Nozynski
13-7-3 International Acceptance of Manufacture, Marking and Control of Finger-jointed Structural Timber - B Norén
13-7-4 Design of Joints with Nail Plates - Calculation of Slip - B Norén
13-7-5 Design of Joints with Nail Plates - The Heel Joint - B Källsner
13-7-6 Nail Deflection Data for Design - H J Burgess
13-7-7 Test on Bolted Joints - P Vermeyden
13-7-8 Comments to paper CIB-W18/12-7-3 "Design of Joints with Nail Plates" - B Norén
13-7-9 Strength of Finger Joints - H J Larsen
13-100-4 CIB Structural Timber Design Code. Proposal for Section 6.1.5 Nail Plates - N I Bovim
14-7-1 Design of Joints with Nail Plates (second edition) - B Norén
14-7-2 Method of Testing Nails in Wood (second draft, August 1980) - B Norén
14-7-3 Load-Slip Relationship of Nailed Joints - J Ehlbeck and H J Larsen
14-7-4 Wood Failure in Joints with Nail Plates - B Norén
14-7-5 The Effect of Support Eccentricity on the Design of W- and WW-Trussed with Nail Plate Connectors - B Källsner
14-7-6 Derivation of the Allowable Load in Case of Nail Plate Joints Perpendicular to Grain - K Möhler
14-7-7 Comments on CIB-W18/14-7-1 - T A C M van der Put
15-7-1 Final Recommendation TT-1A: Testing Methods for Joints with Mechanical Fasteners in Load-Bearing Timber Structures. Annex A Punched Metal Plate Fasteners - Joint Committee RILEM/CIB-3TT
16-7-1 Load Carrying Capacity of Dowels - E Gehri
16-7-2 Bolted Timber Joints: A Literature Survey - N Harding
16-7-3 Bolted Timber Joints: Practical Aspects of Construction and Design; a Survey - N Harding
16-7-4 Bolted Timber Joints: Draft Experimental Work Plan - Building Research Association of New Zealand
17-7-1 Mechanical Properties of Nails and their Influence on Mechanical Properties of Nailed Timber Joints Subjected to Lateral Loads - I Smith, L R J Whale, C Anderson and L Held

17-7-2 Notes on the Effective Number of Dowels and Nails in Timber Joints - G Steck

18-7-1 Model Specification for Driven Fasteners for Assembly of Pallets and Related Structures - E G Stern and W B Wallin

18-7-2 The Influence of the Orientation of Mechanical Joints on their Mechanical Properties - I Smith and L R J Whale

18-7-3 Influence of Number of Rows of Fasteners or Connectors upon the Ultimate Capacity of Axially Loaded Timber Joints - I Smith and G Steck

18-7-4 A Detailed Testing Method for Nailplate Joints - J Kangas

18-7-5 Principles for Design Values of Nailplates in Finland - J Kangas

18-7-6 The Strength of Nailplates - N I Bovim and E Aasheim

19-7-1 Behaviour of Nailed and Bolted Joints under Short-Term Lateral Load - Conclusions from Some Recent Research - L R J Whale, I Smith and B O Hilson

19-7-2 Glued Bolts in Glulam - H Riberholt

19-7-3 Effectiveness of Multiple Fastener Joints According to National Codes and Eurocode 5 (Draft) - G Steck

19-7-4 The Prediction of the Long-Term Load Carrying Capacity of Joints in Wood Structures - Y M Ivanov and Y Y Slavic

19-7-5 Slip in Joints under Long-Term Loading - T Feldborg and M Johansen

19-7-6 The Derivation of Design Clauses for Nailed and Bolted Joints in Eurocode 5 - L R J Whale and I Smith

19-7-7 Design of Joints with Nail Plates - Principles - B Norén

19-7-8 Shear Tests for Nail Plates - B Norén
<table>
<thead>
<tr>
<th>Date</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>19-7-9</td>
<td>Advances in Technology of Joints for Laminated Timber - Analyses of</td>
<td>M Piazza and G Turrini</td>
</tr>
<tr>
<td></td>
<td>the Structural Behaviour</td>
<td></td>
</tr>
<tr>
<td>19-15-1</td>
<td>Connections Deformability in Timber Structures: A Theoretical</td>
<td>A Ceccotti and A Vignoli</td>
</tr>
<tr>
<td></td>
<td>Evaluation of its Influence on Seismic Effects</td>
<td></td>
</tr>
<tr>
<td>20-7-1</td>
<td>Design of Nailed and Bolted Joints-Proposals for the Revision of</td>
<td>L R J Whale, I Smith and H J Larsen</td>
</tr>
<tr>
<td></td>
<td>Existing Formulae in Draft Eurocode 5 and the CIB Code</td>
<td></td>
</tr>
<tr>
<td>20-7-2</td>
<td>Slip in Joints under Long Term Loading</td>
<td>T Feldborg and M Johansen</td>
</tr>
<tr>
<td>20-7-3</td>
<td>Ultimate Properties of Bolted Joints in Glued-Laminated Timber</td>
<td>M Yasumura, T Murota and H Sakai</td>
</tr>
<tr>
<td>20-7-4</td>
<td>Modelling the Load-Deformation Behaviour of Connections with Pin-</td>
<td>I Smith</td>
</tr>
<tr>
<td></td>
<td>Type Fasteners under Combined Moment, Thrust and Shear Forces</td>
<td></td>
</tr>
<tr>
<td>21-7-1</td>
<td>Nails under Long-Term Withdrawal Loading</td>
<td>T Feldborg and M Johansen</td>
</tr>
<tr>
<td>21-7-2</td>
<td>Glued Bolts in Glulam-Proposals for CIB Code</td>
<td>H Riberholt</td>
</tr>
<tr>
<td>21-7-3</td>
<td>Nail Plate Joint Behaviour under Shear Loading</td>
<td>T Poutanen</td>
</tr>
<tr>
<td>21-7-4</td>
<td>Design of Joints with Laterally Loaded Dowels. Proposals for</td>
<td>J Ehlbeck and H Werner</td>
</tr>
<tr>
<td></td>
<td>Improving the Design Rules in the CIB Code and the Draft Eurocode 5</td>
<td></td>
</tr>
<tr>
<td>21-7-5</td>
<td>Axially Loaded Nails: Proposals for a Supplement to the CIB Code</td>
<td>J Ehlbeck and W Siebert</td>
</tr>
<tr>
<td>22-7-1</td>
<td>End Grain Connections with Laterally Loaded Steel Bolts</td>
<td>J Ehlbeck and M Gerold</td>
</tr>
<tr>
<td></td>
<td>A draft proposal for design rules in the CIB Code</td>
<td></td>
</tr>
<tr>
<td>22-7-2</td>
<td>Determination of Perpendicular-to-Grain Tensile Stresses in Joints</td>
<td>J Ehlbeck, R Görlacher and H Werner</td>
</tr>
<tr>
<td></td>
<td>with Dowel-Type Fasteners</td>
<td></td>
</tr>
<tr>
<td>22-7-3</td>
<td>Design of Double-Shear Joints with Non-Metallic Dowels</td>
<td>J Ehlbeck and O Eberhart</td>
</tr>
</tbody>
</table>
22-7-4 The Effect of Load on Strength of Timber Joints at high Working Load Level - A J M Leijten

22-7-5 Plasticity Requirements for Portal Frame Corners - R Gunnewijk and A J M Leijten

22-7-6 Background Information on Design of Glulam Rivet Connections in CSA/CAN3-086.1-M89 - A proposal for a supplement of the design concept - E Karacabeyli and D P Janssens

22-7-7 Mechanical Properties of Joints in Glued-Laminated Beams under Reversed Cyclic Loading - M Yasumura

22-7-8 Strength of Glued Lap Timber Joints - P Glos and H Horstmann

22-7-9 Toothed Rings Type Bistyp 075 at the Joints of Fir Wood - J Kerste

22-7-10 Calculation of Joints and Fastenings as Compared with the International State - K Zimmer and K Lissner

22-7-11 Joints on Glued-in Steel Bars Present Relatively New and Progressive Solution in Terms of Timber Structure Design - G N Zubarev, F A Boitemirov and V M Golovina

22-7-12 The Development of Design Codes for Timber Structures made of Compositive Bars with Plate Joints based on Cyclindrical Nails - Y V Piskunov

22-7-13 Designing of Glued Wood Structures Joints on Glued-in Bars - S B Turkovsky

23-7-1 Proposal for a Design Code for Nail Plates - E Aasheim and K H Solli

23-7-2 Load Distribution in Nailed Joints - H J Blass

24-7-1 Theoretical and Experimental Tension and Shear Capacity of Nail Plate Connections - B Källsner and J Kangas

24-7-2 Testing Method and Determination of Basic Working Loads for Timber Joints with Mechanical Fasteners - Y Hirashima and F Kamiya

24-7-3 Anchorage Capacity of Nail Plate - J Kangas
25-7-2 Softwood and Hardwood Embedding Strength for Dowel type Fasteners - J Ehlbeck and H Werner

25-7-4 A Guide for Application of Quality Indexes for Driven Fasteners Used in Connections in Wood Structures - E G Stern

25-7-5 35 Years of Experience with Certain Types of Connectors and Connector Plates Used for the Assembly of Wood Structures and their Components - E G Stern

25-7-6 Characteristic Strength of Split-ring and Shear-plate Connections - H J Blass, J Ehlbeck and M Schlager

25-7-7 Characteristic Strength of Tooth-plate Connector Joints - H J Blass, J Ehlbeck and M Schlager

25-7-8 Extending Yield Theory to Screw Connections - T E McLain

25-7-9 Determination of k_{def} for Nailed Joints - J W G van de Kuilen

25-7-10 Characteristic Strength of UK Timber Connectors - A V Page and C J Mettem

25-7-11 Multiple-fastener Dowel-type Joints, a Selected Review of Research and Codes - C J Mettem and A V Page

25-7-12 Load Distributions in Multiple-fastener Bolted Joints in European Whitewood Glulam, with Steel Side Plates - C J Mettem and A V Page

LOAD SHARING

3-8-1 Load Sharing - An Investigation on the State of Research and Development of Design Criteria - E Levin

4-8-1 A Review of Load-Sharing in Theory and Practice - E Levin

4-8-2 Load Sharing - B Norén

19-8-1 Predicting the Natural Frequencies of Light-Weight Wooden Floors - I Smith and Y H Chui
20-8-1 Proposed Code Requirements for Vibrational Serviceability of Timber Floors - Y H Chui and I Smith

21-8-1 An Addendum to Paper 20-8-1 - Proposed Code Requirements for Vibrational Serviceability of Timber Floors - Y H Chui and I Smith

21-8-2 Floor Vibrational Serviceability and the CIB Model Code - S Ohlsson

22-8-1 Reliability Analysis of Viscoelastic Floors - F Rouger, J D Barrett and R O Foschi

24-8-1 On the Possibility of Applying Neutral Vibrational Serviceability Criteria to Joisted Wood Floors - I Smith and Y H Chui

25-8-1 Analysis of Glulam Semi-rigid Portal Frames under Long-term Load - K Komatsu and N Kawamoto

DURATION OF LOAD

3-9-1 Definitions of Long Term Loading for the Code of Practice - B Norén

4-9-1 Long Term Loading of Trussed Rafters with Different Connection Systems - T Feldborg and M Johansen

5-9-1 Strength of a Wood Column in Combined Compression and Bending with Respect to Creep - B Källsner and B Norén

6-9-1 Long Term Loading for the Code of Practice (Part 2) - B Norén

6-9-2 Long Term Loading - K Möhler

6-9-3 Deflection of Trussed Rafters under Alternating Loading during a Year - T Feldborg and M Johansen

7-6-1 Strength and Long Term Behaviour of Lumber and Glued-Laminated Timber under Torsion Loads - K Möhler

7-9-1 Code Rules Concerning Strength and Loading Time - H J Larsen and E Theilgaard
On the Long-Term Carrying Capacity of Wood Structures - Y M Ivanov and Y Y Slavic

Prediction of Creep Deformations of Joints - J Kuipers

Another Look at Three Duration of Load Models - R O Foschi and Z C Yao

Duration of Load Effects for Spruce Timber with Special Reference to Moisture Influence - A Status Report - P Hoffmeyer

A Model of Deformation and Damage Processes Based on the Reaction Kinetics of Bond Exchange - T A C M van der Put

Non-Linear Creep Superposition - U Korin

Determination of Creep Data for the Component Parts of Stressed-Skin Panels - R Kliger

Creep an Lifetime of Timber Loaded in Tension and Compression - P Glos

Duration of Load Effects and Reliability Based Design (Single Member) - R O Foschi and Z C Yao

Effect of Age and/or Load on Timber Strength - J Kuipers

The Prediction of the Long-Term Load Carrying Capacity of Joints in Wood Structures - Y M Ivanov and Y Y Slavic

Slip in Joints under Long-Term Loading - T Feldborg and M Johansen

Slip in Joints under Long-Term Loading - T Feldborg and M Johansen

Long-Term Tests with Glued Laminated Timber Girders - M Badstube, W Rug and W Schöne

Strength of One-Layer solid and Lengthways Glued Elements of Wood Structures and its Alteration from Sustained Load - L M Kovaltchuk, I N Boitemirova and G B Uspenskaya

Long Term Bending Creep of Wood - T Toratti
Collection of Creep Data of Timber - A Ranta-Maunus

Deformation Modification Factors for Calculating Built-up Wood-Based Structures - I R Kliger

DVM Analysis of Wood. Lifetime, Residual Strength and Quality - L F Nielsen

TIMBER BEAMS

The Design of Simple Beams - H J Burgess

Calculation of Timber Beams Subjected to Bending and Normal Force - H J Larsen

The Design of Timber Beams - H J Larsen

The Distribution of Shear Stresses in Timber Beams - F J Keenan

Beams Notched at the Ends - K Möhler

Tapered Timber Beams - H Riberholt

Consideration of Size Effects in Longitudinal Shear Strength for Uncracked Beams - R O Foschi and J D Barrett

Consideration of Shear Strength on End-Cracked Beams - J D Barrett and R O Foschi

Submission to the CIB-W18 Committee on the Design of Ply Web Beams by Consideration of the Type of Stress in the Flanges - J A Baird

Longitudinal Shear Design of Glued Laminated Beams - R O Foschi

Possible Code Approaches to Lateral Buckling in Beams - H J Burgess

Creep Buckling Strength of Timber Beams and Columns - R H Leicester

Lateral Buckling Theory for Rectangular Section Deep Beam-Columns - H J Burgess
20-10-1 Draft Clause for CIB CodeéforêBeamséwithêInitial Imperfections - H J Burgess

20-10-2 Space Joists in Irish Timber - W J Robinson

20-10-3 Composite Structure of Timber Joists and Concrete Slab - T Poutanen

21-10-1 A Study of Strength of Notched Beams - P J Gustafsson

22-10-1 Design of Endnotched Beams - H J Larsen and P J Gustafsson

22-10-2 Dimensions of Wooden Flexural Members under Constant Loads - A Pozgai

22-10-3 Thin-Walled Wood-Based Flanges in Composite Beams - J König

22-10-4 The Calculation of Wooden Bars with flexible Joints in Accordance with the Polish Standart Code and Strict Theoretical Methods - Z Mielczarek

23-10-1 Tension Perpendicular to the Grain at Notches and Joints - T A C M van der Put

23-10-2 Dimensioning of Beams with Cracks, Notches and Holes. An Application of Fracture Mechanics - K Riipola

23-10-3 Size Factors for the Bending and Tension Strength of Structural Timber - J D Barret and A R Fewell

23-12-1 Bending Strength of Glulam Beams, a Design Proposal - J Ehlbeck and F Colling

23-12-3 Glulam Beams, Bending Strength in Relation to the Bending Strength of the Finger Joints - H Riberholz

24-10-1 Shear Strength of Continuous Beams - R H Leicester and F G Young

25-10-1 The Strength of Norwegian Glued Laminated Beams - K Solli, E Aasheim and R H Falk

25-10-2 The Influence of the Elastic Modulus on the Simulated Bending Strength of Hyperstatic Timber Beams - T D G Canisius
ENVIRONMENTAL CONDITIONS

5-11-1 Climate Grading for the Code of Practice - B Norén

6-11-1 Climate Grading (2) - B Norén

9-11-1 Climate Classes for Timber Design - F J Keenan

19-11-1 Experimental Analysis on Ancient Downgraded Timber Structures - B Leggeri and L Paolini

19-6-5 Drying Stresses in Round Timber - A Ranta-Maunus

22-11-1 Corrosion and Adaptation Factors for Chemically Aggressive Media with Timber Structures - K Erler

LAMINATED MEMBERS

6-12-1 Directives for the Fabrication of Load-Bearing Structures of Glued Timber - A van der Velden and J Kuipers

8-12-1 Testing of Big Glulam Timber Beams - H Kolb and P Frech

8-12-2 Instruction for the Reinforcement of Apertures in Glulam Beams - H Kolb and P Frech

8-12-3 Glulam Standard Part 1: Glued Timber Structures; Requirements for Timber (Second Draft)

9-12-1 Experiments to Provide for Elevated Forces at the Supports of Wooden Beams with Particular Regard to Shearing Stresses and Long-Term Loadings - F Wassipaul and R Lackner

9-12-2 Two Laminated Timber Arch Railway Bridges Built in Perth in 1849 - L G Booth

9-6-4 Consideration of Combined Stresses for Lumber and Glued Laminated Timber - K Möhler
11-6-3 Consideration of Combined Stresses for Lumber and Glued Laminated Timber (addition to Paper CIB-W18/9-6-4) - K Möhler

12-12-1 Glulam Standard Part 2: Glued Timber Structures; Rating (3rd draft)

12-12-2 Glulam Standard Part 3: Glued Timber Structures; Performance (3rd draft)

13-12-1 Glulam Standard Part 3: Glued Timber Structures; Performance (4th draft)

14-12-1 Proposals for CEI-Bois/CIB-W18 Glulam Standards - H J Larsen

14-12-2 Guidelines for the Manufacturing of Glued Load-Bearing Timber Structures - Stevin Laboratory

14-12-3 Double Tapered Curved Glulam Beams - H Riberholt

14-12-4 Comment on CIB-W18/14-12-3 - E Gehri

18-12-1 Report on European Glulam Control and Production Standard - H Riberholt

18-10-2 Longitudinal Shear Design of Glued Laminated Beams - R O Foschi

19-12-1 Strength of Glued Laminated Timber - J Ehlbeck and F Colling

19-12-2 Strength Model for Glulam Columns - H J Blaß

19-12-3 Influence of Volume and Stress Distribution on the Shear Strength and Tensile Strength Perpendicular to Grain - F Colling

19-12-4 Time-Dependent Behaviour of Glued-Laminated Beams - F Zaupa

21-12-1 Modulus of Rupture of Glulam Beam Composed of Arbitrary Laminae - K Komatsu and N Kawamoto

21-12-2 An Appraisal of the Young's Modulus Values Specified for Glulam in Eurocode 5 - L R J Whale, B O Hilson and P D Rodd

21-12-3 The Strength of Glued Laminated Timber (Glulam): Influence of Lamination Qualities and Strength of Finger Joints - J Ehlbeck and F Colling
21-12-4 Comparison of a Shear Strength Design Method in Eurocode 5 and a More Traditional One - H Riberholt

22-12-1 The Dependence of the Bending Strength on the Glued Laminated Timber Girder Depth - M Badstube, W Rug and W Schöne

22-12-2 Acid Deterioration of Glulam Beams in Buildings from the Early Half of the 1960s - Preliminary summary of the research project; Overhead pictures - B A Hedlund

22-12-3 Experimental Investigation of normal Stress Distribution in Glue Laminated Wooden Arches - Z Mielczarek and W Chanaj

22-12-4 Ultimate Strength of Wooden Beams with Tension Reinforcement as a Function of Random Material Properties - R Cadowicz and T Dziuba

23-12-1 Bending Strength of Glulam Beams, a Design Proposal - J Ehilbeck and F Colling

23-12-2 Probability Based Design Method for Glued Laminated Timber - M F Stone

23-12-3 Glulam Beams, Bending Strength in Relation to the Bending Strength of the Finger Joints - H Riberholt

23-12-4 Glued Laminated Timber - Strength Classes and Determination of Characteristic Properties - H Riberholt, J Ehilbeck and A Fewell

24-12-1 Contribution to the Determination of the Bending Strength of Glulam Beams - F Colling, J Ehilbeck and R Görlacher

24-12-2 Influence of Perpendicular-to-Grain Stressed Volume on the Load-Carrying Capacity of Curved and Tapered Glulam Beams - J Ehilbeck and J Kürth

25-12-1 Determination of Characteristic Bending Values of Glued Laminated Timber. EN-Approach and Reality - E Gehri
PARTICLE AND FIBRE BUILDING BOARDS

7-13-1 Fibre Building Boards for CIB Timber Code (First Draft) - O Brynildsen

9-13-1 Determination of the Bearing Strength and the Load-Deformation Characteristics of Particleboard - K Möhler, T Budianto and J Ehlbeck

9-13-2 The Structural Use of Tempered Hardboard - W W L Chan

11-13-1 Tests on Laminated Beams from Hardboard under Short- and Longterm Load - W Nozynski

11-13-2 Determination of Deformation of Special Densified Hardboard under Long-term Load and Varying Temperature and Humidity Conditions - W Halfar

11-13-3 Determination of Deformation of Hardboard under Long-term Load in Changing Climate - W Halfar

14-4-1 An Introduction to Performance Standards for Wood-Base Panel Products - D H Brown

14-4-2 Proposal for Presenting Data on the Properties of Structural Panels - T Schmidt

16-13-1 Effect of Test Piece Size on Panel Bending Properties - P W Post

20-4-1 Considerations of Reliability - Based Design for Structural Composite Products - M R O'Halloran, J A Johnson, E G Elias and T P Cunningham

20-13-1 Classification Systems for Structural Wood-Based Sheet Materials - V C Kearley and A R Abbott

21-13-1 Design Values for Nailed Chipboard - Timber Joints - A R Abbott

25-13-1 Bending Strength and Stiffness of Izo panel Plates - Z Mieleczarek
TRUSSED RAFTERS

4-9-1 Long-term Loading of Trussed Rafters with Different Connection Systems - T Feldborg and M Johansen

6-9-3 Deflection of Trussed Rafters under Alternating Loading During a Year - T Feldborg and M Johansen

7-2-1 Lateral Bracing of Timber Struts - J A Simon

9-14-1 Timber Trusses - Code Related Problems - T F Williams

9-7-1 Design of Truss Plate Joints - F J Keenan

10-14-1 Design of Roof Bracing - The State of the Art in South Africa - P A V Bryant and J A Simon

11-14-1 Design of Metal Plate Connected Wood Trusses - A R Egerup

12-14-1 A Simple Design Method for Standard Trusses - A R Egerup

13-14-1 Truss Design Method for CIB Timber Code - A R Egerup

13-14-2 Trussed Rafters, Static Models - H Riberholt

13-14-3 Comparison of 3 Truss Models Designed by Different Assumptions for Slip and E-Modulus - K Möhler

14-14-1 Wood Trussed Rafter Design - T Feldborg and M Johansen

14-14-2 Truss-Plate Modelling in the Analysis of Trusses - R O Foschi

14-14-3 Cantilevered Timber Trusses - A R Egerup

14-7-5 The Effect of Support Eccentricity on the Design of W- and WW-Trusses with Nail Plate Connectors - B Källsner

15-14-1 Guidelines for Static Models of Trussed Rafters - H Riberholt

15-14-2 The Influence of Various Factors on the Accuracy of the Structural Analysis of Timber Roof Trusses - F R P Pienaar
<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-14-3</td>
<td>Bracing Calculations for Trussed Rafter Roofs - H J Burgess</td>
<td></td>
</tr>
<tr>
<td>15-14-4</td>
<td>The Design of Continuous Members in Timber Trussed Rafters with Punched Metal Connector Plates - P O Reece</td>
<td></td>
</tr>
<tr>
<td>15-14-5</td>
<td>A Rafter Design Method Matching U.K. Test Results for Trussed Rafters - H J Burgess</td>
<td></td>
</tr>
<tr>
<td>16-14-1</td>
<td>Full-Scale Tests on Timber Fink Trusses Made from Irish Grown Sitka Spruce - V Picardo</td>
<td></td>
</tr>
<tr>
<td>17-14-1</td>
<td>Data from Full Scale Tests on Prefabricated Trussed Rafters - V Picardo</td>
<td></td>
</tr>
<tr>
<td>17-14-2</td>
<td>Simplified Static Analysis and Dimensioning of Trussed Rafters - H Riberholt</td>
<td></td>
</tr>
<tr>
<td>17-14-3</td>
<td>Simplified Calculation Method for W-Trusses - B Källsner</td>
<td></td>
</tr>
<tr>
<td>18-14-1</td>
<td>Simplified Calculation Method for W-Trusses (Part 2) - B Källsner</td>
<td></td>
</tr>
<tr>
<td>18-14-2</td>
<td>Model for Trussed Rafter Design - T Poutanen</td>
<td></td>
</tr>
<tr>
<td>19-14-1</td>
<td>Annex on Simplified Design of W-Trusses - H J Larsen</td>
<td></td>
</tr>
<tr>
<td>19-14-2</td>
<td>Simplified Static Analysis and Dimensioning of Trussed Rafters - Part 2 - H Riberholt</td>
<td></td>
</tr>
<tr>
<td>19-14-3</td>
<td>Joint Eccentricity in Trussed Rafters - T Poutanen</td>
<td></td>
</tr>
<tr>
<td>20-14-1</td>
<td>Some Notes about Testing Nail Plates Subjected to Moment Load - T Poutanen</td>
<td></td>
</tr>
<tr>
<td>20-14-2</td>
<td>Moment Distribution in Trussed Rafters - T Poutanen</td>
<td></td>
</tr>
<tr>
<td>20-14-3</td>
<td>Practical Design Methods for Trussed Rafters - A R Egerup</td>
<td></td>
</tr>
<tr>
<td>22-14-1</td>
<td>Guidelines for Design of Timber Trussed Rafters - H Riberholt</td>
<td></td>
</tr>
<tr>
<td>23-14-1</td>
<td>Analyses of Timber Trussed Rafters of the W-Type - H Riberholt</td>
<td></td>
</tr>
<tr>
<td>23-14-2</td>
<td>Proposal for Eurocode 5 Text on Timber Trussed Rafters - H Riberholt</td>
<td></td>
</tr>
</tbody>
</table>
24-14-1 Capacity of Support Areas Reinforced with Nail Plates in Trussed Rafters - A Keværinmäki

25-14-1 Moment Anchorage Capacity of Nail Plates in Shear Tests -
A Keværinmäki and J. Kangas

25-14-2 Design Values of Anchorage Strength of Nail Plate Joints by 2-curve Method and Interpolation - J Kangas and A Keværinmäki

STRUCTURAL STABILITY

8-15-1 Laterally Loaded Timber Columns: Tests and Theory - H J Larsen

16-15-1 Determination of Bracing Structures for Compression Members and Beams - H Brüninghoff

17-15-1 Proposal for Chapter 7.4 Bracing - H Brüninghoff

17-15-2 Seismic Design of Small Wood Framed Houses - K F Hansen

18-15-1 Full-Scale Structures in Glued Laminated Timber, Dynamic Tests:
Theoretical and Experimental Studies - A Ceccotti and A Vignoli

18-15-2 Stabilizing Bracings - H Brüninghoff

19-15-2 The Bracing of Trussed Beams - M H Kessel and J Natterer

19-15-3 Racking Resistance of Wooden Frame Walls with Various Openings
- M Yasumura

19-15-5 Non-Destructive Vibration Tests on Existing Wooden Dwellings - Y Hirashima

20-15-1 Behaviour Factor of Timber Structures in Seismic Zones. - A Ceccotti and A Vignoli

21-15-1 Rectangular Section Deep Beam - Columns with Continuous Lateral Restraint - H J Burgess

21-15-3 Simple Approaches for Column Bracing Calculations - H J Burgess

21-15-4 Calculations for Discrete Column Restraints - H J Burgess

21-15-5 Behaviour Factor of Timber Structures in Seismic Zones (Part Two) - A Ceccotti and A Vignoli

22-15-2 Research and Development of Timber Frame Structures for Agriculture in Poland - S Kus and J Kerste

22-15-3 Ensuring of Three-Dimensional Stiffness of Buildings with Wood Structures - A K Shenghelia

22-15-6 The Robustness of Timber Structures - C J Mettem and J P Marcroft

22-15-7 Influence of Geometrical and Structural Imperfections on the Limit Load of Wood Columns - P Dutko

23-15-1 Calculation of a Wind Girder Loaded also by Discretely Spaced Braces for Roof Members - H J Burgess

23-15-3 A Brief Description of Formula of Beam-Columns in China Code - S Y Huang

23-15-4 Seismic Behavior of Braced Frames in Timber Construction - M Yasumura

23-15-6 Disproportionate Collapse of Timber Structures - C J Mettem and J P Marcroft

23-15-7 Performance of Timber Frame Structures During the Loma Prieta California Earthquake - M R O'Halloran and E G Elias

24-15-2 Discussion About the Description of Timber Beam-Column Formula - S Y Huang

24-15-3 Seismic Behavior of Wood-Framed Shear Walls - M Yasumura

25-15-1 Structural Assessment of Timber Framed Building Systems - U Korin

25-15-3 Mechanical Properties of Wood-framed Shear Walls Subjected to Reversed Cyclic Lateral Loading - M Yasumura

FIRE

12-16-1 British Standard BS 5268 the Structural Use of Timber: Part 4 Fire Resistance of Timber Structures

19-16-1 Simulation of Fire in Tests of Axially Loaded Wood Wall Studs - J König

24-16-1 Modelling the Effective Cross Section of Timber Frame Members Exposed to Fire - J König

25-16-1 The Effect of Density on Charring and Loss of Bending Strength in Fire - J König
25-16-2 Tests on Glued-Laminated Beams in Bending Exposed to Natural Fires - F Bolonius Olesen and J König

STATISTICS AND DATA ANALYSIS

13-17-1 On Testing Whether a Prescribed Exclusion Limit is Attained - W G Warren

16-17-1 Notes on Sampling and Strength Prediction of Stress Graded Structural Timber - P Glos

16-17-2 Sampling to Predict by Testing the Capacity of Joints, Components and Structures - B Norén

16-17-3 Discussion of Sampling and Analysis Procedures - P W Post

17-17-1 Sampling of Wood for Joint Tests on the Basis of Density - I Smith, L R J Whale

17-17-2 Sampling Strategy for Physical and Mechanical Properties of Irish Grown Sitka Spruce - V Picardo

18-17-1 Sampling of Timber in Structural Sizes - P Glos

18-6-3 Notes on Sampling Factors for Characteristic Values - R H Leicester

19-17-1 Load Factors for Proof and Prototype Testing - R H Leicester

19-6-2 Confidence in Estimates of Characteristic Values - R H Leicester

21-6-1 Draft Australian Standard: Methods for Evaluation of Strength and Stiffness of Graded Timber - R H Leicester

21-6-2 The Determination of Characteristic Strength Values for Stress Grades of Structural Timber. Part 1 - A R Fewell and P Glos

22-17-1 Comment on the Strength Classes in Eurocode 5 by an Analysis of a Stochastic Model of Grading - A proposal for a supplement of the design concept - M Kiesel
24-17-1 Use of Small Samples for In-Service Strength Measurement - R H Leicester and F G Young

24-17-2 Equivalence of Characteristic Values - R H Leicester and F G Young

24-17-3 Effect of Sampling Size on Accuracy of Characteristic Values of Machine Grades - Y H Chui, R Turner and I Smith

24-17-4 Harmonisation of LSD Codes - R H Leicester

25-17-2 A Body for Confirming the Declaration of Characteristic Values - J Sunley

25-17-3 Moisture Content Adjustment Procedures for Engineering Standards - D W Green and J W Evans

FRACTURE MECHANICS

21-10-1 A Study of Strength of Notched Beams - P J Gustafsson

22-10-1 Design of Endnotched Beams - H J Larsen and P J Gustafsson

23-10-1 Tension Perpendicular to the Grain at Notches and Joints - T A C M van der Put

23-10-2 Dimensioning of Beams with Cracks, Notches and Holes. An Application of Fracture Mechanics - K Riiopola

23-19-1 Determination of the Fracture Energie of Wood for Tension Perpendicular to the Grain - W Rug, M Badstube and W Schöne

23-19-2 The Fracture Energy of Wood in Tension Perpendicular to the Grain. Results from a Joint Testing Project - H J Larsen and P J Gustafsson

23-19-3 Application of Fracture Mechanics to Timber Structures - A Ranta-Maunus

24-19-1 The Fracture Energy of Wood in Tension Perpendicular to the Grain - H J Larsen and P J Gustafsson
GLUED JOINTS

20-18-1 Wood Materials under Combined Mechanical and Hygral Loading - A Martensson and S Thelandersson

20-18-2 Analysis of Generalized Volkersen - Joints in Terms of Linear Fracture Mechanics - P J Gustafsson

20-18-3 The Complete Stress-Slip Curve of Wood-Adhesives in Pure Shear - H Wernersson and P J Gustafsson

22-18-1 Perspective Adhesives and Protective Coatings for Wood Structures - A S Freidin

CIB TIMBER CODE

2-100-1 A Framework for the Production of an International Code of Practice for the Structural Use of Timber - W T Curry

5-100-1 Design of Solid Timber Columns (First Draft) - H J Larsen

5-100-2 A Draft Outline of a Code for Timber Structures - L G Booth

6-100-1 Comments on Document 5-100-1; Design of Solid Timber Columns - H J Larsen and E Theilgaard

6-100-2 CIB Timber Code; CIB Timber Standards - H J Larsen and E Theilgaard

7-100-1 CIB Timber Code Chapter 5.3 Mechanical Fasteners; CIB Timber Standard 06 and 07 - H J Larsen

8-100-1 CIB Timber Code - List of Contents (Second Draft) - H J Larsen

9-100-1 The CIB Timber Code (Second Draft)

11-100-1 CIB Structural Timber Design Code (Third Draft)
11-100-2 Comments Received on the CIB Code
 a U Saarelainen
 b Y M Ivanov
 c R H Leicester
 d W Nozynski
 e W R A Meyer
 f P Beckmann; R Marsh
 g W R A Meyer
 h W R A Meyer

11-100-3 CIB Structural Timber Design Code; Chapter 3 - H J Larsen

12-100-1 Comment on the CIB Code - Sous-Commission Glulam

12-100-2 Comment on the CIB Code - R H Leicester

12-100-3 CIB Structural Timber Design Code (Fourth Draft)

13-100-1 Agreed Changes to CIB Structural Timber Design Code

13-100-2 CIB Structural Timber Design Code. Chapter 9: Performance in Fire

13-100-3a Comments on CIB Structural Timber Design Code

13-100-3b Comments on CIB Structural Timber Design Code - W R A Meyer

13-100-3c Comments on CIB Structural Timber Design Code - British Standards Institution

13-100-4 CIB Structural Timber Design Code. Proposal for Section 6.1.5 Nail Plates - N I Bovim

14-103-2 Comments on the CIB Structural Timber Design Code - R H Leicester

15-103-1 Resolutions of TC 165-meeting in Athens 1981-10-12/13

21-100-1 CIB Structural Timber Design Code. Proposed Changes of Sections on Lateral Instability, Columns and Nails - H J Larsen

22-100-1 Proposal for Including an Updated Design Method for Bearing Stresses in CIB W18 - Structural Timber Design Code - B Madsen
22-100-2 Proposal for Including Size Effects in CIB W18A Timber Design Code - B Madsen

22-100-3 CIB Structural Timber Design Code - Proposed Changes of Section on Thin-Flanged Beams - J König

22-100-4 Modification Factor for "Aggressive Media" - a Proposal for a Supplement to the CIB Model Code - K Erler and W Rug

22-100-5 Timber Design Code in Czechoslovakia and Comparison with CIB Model Code - P Dutko and B Kozelouh

LOADING CODES

4-101-1 Loading Regulations - Nordic Committee for Building Regulations

4-101-2 Comments on the Loading Regulations - Nordic Committee for Building Regulations

STRUCTURAL DESIGN CODES

1-102-1 Survey of Status of Building Codes, Specifications etc., in USA - E G Stern

1-102-2 Australian Codes for Use of Timber in Structures - R H Leicester

1-102-3 Contemporary Concepts for Structural Timber Codes - R H Leicester

1-102-4 Revision of CP 112 - First Draft, July 1972 - British Standards Institution

4-102-1 Comparision of Codes and Safety Requirements for Timber Structures in EEC Countries - Timber Research and Development Association

4-102-3 Proposal for Safety Codes for Load-Carrying Structures - Nordic Committee for Building Regulations
4-102-4 Comments to Proposal for Safety Codes for Load-Carrying Structures - Nordic Committee for Building Regulations

4-102-5 Extract from Norwegian Standard NS 3470 "Timber Structures"

4-102-6 Draft for Revision of CP 112 "The Structural Use of Timber" - W T Curry

8-102-1 Polish Standard PN-73/B-03150: Timber Structures; Statistical Calculations and Designing

8-102-2 The Russian Timber Code: Summary of Contents

9-102-1 Svensk Byggnorm 1975 (2nd Edition); Chapter 27: Timber Construction

11-102-1 Eurocodes - H J Larsen

13-102-1 Program of Standardisation Work Involving Timber Structures and Wood-Based Products in Poland

17-102-1 Safety Principles - H J Larsen and H Riberholt

17-102-2 Partial Coefficients Limit States Design Codes for Structural Timberwork - I Smith

18-102-1 Antiseismic Rules for Timber Structures: an Italian Proposal - G Augusti and A Ceccotti

18-1-2 Eurocode 5, Timber Structures - H J Larsen

19-102-1 Eurocode 5 - Requirements to Timber - Drafting Panel Eurocode 5

19-102-2 Eurocode 5 and CIB Structural Timber Design Code - H J Larsen

19-102-3 Comments on the Format of Eurocode 5 - A R Fewell

19-7-3 Effectiveness of Multiple Fastener Joints According to National Codes and Eurocode 5 (Draft) - G Steck
The Derivation of Design Clauses for Nailed and Bolted Joints in Eurocode 5 - L R J Whale and I Smith

Annex on Simplified Design of W-Trusses - H J Larsen

Research Activities Towards a New GDR Timber Design Code Based on Limit States Design - W Rug and M Badstube

New GDR Timber Design Code, State and Development - W Rug, M Badstube and W Kofent

Norwegian Timber Design Code - Extract from a New Version - E Aasheim and K H Solli

Proposal for a Design Code for Nail Plates - E Aasheim and K H Solli

Timber Footbridges: A Comparison Between Static and Dynamic Design Criteria - A Ceccotti and N de Robertis

Latest Development of Eurocode 5 - H J Larsen

Control of Deflections in Timber Structures with Reference to Eurocode 5 - A Martensson and S Thelandersson
INTERNATIONAL STANDARDS ORGANISATION

3-103-1 Method for the Preparation of Standards Concerning the Safety of Structures (ISO/DIS 3250) - International Standards Organisation

4-103-1 A Proposal for Undertaking the Preparation of an International Standard on Timber Structures - International Standards Organisation

5-103-1 Comments on the Report of the Consultion with Member Bodies Concerning ISO/TC/P129 - Timber Structures - Dansk Ingeniorforening

7-103-1 ISO Technical Committees and Membership of ISO/TC 165

8-103-1 Draft Resolutions of ISO/TC 165

12-103-1 ISO/TC 165 Ottawa, September 1979

13-103-1 Report from ISO/TC 165 - A Sorensen

14-103-1 Comments on ISO/TC 165 N52 "Timber Structures; Solid Timber in Structural Sizes; Determination of Some Physical and Mechanical Properties"

14-103-2 Comments on the CIB Structural Timber Design Code - R H Leicester

21-103-1 Concept of a Complete Set of Standards - R H Leicester

JOINT COMMITTEE ON STRUCTURAL SAFETY

3-104-1 International System on Unified Standard Codes of Practice for Structures - Comité Européen du Béton (CEB)

7-104-1 Volume 1: Common Unified Rules for Different Types of Construction and Material - CEB
CIB PROGRAMME, POLICY AND MEETINGS

<table>
<thead>
<tr>
<th>Date</th>
<th>Title</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-105-1</td>
<td>A Note on International Organisations Active in the Field of Utilisation of Timber</td>
<td>P Sonnemans</td>
</tr>
<tr>
<td>5-105-1</td>
<td>The Work and Objectives of CIB-W18-Timber Structures</td>
<td>J G Sunley</td>
</tr>
<tr>
<td>10-105-1</td>
<td>The Work of CIB-W18 Timber Structures</td>
<td>J G Sunley</td>
</tr>
<tr>
<td>15-105-1</td>
<td>Terms of Reference for Timber - Framed Housing Sub-Group of CIB-W18</td>
<td></td>
</tr>
<tr>
<td>19-105-1</td>
<td>Tropical and Hardwood Timbers Structures</td>
<td>R H Leicester</td>
</tr>
<tr>
<td>21-105-1</td>
<td>First Conference of CIB-W18B, Tropical and Hardwood Timber Structures Singapore, 26 - 28 October 1987</td>
<td>R H Leicester</td>
</tr>
</tbody>
</table>

INTERNATIONAL UNION OF FORESTRY RESEARCH ORGANISATIONS

<table>
<thead>
<tr>
<th>Date</th>
<th>Title</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-106-1</td>
<td>Time and Moisture Effects - CIB W18/IUFRO 55.02-03 Working Party</td>
<td></td>
</tr>
</tbody>
</table>
MOMENT CONFIGURATION FACTORS FOR SIMPLE BEAMS

by

T D Gerard Canisius
Building Research Establishment
United Kingdom

MEETING TWENTY - FIVE
ÅHUS
SWEDEN
AUGUST 1992
Moment Configuration Factors for Simple Beams

T.D. Gerard Canisius

Building Research Establishment, Bucknall's Lane, Garston,
Watford, WD1 7JR, U.K.

Abstract: In the design of a timber beam, its strength is assumed to be constant along the length and to be equal to the (factored) characteristic strength. This can give rise to an unnecessary increase in the safety level of the member and a consequent reduction in economy. This effect may be somewhat reduced by the application of a Moment Configuration Factor to modify the design formula. In order to find these factors, which depend on the bending moment diagram, it is necessary to determine the strengths of beams under different load and support conditions. This paper presents a theoretical investigation of moment configuration factors for some simple beams.

1Paper presented at CIB-W18 Meeting 25 at Ahus, Sweden, 24-27 August 1992
1 Introduction

In the standard limit state design of a bending member, its strength is assumed to be uniform and equal to the (modified) characteristic strength, and it is made to resist the maximum applicable bending moment. In other words, the maximum bending moment is implicitly considered to act throughout the whole length of a beam of non-uniform strength, with a minimum strength equal to the (modified) characteristic strength. This design procedure can result in unnecessarily high safety levels and consequent losses of economy for certain beams under certain types of loading. This is so because the maximum moment may act only in a small length of the beam, making the probability of failure much lower. For example, a cantilevered beam with a uniformly distributed load will have a higher safety level than a similar simply supported beam with the same maximum moment given rise to by a similar load.

The above mentioned increase in the safety level has been already studied by several researchers [1,2,3]. Riberholt and Madsen[1,2] developed a method for the conversion of European strength data to the strength of (failure causing) defects which were assumed to be Poisson distributed spatially. This distribution of the strengths of defects (where failure was expected to occur) and the distribution of their occurrences were used in the simulation of beams to study this phenomenon. This method involved, among others, the assumption of independence between strengths of defects and also between

2
their occurrences. Czmoch et al. [3] studied this method with correlations assumed to exist. Madsen and Buchanan[4] and Madsen[5] have reported experimental investigations in to this differences in strengths of beams under different load and support conditions.

A research programme is now being carried out to determine the feasibility of applying a 'Moment Configuration Factor' to the design formula to reduce this unnecessary increase in safety and the consequent loss in economy. This factor is defined as the ratio between the strength of a beam under a given load and support conditions and its strength under a constant bending moment acting throughout the length (Fig. 1). The latter simulates the usual design assumption described above. Of course, where the design is based on test results of a component such as a trussed rafter, a moment configuration factor cannot be justified.

This paper presents results from a preliminary investigation carried out as a part of this research programme. It investigates the moment configuration factors for several simple beams, and compares them with available data. The theoretical model uses a finite element analysis with beam properties generated by the multivariate approach of Taylor and Bender[6,7,8]. The results are compared with some results obtained with the Riberholt-Madsen model. The results are discussed also in relation to those presented by Madsen[5].

In using the model of Taylor and Bender, the strength and stiffness prop-
erties are considered to follow first order Markov processes spatially. Only a single initial strength distribution is considered here. analysis. obtained from the

2 The Strength Simulation Methods

2.1 The Taylor-Bender Method

In the method of Taylor and Bender [8] the correlated stiffness and strength properties are assumed to be random and stationary. The material properties, which are based on a test element length L_t, are assumed to be available.

2.1.1 The Spatial and Cross-Correlations

Taylor and Bender considered the elasticity moduli to be serially correlated according to a second order Markov process. (A recent paper [9] considers a third order process). However, in the present implementation, the stiffness correlation is considered to be a first order Markov process. Then the higher lag correlation coefficients, for example ρ_k for lag-k, can be obtained from Eq. 1.

$$\rho_k = \rho_1^k \quad (k > 0) \quad (1)$$

As done by Taylor and Bender, a first order Markov process is used for the strength.

In [8], the determination of cross-correlation coefficients between the strength and the stiffness had been carried out in two ways. First, for beams
of length equal to the test beam length, the correlation had been determined from data. Secondly, for longer beams, the coefficients had been determined with Eq. 2.

\[\rho_{k_{e-2}} = \rho_{k_e} \rho_{0_{e-2}} \] (2)

where \(\rho_{0_{e-2}} \) and \(\rho_{k_{e-2}} \) are, respectively, the lag-0 and lag-k cross-correlations between the strength and stiffness and \(\rho_{k_e} \) is the lag-k autocorrelation coefficient for stiffness. In the following the first order autocorrelation coefficients for stiffness and strength will be, respectively, denoted by \(\rho_e \) and \(\rho_s \). The first order cross-correlation coefficient between them is denoted by \(\rho_c \).

2.1.2 The Method of Simulation

The general simulation procedure is given below. In the case of statically determinate beams, the elasticity modulus does not affect the structural analysis. As shown in [10] for a beam with a constant bending moment, the effect of \(\rho_s \) and \(\rho_c \) on the strengths of determinate beams is negligible and are usually within the margin of error allowed by the convergence criterion. Hence, the generation of strengths is carried out with the use only of \(\rho_s \) while specifying \(\rho_e \) and \(\rho_c \) to be zero.

The marginal cumulative distribution functions of the strength and stiffness, denoted by \(F_s \) and \(F_e \) respectively, are assumed to be available from test data. If a beam to be simulated needs \(n \) number of property elements of length \(L_t \), then, with the stiffness and strength of each property element being
required, the number of unknown properties is $2n$. In the present description it is assumed that the first n variables refer to the stiffness properties and the remainder refers to the strength properties. Let the joint probability distribution function for these $2n$ variables be F_T.

The expected value vector $\{A\}$ and the diagonal of the correlation matrix $[C]$ of F_T are considered to be available from test data. As suggested above, the non-diagonal members of the correlation matrix are found from the Markov behaviour together with the necessary initial values which are assumed available. Also $\rho_{0_{\text{lag}}}$, the lag-0 cross-correlation between the strength and stiffness, is needed. All these coefficients contribute to the correlation matrix $[C]$.

Using the normalised expected value vector $\{\tilde{A}\}$ and the normalised correlation matrix $[\tilde{C}]$ random values are sampled from a multivariable normal distribution. In the present simulations the multivariate random number generator available with the NAG Fortran Library[11] is used. These standardised normal values are then transformed into equivalent values in the respective marginal distributions F_s and F_t. The conversion is carried out so as to provide the same cumulative distribution function value as in the standardised marginal normal distribution.

2.2 Riberholt-Madsen Model

The Riberholt-Madsen model described in [1,2] is an attempt at modelling the strengths of defects in beams using the data for the least strengths of
beams. It assumes that the failure always occurs at a defect (knot). For its use, this model needs the distribution of the occurrences of defects along the member. The distances to the positions of defects are assumed to be uncorrelated, and so are the strengths of adjoining defects. The elastic properties of the members are not considered.

Under the Riberholt-Madsen model, if the distribution of the least strengths of members is given by the cumulative distribution function F_i, then the distribution of the strengths of defects, $F_{d_{RM}}$, is given by

$$F_{d_{RM}} = -\frac{1}{N} \log(1 - F_i + F_i e^{-N})$$ (3)

where N is the mean number of weak zones along the beam test length of L. The weak zones, which are considered to occur as a Poisson process, are assumed to have a constant intensity of λ. Then

$$N = \lambda L$$ (4)

3 Material Properties

3.1 Strength

The strength properties are assumed to be random and stationary. The strength distributions used in the simulations were approximately derived from data available at the Building Research Establishment. A strength distribution (for Canadian Hem-Fir) available in terms of the Weibull parameters of the probability density functions was selected. The strength,
which is in terms of the maximum bending stress, has location, scale and shape parameters of 10N/mm², 40N/mm² and 3, respectively.

respectively, distributions, respectively.

For the Taylor-Bender type simulation, using the assumption of independence between the different property elements, the strength distribution was converted to a marginal distribution. This conversion was facilitated by the fact that the available strengths have Weibull distributions. In the case of such a distribution, if the values are independent, then the minima of different independent samples of the same size will also have a Weibull distribution. This new distribution is available in mathematically closed form[12]. If the original distribution has location, scale and shape parameters μ^*, σ^* and λ^*, respectively, then the minima of samples of size n have a Weibull distribution with the same location and shape parameters and a new scale parameter of $\sigma^*/n^{1/\lambda^*}$. Therefore, if the distribution of minima is available, then the original distribution can be obtained from the inverse process.

In carrying out the above inverse process, the number of elements (sampling size) was obtained by assuming property element lengths of 400, 600 and 800mm. Then, assuming a test beam length of 4m, n was determined as 10, 7 and 5, respectively. The above conversion is only an approximate one as it contains many assumptions. The intention was only to obtain a somewhat realistic approximate distribution for the purpose of this study.

It should be noted that although the above process starts with the same
strength distribution, the derived marginal distributions for different property element lengths are different because of the different numbers of elements within a given test beam length. However, although the expected values and the standard deviations in the derived distributions were different, their coefficients of variation (CAV) remained almost the same at approximately 0.31.

For the Riberholt-Madsen simulation the previously given formula (Eq. 3) was used to obtain the strengths of defects. Three values, viz. 4, 2 and 1.33, were used as the intensity of defects per metre length. The test beam length was assumed to be 4m.

3.2 Correlation Coefficients

In the case of the Taylor-Bender model, the autocorrelation ρ_s between the property elements were varied between zero and unity. It should be noted that due to the differences in element lengths, the different elements will have different lengthwise correlations even when the correlation coefficients, which are based on the differences between the element numbers, are the same. The longer ones, while having constant properties for longer lengths, will also have correlations which extend to larger distances. Hence, the obtained results for different element lengths under a given ρ_s do not refer to the same real lengthwise correlations, but to higher correlations as the element length increases.
4 The Finite Element Model and the Simulation of Beams

A beam finite element programme was written for the purpose of structural analysis. It consisted of a simple cubic beam element. Each of the finite elements was assumed to have constant material and strength properties. Only linear elastic analyses were carried out. The use of a finite element programme makes the analysis of statically determinate beams easier, while it is necessary for the efficient simulation of indeterminate beams with lengthwise variation of elasticity modulus.

For Taylor-Bender type of simulation, the properties were generated from the multivariate distribution. The finite element properties corresponded to those of the property element that contained it (Fig. 2). The lengths of the finite elements and the property elements were, generally, different. If a finite element had parts of it in two adjoining property elements, a weighted mean value of the properties was used. This was determined according to the amounts of the finite element corresponding to each property element.

In the case of analysis using the Riberholt-Madsen model, the generated positions and strengths of defects can be allocated to the finite elements that correspond to their positions. Finite elements which do not contain any defects can be provided with very high strengths so as to prevent failure at such locations. The results presented here were not obtained with such a procedure, but by including the analytically determined bending moment
diagrams in the computer code.

5 The Definition of the Strength of a Beam

In this paper, the definition presented in Czoch et al.[3] is used in determining the strength of a beam. It is defined as the maximum bending moment (stress) that can be applied at the position of maximum moment (stress) without inducing failure at any position along the beam. Its determination is briefly described below.

Consider the load effect function \(S(x) \), which in the present case is the applied bending moment or stress. Here \(x \) is the length coordinate of the beam. \(S(x) \) is expressed in terms of a non-dimensional function \(\sigma(x) \) and a parameter \(Z \), which is the maximum load effect for the given load, as

\[
S(x) = Z \sigma(x)
\]

(5)

\(Z \) and \(S \) are in the units of the bending strength \(R(x) \) of the beam cross-section. Then the load carrying capacity of the beam is defined as

\[
Z = \min \left[\frac{R(x)}{\sigma(x)} \right] \quad \text{for all } x
\]

(6)

In the analysis of Czoch et al. this took the discreet form

\[
Z = \min \left[\frac{R_1}{\sigma(x_1)}, \ldots, \frac{R_i}{\sigma(x_i)}, \ldots, \frac{R_N}{\sigma(x_N)} \right]
\]

(7)

where \(N \) is the random number of weak zones (defects) in the given beam length, and \(x_i \) and \(R_i \) are, respectively, the position of the \(i \)th weak zone and
its strength. For the finite element analysis, \(N \) refers to the number of finite elements and \(i \) to the finite element number. (The forces within each finite element are constant due to the displacement shape functions used). Expressed differently, \(Z \) is the maximum bending moment(stress) at the position of maximum moment(stress), providing a minimum strength/moment(stress) ratio of unity within the whole beam length.

6 Results for Statically Determinate Beams

The structures and loads considered in the present study are shown in Fig. 3. Among them, the beam with a constant bending moment acts as the basic case for the calculation of the Moment Configuration Factors (MCFs). All cases were analysed with a beam length of 3.6m. Additionally, the uniform moment and central concentrated load cases were analysed with a beam length of 7.2m. Unless mentioned otherwise, the presented results refer to those obtained with the Taylor-Bender method of property simulation.

The results were obtained with a convergence of at least 1% in both the fifth percentile and the mean. This was generally achieved with 4000 simulations.

6.1 MCFs for Different Moment Configurations (3.6m Beam)

Figs. 4 and 5 present the moment configuration factors, on both the mean (expected value) and the fifth percentile for the above structures, as a func-
tion of the strength autocorrelation ρ_s. Figs. ?? Here it should be noted that the property element length is larger than the finite element length.

In Fig. 4, which is for MCFs on the expected values with the 400mm element, the different levels of the curves for different cases indicate the effect of each bending moment diagram. Factors for all of them are nearly constant within low ρ_s values, while they tend to unity as ρ_s reaches 1. This implies a larger gradient in the drop of MCFs for cases with higher factors, for example the cantilever beam. Also, the lowering of values for the higher factor cases begins earlier (i.e. under lower ρ_s) than for low MCF cases. This indicates the possibility of using constant factors on the mean for low ρ_s values, while being mindful that its effect needs to be considered earlier for higher factor cases than for the lower factor cases.

Fig. 5 shows the similar details as for Fig. 4, but now with respect to the fifth percentiles. While the earlier comments are still valid, the faster drops in the MCF values now generally occur much later, i.e. at much higher ρ_s levels.

6.1.1 Factors Derived with Different Property Elements

The variations of the Moment Configuration Factors with respect to ρ_s for different structure/load cases are shown in Fig. 6 to 13. In each of the figures, the results from all property elements, with respect to both the expected value and the fifth percentile, are shown. 7.2m beam results are provided
only with respect to the central concentrated load case.

Central Concentrated Load: Fig. 6, which is for the central concentrated load on the 3.6m beam, shows that for lower ρ_s values the MCF's on the mean are higher than those on the fifth percentile using the same element. This is reversed as ρ_s approaches unity. The use of a 400mm property element implies a lesser correlation distance-wise and also a lesser length with constant properties. Therefore it is much closer to a case of total randomness than the use of 600mm and 800mm elements. Hence its factors can be expected to be higher than those for the longer elements with larger effective correlations.

Also provided in the figure is the result obtained as the factor on the fifth percentile using the Riberholt-Madsen (R-M) model with an analytically determined bending moment diagram and 2000 simulations. (A summary of these results is provided in Table 1). This R-M model value is large compared to the present results and is very close to the MCF on the mean for 400mm elements. This is to be expected as the Riberholt-Madsen model results have been obtained with no correlation assumed to exist between the properties, whereas the consideration of correlations reduces the factors as suggested by the results presented in Table 2 of [3]. The MCF's calculated on the basis of those results on a 3.0m beam are presented in Table 2. In the table NZSTR and NZDLT, respectively, refer to the correlation parameters of the strengths of defects and of the distances to their occurrences. Higher
<table>
<thead>
<tr>
<th>Defect Intensity per metre</th>
<th>1.33</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam Length L (m)</td>
<td>3.6</td>
<td>7.2</td>
<td>3.6</td>
</tr>
<tr>
<td>Central Conc. 1d.</td>
<td>1.41</td>
<td>1.46</td>
<td>1.39</td>
</tr>
<tr>
<td>UDL</td>
<td>1.21</td>
<td>1.22</td>
<td>1.21</td>
</tr>
<tr>
<td>0.25L Overhang</td>
<td>-</td>
<td>-</td>
<td>1.39</td>
</tr>
<tr>
<td>0.33L Overhang</td>
<td>-</td>
<td>-</td>
<td>1.82</td>
</tr>
<tr>
<td>Cantilever</td>
<td>-</td>
<td>-</td>
<td>1.68</td>
</tr>
</tbody>
</table>

Table 1: MCF with Riberholt-Madsen Model. 2000 Simulations.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NZSTR NZDLT</td>
<td>(R_u/R_t)</td>
<td>(R_u/R_t)</td>
<td>(R_u/R_t)</td>
</tr>
<tr>
<td>0 0</td>
<td>1.31</td>
<td>1.34</td>
<td>1.34</td>
</tr>
<tr>
<td>0 2</td>
<td>1.33</td>
<td>1.35</td>
<td>1.34</td>
</tr>
<tr>
<td>2 0</td>
<td>1.31</td>
<td>1.40</td>
<td>1.28</td>
</tr>
<tr>
<td>2 2</td>
<td>1.31</td>
<td>1.38</td>
<td>1.30</td>
</tr>
<tr>
<td>8 8</td>
<td>1.18</td>
<td>1.40</td>
<td>1.19</td>
</tr>
</tbody>
</table>

Table 2: MCF from results of Czmoch *et al.* 2000 simulations

Parameter values indicate higher correlations. \(R_u/R_t \) is the MCF using the 'correct' properties, while \(R_u/R_t \) is the MCF obtained from the Riberholt-Madsen model. There, the 'correct' results are smaller than the R-M model results for all property sets, even when no correlations are present.

It is also interesting to note that a value of 1.40, very close to the R-M value of 1.39 on the fifth percentile, had been reported by Johnson[13], for a material with a lower limit on strength of zero when the CAV of both beam
strengths is approximately 0.2. This had been derived on the basis of the brittle fracture theory with the assumption of total statistical independence between properties. This is the value reported also by Madsen [5] in his Table 12.33. The values on the mean provided by Johnson range from zero for CAV of zero to approximately 1.7 for CAV of 0.5, and are applicable to all percentiles in the absence of a location parameter.

The MCFs calculated on the mean are seen to be higher than those on the fifth percentile for lower ρ_s values. In the graph the factors for the 800mm element are slightly higher than those for the 600mm element. This may be so because an element length of 800mm can be too large when compared to a beam length of 3.6m. This is somewhat confirmed by the fact that this did not occur with the 7.2m beam results shown in Fig. 7. In this case the results for 600mm and 800mm on the fifth percentile show different relative sizes depending on the value of ρ_s, and so still casts doubts on the appropriateness of the latter size.

In the case of the results presented in Fig 7 for 7.2m beam, it can be seen that the MCFs have now increased due to the lesser effects of the correlation coefficients, and the drift towards independence, as the length increases. The MCF on mean value has now increased above 1.45 and is approaching the value of 1.52 for CAV of approximately 0.30 of Johnson, although it may not be reached in reality.

A comparison of MCFs for 3.6 and 7.2m beams under different property
element lengths can be made with Figs. 8 and 9 which are for 400mm and 600mm elements, respectively. All these indicate that the MCFs increase with the beam lengths because of the decrease in the importance of the spatial correlations.

Other Moment Configurations: Some results with respect to other moment configurations on the 3.6m beam are presented in Figs. 10 to 13. All these show trends similar to those discussed earlier with respect to the central concentrated load case.

The results on the fifth percentile obtained with the R-M model are also shown in the above figures. In the case of the uniformly distributed load on the simply supported beam (Fig. 10), the value of 1.21 is approximately half-way between the MCFs on the mean and fifth percentile with 400mm elements. As shown also by other structures, the relative positions of the R-M values are dependent upon the moment configuration. For the simply supported beam with a 0.9m overhang (Fig. 11), the R-M value is again half-way between the factors on the fifth percentile and the mean of the 400mm element simulations. In contrast to this is the factor presented for the beam with the 1.17m overhang (Fig. 12) where there is a high hogging moment peak and a small mid-span moment. The R-M factor of 1.82 was obtained with an overhang of 1.19m and this cannot be the reason for its very high value compared to those obtained with the present simulation. In the case
of the cantilever beam (Fig. 13), the R-M value is just above the MCF on the mean value based on the 400mm element. It is interesting to note that the value quoted by Madsen[5] for the beam with UDL is 1.20, although it may not have any relation to the values presented here.

6.2 Length Effect on the MCF

The present model shows a very slight length effect on the Moment Configuration Factors due to the correlations that exist between the strengths of property elements. The length effect from the R-M model is negligible. None is evident for simply supported beams from the results of Madsen[5] as the length effects on the strengths of different simply supported beams are said to be the same. The assumption of uncorrelated properties used in the brittle fracture theory does not give rise to a length effect on the MCF.

The length effect on the MCFs, shown by the present model, is shown in Fig. 14. The effect of doubling the length is negligible with the 400mm element, except under high ρ_s values (except near unity). There is an increase of approximately 10% in the MCF for 7.2m beam, when compared to that for the 3.6m beam, under the 600mm element. These indicate that the length effect can be neglected under low correlations. In the case of higher correlations their effect may be neglected without adverse effects on safety, provided that the basic MCFs are determined for shorter lengths where the effect of correlation is more and the MCFs higher than for a longer beam. Then the use of the lower values also for the longer beams will not result in
a decrease of safety.

6.3 Statically Indeterminate Beams

No results with regard to statically indeterminate beams are presented in this paper. However, in the light of the results quoted by Madsen[5], it is felt to be relevant to speculate on the following matter.

As a result of his tests, Madsen cited the observation that the length effect factor for clamped beams is approximately one-third of that of a simply supported beam. This is with reference to the strength and not the Moment Configuration Factor. In the apparent absence of a conversion factor for support conditions, as the brittle fracture theory does not consider the redundancy, this implies that the ratio between the strength of a clamped beam and a simply supported beam will increase with the increase in length, and also will decrease with the decrease in length. Hence it is interesting to know how a single ratio of 1.4 between the uniform moment and the concentrated load cases in Table 12.33 of [5] can be used.

Let the above value of one-third be with respect to the reduction and not the factor itself. If the apparent length effect factor of 0.86 in Table 12.34 of [5] is used for simply supported beams, then the length effect factor for clamped conditions should be approximately 0.96. Then the ratio of 1.4 between the clamped concentrated load case and the uniform moment case will have an increased value of 1.56 on doubling the length and a decreased value of 1.25 on halving the length from a reference value. That is, an
additional factor of 1.12, which increases or decreases the overall moment configuration factor, exists. Therefore, if a value such as 1.4 is given, it seems reasonable to base it on a reference length, so the factors for other lengths can be worked out.

7 Conclusion

A study of moment configuration factors (MCFs) for simple beams were presented in this paper. Several statically determinate beams were computer simulated while considering the spatial correlation of the strength properties. The method of Taylor and Bender, based on different property element lengths, was used in generating the beam properties. Also some results obtained with the Riberholt-Madsen model was presented.

The results obtained by the use of the present model showed that for a given beam length, the MCF values are almost constant under small correlations. The MCFs on the fifth percentiles were smaller than those on the expected values when the correlation coefficient ρ_z was smaller. The presence of correlation, expressed in terms of the property element length, provided lower MCFs than those obtained by methods based on the assumption of statistical independence. occur, than

The length effect on the MCFs for a simply supported beam with a central concentrated load was seen to be negligible under small correlations. Increased correlations in terms of the property element length, only increased
the MCF values when the beam length was doubled. Hence if no length effect is to be considered, and correlations are to be present, then it is advisable to base the factors on a small beam length where the latter can be important. Otherwise, lower levels of safety may result.

As the length effects on the strengths of clamped beams are said to be different from that of a simply supported beam, also the MCFs for them should vary with the beam length. Therefore, it is advisable to base these also on a reference beam length. Otherwise, there will be a loss of economy in the case of longer beams and a higher risk of failure in the case of beams shorter than the reference length.

It is expected to carry out further theoretical studies with respect to these, but at least some of them should be verified experimentally for further confidence in results.

8 Acknowledgment

The author wishes to acknowledge the support and encouragement provided by Mr. A.R. Fewell towards this research.

References

Figure Captions

Fig. 1: Strengths of a Beam under a given Bending Moment Profile.

Fig. 2: The Allocation of Generated Properties to the Beam Finite Elements.

Fig. 3: The Statically Determinate Beams.

Fig. 4: The Statically Determinate Beams. MCFs on the Mean for 400mm Elements: Different structures, 3.6m long.

Fig. 5: MCFs on the 5th Percentile for 400mm Elements: Different structures, 3.6m long.

Fig. 6: Simply Supported 3.6m Beam with Central Concentrated Load: MCFs under Different Property Element Lengths.

Fig. 7: Simply Supported 7.2m Beam with Central Concentrated Load: MCFs under Different Property Element Lengths.

Fig. 8: 3.6m and 7.2m Simply Supported Beams with Central Concentrated Load: MCFs under 400mm Property Element.
Fig. 9: 3.6m and 7.2m Simply Supported Beams with Central Concentrated Load: MCFs under 600mm Property Element.

Fig. 10: Simply Supported 3.6m Beam with Uniformly Distributed Load: MCFs under Different Property Element Lengths.

Fig. 11: Simply Supported 3.6m Beam with 0.9m Overhang and Uniformly Distributed Load: MCFs under Different Property Element Lengths.

Fig. 12: Simply Supported 3.6m Beam with 1.17m Overhang and Uniformly Distributed Load: MCFs under Different Property Element Lengths.

Fig. 13: 3.6m Cantilever with Uniformly Distributed Load: MCFs under Different Property Element Lengths.

Fig. 14: 3.6m and 7.2m Simply Supported Beams with Central Concentrated Load: Length Effect on MCF.
Fig. 1
Simulated Property Elements

Beam Length

Finite Elements

A, B = 1 D, E = 2 G = 3 I, J = 4
C = f(1,2) F = f(2,3) H = f(3,4) K = f(4,5)

Finite Element Property Allocation

Fig. 2
MCFs on the Mean: 3.6m Beam

400mm Property Elements

Fig. 4

M.C.F.

Strength Autocorr. Coeff. 's'

Conc. Ld.
UDL
0.9m Overh.
1.17m Overh.
Cantilever
1/3 Pt. Ld.
MCFs on the 5th Perc.: 3.6m Beam

400mm Property Elements

Fig. 5

M.C.F.

Conc. Ld.

UDL

0.9m Overh.

1.17m Overh.

Cantilever

1/3 Pt. Ld.
MCFs for 3.6m Beam: Effect of Property Element

Central Concentrated Load

Fig. 6

M.C.F.

\[R-M = 1.39 \]
MCFs for 7.2m Beam: Effect of Property Element

Central Conc. Load on SS Beam

Fig. 7
MCFs for 3.6m and 7.2m Beams

Central Conc. Load. 400mm Elements

Fig. 8
MCFs for 3.6 & 7.2m SS Beams

Central Conc. Load. 600mm Elements

Fig. 9
MCFs for 3.6m Beam: Effect of Property Element

UDL on SS Beam

Fig. 10

M.C.F.

R·M = 1.21

Strength Autocorr. Coeff. 's'
MCFs for 3.6m Beam: Effect of Property Element

S.S. Beam with UDL and 0.9m Overhang

Fig. 11

M.C.F.

<table>
<thead>
<tr>
<th></th>
<th>400m (Mean)</th>
<th>600mm (Mean)</th>
<th>400mm (5th)</th>
<th>600mm (5th)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.40</td>
<td>1.35</td>
<td>1.30</td>
<td>1.30</td>
</tr>
<tr>
<td>0.2</td>
<td>1.35</td>
<td>1.30</td>
<td>1.25</td>
<td>1.25</td>
</tr>
<tr>
<td>0.4</td>
<td>1.30</td>
<td>1.25</td>
<td>1.20</td>
<td>1.20</td>
</tr>
<tr>
<td>0.6</td>
<td>1.25</td>
<td>1.20</td>
<td>1.15</td>
<td>1.15</td>
</tr>
<tr>
<td>0.8</td>
<td>1.20</td>
<td>1.15</td>
<td>1.10</td>
<td>1.10</td>
</tr>
<tr>
<td>1</td>
<td>1.15</td>
<td>1.10</td>
<td>1.05</td>
<td>1.05</td>
</tr>
</tbody>
</table>

R-M = 1.29

Strength Autocorr. Coeff. 's'
MCFs for 3.6m Beam: Effect of Property Element

S.S. Beam with UDL and 1.17m Overhang

Fig. 12
MCFs for 3.6m Beam: Effect of Property Element

Cantilever with UDL

Fig. 13

M.C.F.

Strength Autocorr. Coeff. 's'

R-M=1.68

400m (Mean)

600mm (Mean)

400mm (5th)

600mm (5th)
Length Effect on MCF
Concentrated Load on SS Beam

Fig. 14

MCF Ratio

Ratio = MCF for 7.2/MCF for 3.6m
INTERNATIONAL COUNCIL FOR BUILDING RESEARCH STUDIES AND DOCUMENTATION

WORKING COMMISSION W18 - TIMBER STRUCTURES

BEARING CAPACITY OF TIMBER

by

U Korin
National Building Research Institute
Israel

MEETING TWENTY - FIVE
ÄHUS
SWEDEN
AUGUST 1992
BEARING CAPACITY OF TIMBER

U. Korin*

1. Scope
Some preliminary research work, concerning the behaviour of timber in compression perpendicular to grain (bearing capacity of timber) was presented by the author at the Lisbon 1990 meeting (1).

The investigation of the behaviour of timber in compression perpendicular to grain has since been continued.

This paper reports the data obtained from the extended investigation.

2. The investigation parameters
Types of timber
Whitewood, North-East U.S.A.; Redwood, Finland.

Cross-section of lumber after planning

<table>
<thead>
<tr>
<th></th>
<th>Whitewood</th>
<th>Redwood</th>
</tr>
</thead>
<tbody>
<tr>
<td>2"x4"</td>
<td>41x90 mm</td>
<td>46x117 mm</td>
</tr>
<tr>
<td>2"x6"</td>
<td>41x138 mm</td>
<td>45x142 mm</td>
</tr>
<tr>
<td>2"x8"</td>
<td>41x190 mm</td>
<td>45x185 mm</td>
</tr>
</tbody>
</table>

3. Tests performed
a. Mechanical and physical tests.
b. ASTM D143 "Compression perpendicular to grain of small clear specimens".
c. Bearing capacity tests using loading strips of different widths. The loading was performed at end sector and central sector of the loaded specimens.

The study has not yet been completed, and the final conclusions will be submitted at a later stage.

* Head, Testing Division, National Building Research Institute, Technion, Haifa, Israel.
INTERNATIONAL COUNCIL FOR BUILDING RESEARCH STUDIES AND DOCUMENTATION

WORKING COMMISSION W18 - TIMBER STRUCTURES

ON DESIGN CRITERIA FOR TENSION PERPENDICULAR TO GRAIN

by

H Petersson
Lund Institute of Technology
Sweden

MEETING TWENTY - FIVE
ÅHUS
SWEDEN
AUGUST 1992
ON DESIGN CRITERIA FOR TENSION PERPENDICULAR TO GRAIN

Hans Petersson
Division of Structural Mechanics
Lund Institute of Technology
Sweden

1. INTRODUCTION

For notched beams, curved beams and beams with openings, cracking and tension perpendicular to the grain is an important matter in design. A standard procedure is to calculate the tensile stresses caused by the loads by using linear elastic assumptions. Normally some formula is used in a hand calculation for the determination of the load effects or, alternatively, a finite element analysis is performed. The stress obtained is compared with some allowable stress value, i.e. some form of stress criterion is used. We may write that

\[
\text{calculated stress value} \leq f_{\text{material}}
\]

(1)

This is a practical approach as long as the material parameter \(f_{\text{material}} \) can be considered as independent of the size of the structure. However, in a large number of experiments on different types of wooden structures the results clearly indicate a strong influence of size effects.

From the proposal for Eurocode No. 5 [1] the basic rule for ultimate limit state and tension perpendicular to the grain is of special interest for this paper. For solid timber

\[
\sigma_{t,90,d} \leq f_{t,90,d}
\]

(2)

and for glued laminated timber

\[
\sigma_{t,90,d} \leq f_{t,90,d} \left(\frac{V_0}{V} \right)^{0.2}
\]

(3)

where \(V \) in m\(^3\) is assumed to be an equivalent stressed volume and \(V_0 \) a reference volume of 0.01 m\(^3\).

A background for formula (3) and size effects may be found in [2]. If the size of \(V \) can be defined by the length \(\ell \), the depth \(h \) and the width \(b \), then the size effect is
\[
\left(\frac{V_0}{V} \right)^{0.2} = \left(\frac{t_0}{t} \right)^{0.2} \left(\frac{h_0}{h} \right)^{0.2} \left(\frac{b_0}{b} \right)^{0.2}
\] (4)

and relates to a Weibull model. This model results in failure when the "weakest link" is broken, and does not distinguish between cases where the maximum load is reached, and cases where the load-bearing capacity is substantially larger than (3) indicates due to stress redistributions. Further, formula (3) does not work well in case of stress concentrations [3].

It may be questioned whether the stress criterion discussed above should not be replaced by a fracture mechanics criterion in combination with a proper selection of a crack surface. The benefit of such an approach would be a better prediction of the load-bearing capacity of the structure; compare [4] for notched beams. Another advantage of a fracture mechanics criterion combined with a fracture analysis is that it may offer a tool to predict what happens when the predicted load is obtained. The question is whether there will be a sudden collapse with a running crack, or if the loading can be increased further due to stable crack propagation. A design method that can give an answer to this would be valuable for the design engineer if it is not too complex to use.

The consequences of changing from the present proposal according to formula (2) or (3) to a fracture mechanics approach could for a typical example of crack opening perpendicular to the grain, say for a curved beam, result in

\[
\sigma_{t,90,d} \leq f_{\text{material}} \cdot k_t \cdot k_h \cdot k_b
\] (5)

where

\[
k_t = \begin{cases}
1.0 & \text{stable crack growth} \\
0.5 & \text{risk of a running crack with sudden loss of load-bearing capacity}
\end{cases}
\] (6a)

\[
k_h = \sqrt{\frac{h_0}{h}}
\] (6b)

\[
k_b = \begin{cases}
1.0 & \text{no risk of side cracks} \\
\sqrt{\frac{b_c}{b}} & \text{risk of side cracks (remaining uncracked width is } b_c)
\end{cases}
\] (6c)

and

\[
f_{\text{material}} = \text{constant} \cdot f_{t,90,d}
\] (7)
Some theoretical and experimental support for the validity of the design rule indicated by (5)–(7) will be presented in this paper, but further research is needed in order to determine proper values of k_1, k_2, and k_B.

2. THEORY

Study the two-dimensional structure in Figure 1 with a set of reference loads $\{P\}$.

![Diagram showing a two-dimensional body with a crack and loads P_1, P_2, P_3, P_4 at different points, with displacements u_1, u_2, u_3, u_4.](image)

Figure 1 Two-dimensional body with a crack

Assume that the material is linear elastic and denote the associated displacements with $\{u\}$, where

$$
\{P\} = \begin{bmatrix} P_1 \\ P_2 \\ \vdots \\ P_n \end{bmatrix} \quad \{u\} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}
$$

Denote the crack length with a and the fracture energy per unit length with $b_c G_c$, where G_c is a material parameter. Then assume that the loads are increased proportionally, i.e. the actual loads are $\alpha \{P\}$ where α is gradually increased up to the value α_c, corresponding to stable or unstable crack growth.

The displacements $\{u\}$ can be expressed by the flexibility relation

$$
\{u\} = [f] \{P\}
$$

where the flexibility matrix $[f]$ is square and symmetric. The internal energy for linear elastic materials is
\[W = \frac{1}{2} \alpha^2 \{ P \}^T \{ f \} \{ P \} \]

(10)

Let us now assume that the reference load \{ P \} and the load multiplication factor \(\alpha \) are kept constant with respect to a variation of the crack length a. This gives us

\[\frac{\partial W}{\partial \alpha} = \frac{1}{2} \alpha^2 \{ P \}^T \left[\frac{\partial f}{\partial \alpha} \right] \{ P \} \]

(11)

For the critical value of \(\alpha = \alpha_c \) we obtain

\[\frac{1}{2} \alpha_c^2 \{ P \}^T \left[\frac{\partial f}{\partial \alpha} \right] \{ P \} = b_c G_c \]

(12)

or

\[\alpha_c = \sqrt{\frac{2b_c G_c}{\{ P \}^T \left[\frac{\partial f}{\partial \alpha} \right] \{ P \}}} \]

(13)

From a hand calculation point of view it is of special interest to study cases where the matrix \{ f \} is diagonal and where each component of \{ f \} can be expressed simply as a function of the crack length a.

Let us assume that \{ f \} is diagonal with the diagonal elements, \(f_1, f_2, \ldots, f_n \), which yields

\[\alpha_c = \sqrt{\frac{2b_c G_c}{\sum_{i=1}^{n} \frac{\partial f}{\partial \alpha} (P_i)^2}} \]

(14)

Let us next study some simple beam structures with an opening crack, say a simply supported beam or the cantilever beam shown in Figure 2.

![Figure 2](image)

Figure 2 Cantilever beam with a crack
It is assumed that we have some reference loading and a load multiplication factor α that is common to all loads. The sectional forces will be functions of the current crack length a and the notations used are shown in Figure 3.

![Figure 3](image)

Figure 3 Sectional forces close to the crack tip for $\alpha=1$ (h_1 and h_2 denote distances between gravity axes).

In order to simplify the following derivations it is assumed that the cross sections remain undeformed. Including energy contributions according to ordinary beam theory only, we may approximately write

$$\alpha_c = \sqrt{\frac{2 b_c G_c}{\frac{\beta V^2}{GA_1} + \frac{\beta V^2}{GA_2} - \frac{\beta V^2}{GA} + \frac{M^2}{EI_1} + \frac{M^2}{EI_2} - \frac{M^2}{EI} + \frac{N^2}{EA_1} + \frac{N^2}{EA_2} - \frac{N^2}{EA}}}$$

(15)

Since both $b_c G_c$ and the sectional forces in a general case are functions of the crack length a, also the critical load factor α_c is a function of a.

If all the sectional parameters (GA_1/β, EI_1, EA_1, etc.) are constant and there are no external loads close to the crack tip (for $x=a$) we may write

$$\frac{d\alpha_c}{da} = -\frac{\alpha_c}{2b_c G_c} \left[\frac{M_1 V_1}{EI_1} + \frac{M_2 V_2}{EI_2} - \frac{M V}{EI}\right] + \frac{\alpha_c}{2b_c G_c} \frac{d}{da}(b_c G_c)$$

(16a)

For $\alpha=\alpha_c$ the risk of a running crack is avoided if

$$\frac{d}{da}(b_c G_c) \geq (\alpha_c)^2 \left[\frac{M_1 V_1}{EI_1} + \frac{M_2 V_2}{EI_2} - \frac{M V}{EI}\right]$$

(16b)

This means that not only the value of $b_c G_c$ is of importance but also the variation of this quantity along the crack path expressed by derivative $\frac{d}{da}(b_c G_c)$.
3. APPLICATION EXAMPLES

As an application of Eqs. (15) and (16) we may choose the end—notched beam shown in Figure 4.

![Notched beam with shear force](image)

Figure 4 Notched beam with shear force

With the notation \(V_c = \alpha_c V_0 \) and observing that \(V_2 = N_1 = N_2 = N = 0 \), \(M_2 = 0 \), \(V_1 = V = V_0 \) and \(M_1 = M = \alpha V_0 \) we get from (15)

\[
V_c = \frac{2b_c G_c}{\beta A_1 - \frac{1}{A}} + \frac{a^2}{E} \left(\frac{1}{I_1} - \frac{1}{I} \right)
\]

(17)

This formula is not in full agreement with the results presented in references (3)–(5) as it is based on somewhat different assumptions.

Use of Eq. (16a) with \(\alpha_c = V_c / V_0 \) yields

\[
\frac{d\alpha_c}{da} = \frac{\alpha_c}{2b_c G_c} \left[\frac{d}{da} (b_c G_c) - V_c^2 \frac{a}{EI_1} (1 - \frac{I_1}{I}) \right]
\]

(18)

This means that the fracture energy parameter must be increasing, i.e.

\[
\frac{d}{da} (b_c G_c) > V_c^2 \frac{a}{EI_1} (1 - \frac{I_1}{I})
\]

(19)

if a running crack is to be avoided. An end—notched beam with a shear force is thus from a structural safety point of view a dangerous case.
For the beam in Figure 5 with an end-moment M_0 the critical load $M_c = \alpha_c M_0$ is

$$M_c = \frac{2b_c G_c}{\frac{1}{1} \left(\frac{1}{1} - \frac{1}{1} \right)}$$

(20)

and in this case it is sufficient that

$$\frac{d}{da}(b_c G_c) > 0$$

(21)

for stable crack growth. This is a much more favourable situation than the case of the shear loading in Figure 4.

Due to non-structural reasons, notches are sometimes poorly located as in Figure 6. The critical load $V_c = \alpha_c V_0$ can be calculated by Eq. (15) with $V = V_0$ and $M = (\ell - a) V_0$ resulting in a larger critical value than for the problem in Figure 4 if $\ell > a$. However, the most interesting observation is that the requirement for stable crack growth is much more advantageous for the central notch,

$$\frac{d}{da}(b_c G_c) + V_c^2 \frac{a}{E l_1} (1 - \frac{I}{I}) > 0$$

(22)
This means that a central notch normally gives a more stable crack growth than an end-notch.

Tension test

In the application examples treated up to now, deformations perpendicular to the grain due to tension have been neglected. These deformations must obviously be included for the test specimen for glued laminated timber shown in Figure 7.

![Diagram](image)

Figure 7 Test specimen for tension perpendicular to grain

The basic assumption is that the failure will occur due to one or several defects initiating a major cracking process. The problem is that we do not know the size of the initial cracks. It is, however, from a fracture mechanics point of view reasonable to start from an elementary case referring to a small value of \(h = h_0 \) (say, for conifer, about 5 mm). We assume for this elementary case that the stress is applied first, then the two opposite loaded sides are clamped and finally a crack is introduced. For this case we can find the critical stress value

\[
\sigma_c = \frac{2G_c E_I}{h_0}
\]

(23)

where \(E_I \) takes the orthotropic behaviour of wood into account. A theoretical value of \(E_I \) for conifer is about double the value for the elasticity modulus \(E_{90} \) perpendicular to the grain. In order to be conservative (risk of load crack instability) \(E_I \) will be replaced in the following by \(E_{90} \)
and G_c by $\frac{b_c}{b} G_c$. The last change is a simple engineering modification to facilitate accounting for a major initial crack or a curved crack path. For $h=h_0$ we then arrive at

$$
\sigma_c \geq 2 \frac{b_c}{b} \frac{G_c}{h_0} = f_{t0}
$$

(24)

Now, by assuming that the specimen in Figure 7 consists of h/h_0 "links" in a Weibull model, we may write, see (3) and reference [8],

$$
f_t = f_{t0} \left(\frac{V_0}{V} \right)^{\frac{1}{\eta}}
$$

(25)

where a value of $\eta=6.0$ is not unrealistic [8], although (3) indicates that η should be set at 5.0. We choose here the value $\eta=6.0$ considering the additional assumption that for the volume

$$
V = \frac{b}{h} \ell h^3
$$

(26)

the ratios b/h and ℓ/h should have no influence on the size effect. This yields with $\eta=6$ that

$$
f_t = f_{t0} \left(\frac{h_0}{h} \right)^{\frac{3}{\eta}} = f_{t0} \left(\frac{h_0}{h} \right)^{\frac{3}{6}}
$$

(27)

Substitution of f_{t0} according to (24) into (27) and conservatively dropping the unequal sign yields

$$
\sigma_c = \frac{b_c}{b} \frac{G_c}{h_0} = f_t
$$

(28)

Curved beam

The final example refers to a curved beam with constant depth, where the curved part is loaded by a constant moment $M=\Phi \bar{l}$, see Figure 8. The mid-curvature is denoted by R and the cross section has the area bh. Denoting the maximum stress perpendicular to the grain by σ_c we get approximately

$$
\sigma_c \approx 1.5 \frac{h}{R} \frac{M_c}{b h^2}
$$

(29)
Figure 8 Curved beam with constant depth

from a simple equilibrium study. It is then assumed that the stress perpendicular to the grain has a parabolic variation over the depth h, which corresponds to an equivalent length of $8h/15$ from an energy point of view. Assuming that the crack occurs where the stress in the fibre direction is zero we obtain according to Eq. (28) that

$$\sigma_c = \frac{b}{3b} \frac{G_c E_{90}}{h}$$

(30)

Eqs. (29) and (30) then yield

$$M_c = bhR \frac{b}{3b} \frac{G_c E_{90}}{h}$$

(31)

We again return to Eq. (30), which can be written as

$$\sigma_c = \sqrt{3.75 \frac{b}{b} \frac{G_c E_{90}}{h}}$$

(32)

If we denote the average stress for the uniaxial tension test according to Eq. (28) with f_t we obtain for the curved beam

$$\sigma_c = 1.875 f_t = 1.37 f_t$$

(33)
5. EXPERIMENTAL VERIFICATION

The theory and examples treated in the previous two sections need to be correlated with experimental results. For end-notched beams references are made to the investigation reported in [3] to [5], and the relevance of a fracture mechanics approach for analysis of this type of notched structures is confirmed.

In comparison of theoretical and experimental results we need basic material parameters such as the elasticity modulus and the fracture energy for tension perpendicular to grain. Based on results shown in Figure 9 the relation

$$G_c = 1.04 \rho - 146$$

has been suggested for the mean value of the fracture energy per unit area [Nm/m2 or J/m2] where ρ is the density in kg/m3, see [6]. Dealing with conifer, a reasonable mean value of ρ would be 450 kg/m3, if a single value has to be chosen. This density corresponds to

$$G_c \approx 320 \text{ J/m}^2$$

The value chosen for the elasticity modulus is partly based on the values reported in [7] for glued laminated timber of Swedish spruce (class L40 and b=0.115 m)

$$E_{90} = 330 \text{ MPa}$$

According to the European standard draft for characteristic values of mechanical properties this value should be increased to 400 MPa. Nevertheless, the values according to (35) and (36) will be the basis for the following comparison between theoretical and experimental results.
Figure 9. Fracture energy versus density for European softwoods (regarded as one population) [6]

Uniaxial tension test

Eq. (28) requires determining the ratio between b_c and b. The experimental results reported in [7] indicate that in some tests b_c/b could be as high as 1.15, but in the following this ratio is set at

$$\frac{b_c}{b} = 1.0$$

(37)

This may be a conservative assumption for the mean values of specimens without any visible side cracks. Substitution of (35), (36) and (37) into (28) yields

$$\sigma_c = f_t = \sqrt{0.32 \cdot 0.33} \text{ MPa}$$
or

\[f_t = \sqrt{\frac{h_0}{h}} \text{ MPa} \] \hspace{1cm} (38)

with \(h_0 = 0.211 \text{ m} \).

The simple relation according to (38) is for \(h_0 = 0.21 \) and 0.3 m compared to the two Danish investigations reported in [7] and [8], see Table 1 and Figure 10.

<table>
<thead>
<tr>
<th>Reference</th>
<th>(b)</th>
<th>Size (mm)</th>
<th>(\ell)</th>
<th>(h)</th>
<th>Number of specimens</th>
<th>Experiment (f_t) (MPa)</th>
<th>(\sqrt{\frac{0.21 \text{ m}}{h}})</th>
<th>(\sqrt{\frac{0.3 \text{ m}}{h}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>[7]</td>
<td>115</td>
<td>175</td>
<td>330</td>
<td>50</td>
<td>1.11</td>
<td>0.80</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td>[8]</td>
<td>90</td>
<td>97</td>
<td>300</td>
<td>87</td>
<td>1.09</td>
<td>0.84</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>[8]</td>
<td>139</td>
<td>141</td>
<td>1336</td>
<td>18</td>
<td>0.63</td>
<td>0.40</td>
<td>0.47</td>
<td></td>
</tr>
<tr>
<td>[8]</td>
<td>139</td>
<td>141</td>
<td>128</td>
<td>18</td>
<td>1.00(?)</td>
<td>1.28</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>[8]</td>
<td>90</td>
<td>97</td>
<td>294</td>
<td>18</td>
<td>1.04</td>
<td>0.85</td>
<td>0.98</td>
<td></td>
</tr>
<tr>
<td>[8]</td>
<td>45</td>
<td>46</td>
<td>133</td>
<td>36</td>
<td>1.87</td>
<td>1.26</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>[8]</td>
<td>20</td>
<td>20</td>
<td>67</td>
<td>36</td>
<td>2.38</td>
<td>1.77</td>
<td>2.12</td>
<td></td>
</tr>
</tbody>
</table>

Figure 10 Tensile strength perpendicular to the grain (from [7] and [8]) compared with a reference curve.
From the results we can observe a strong influence of the height \(h \) of the specimen. The formula (38) seems to give a reasonable agreement with experimental results. It is also interesting to use (38) for prediction of the strength for small-scale experiments. For \(h = 0.1 \, h_0 \) we get according to (38) a tensile strength of 3.2 MPa, which is in agreement with experimentally obtained results.

Curved beam with constant depth

In order to compare Eq. (31) with experimental results the moment \(M_c = P_c \ell \) is replaced by the load \(P_c \).

\[
P_c = \frac{bhR}{\ell} \left(\frac{b_c}{b} \frac{G_c}{E} \right)_{h_0} \]

(39)

The experimental results are taken from references [9] and [10], where some tests were carried out with a groove located in the most critical curved portion of the beam according to Figure 11. The results are shown in Table 2. In the calculations the material parameters have been chosen according to (35) and (36).

The calculated values partly based on fracture mechanics agree reasonably well with experimental results. The values to be used for the material parameters in the German tests are somewhat uncertain as little information about the wood quality was reported in [10].

It is of special interest to note that the ratio between the failure loads for beams with and without a groove is in close agreement with the suggested formula (39), i.e. equal to \(\sqrt{b_c/b} \).

![Figure 11](image-url)
Figure 11 Curved beam with constant depth and width with a groove [9].
Table 2 Load at failure for curved beams (mean values)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Number of tests</th>
<th>b</th>
<th>Geometry [m]</th>
<th></th>
<th></th>
<th></th>
<th>Experiment P_c [kN]</th>
<th>According to Eq. (39) P_c [kN]</th>
<th>P_{c1}</th>
<th>P_{c2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>[9]</td>
<td>5</td>
<td>0.06</td>
<td>0.24</td>
<td>1.36</td>
<td>0.50</td>
<td>1.0</td>
<td>31.5</td>
<td>33.4</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td>[9]</td>
<td>3</td>
<td>0.06</td>
<td>0.24</td>
<td>1.36</td>
<td>0.50</td>
<td>0.5</td>
<td>23.5</td>
<td>23.6</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>[10]</td>
<td>2</td>
<td>0.12</td>
<td>1.00</td>
<td>5.00</td>
<td>2.75</td>
<td>1.0</td>
<td>96.8</td>
<td>91.5</td>
<td>1.06</td>
<td></td>
</tr>
<tr>
<td>[10]</td>
<td>2</td>
<td>0.12</td>
<td>0.77</td>
<td>3.85</td>
<td>2.31</td>
<td>1.0</td>
<td>68.2</td>
<td>73.6</td>
<td>0.93</td>
<td></td>
</tr>
<tr>
<td>[10]</td>
<td>2</td>
<td>0.12</td>
<td>0.53</td>
<td>2.65</td>
<td>1.59</td>
<td>1.0</td>
<td>53.5</td>
<td>61.1</td>
<td>0.88</td>
<td></td>
</tr>
<tr>
<td>[10]</td>
<td>2</td>
<td>0.12</td>
<td>0.30</td>
<td>1.50</td>
<td>0.90</td>
<td>1.0</td>
<td>39.8</td>
<td>46.0</td>
<td>0.87</td>
<td></td>
</tr>
</tbody>
</table>

6. CONCLUDING REMARKS

Cracks that run in the fibre direction and open perpendicular to the grains are of major concern in the design of wooden structures. The use of fracture mechanics seems quite natural. In this paper a number of applications have been treated to provide a background for the discussion of size effects. As a summary we may, for the sake of simplicity, conclude that the stress σ calculated by elementary theory should be compared with the fracture material parameter $\sqrt{G_c \cdot E}$. We may symbolically write

$$\sigma \leq \frac{2G_c E}{b h} \cdot k_\ell \sqrt{\frac{b_c}{b}}$$

(42)

where the influence of the length effect expressed by k_ℓ should differ substantially depending on the risk of a running crack. Such a large difference as

$$k_\ell = \begin{cases} 1.0 & \text{for stable crack growth} \\ 0.5 & \text{unstable crack growth probable} \end{cases}$$

(43)

may by further research be found to be reasonable for use in design. It should again be pointed out that stable or unstable crack growth depends not only on the loading conditions but also on the variation of $b_c G_c$ along the crack path.
REFERENCES

SIZE EFFECTS IN VISUALLY GRADED SOFTWOOD STRUCTURAL LUMBER

by

J D Barrett
F Lam
W Lau

The University of British Columbia
Canada

MEETING TWENTY - FIVE
ÅHUS
SWEDEN
AUGUST 1992
Size Effects in Visually Graded Softwood Structural Lumber

by

J. D. Barrett\(^1\) F. Lam\(^2\), Associate Member ASCE and W. Lau\(^2\)

Abstract

A brittle fracture model has been evaluated for predicting the variation in bending, compression and tension parallel to grain strength of visually graded dimension lumber. Size effect factors for visually graded lumber bending, tension and compression strength are established. Size effect parameters for visually graded lumber are anisotropic. Size effects for changes in member width are typically greater than the size effects for changes in length. Relationships between width \((S_w)\), length \((S_L)\) and constant ratio \((S_R)\) size factors have been introduced. Size factors derived from length effect tests are used to estimate ratios of tension strength to bending strength. Results agree closely with tension/bending property ratios published in the literature. Size factors for bending and tension are recommended for international harmonization of procedures for derivation of characteristic properties of visually graded lumber at standard sizes.

Introduction

Modern design codes, based on reliability concepts, have adopted full size member testing as the basis for establishing structural properties of wood products. Full-size test properties of many wood products including visually graded lumber show structural properties vary with member size, loading conditions and failure mode - bending tension or compression. Standards for derivation of characteristic properties for design now recognize the need to adjust materials properties to standard conditions.

\(^1\)Professor, Department of Harvesting and Wood Science, University of British Columbia, Vancouver, B.C., Canada V6T 1Z4.

\(^2\)Research Engineer, Department of Harvesting and Wood Science, University of British Columbia, Vancouver, B.C., Canada V6T 1Z4.
(moisture content, temperature, duration of loading) and a standard member size and load configuration (cf. ASTM 1991a, CEN 1991).

Characteristic properties of bending members are presented at a standard depth, member span to depth ratio, and loading condition. European standards (CEN 1991) reference bending strength to a 150 mm depth, 18 to 1 span to depth ratio and 1/3 point load condition. ASTM standards (ASTM 1991a) adopted a characteristic bending member with a 17 to 1 span to depth ratio, 184 mm depth and 1/3 point load distribution. The characteristic properties are derived from test data adjusted to the characteristic size using size adjustment models.

Size adjustment procedures adopted in CEN and ASTM standards are conceptually similar but the property adjustment relationships are significantly different. Consider a simple case where bending strength data collected on 75 mm deep bending members is to be adjusted to a 150 mm depth while retaining the standard span to depth ratio. CEN procedures (CEN 1991a) would require a strength reduction of approximately 0.87 = (75/150)\(^{0.2}\), whereas the ASTM adjustment would be 0.74 = (75/150)\(^{0.43}\). ASTM requires tension member strength adjustments for member length and width. CEN standards provide only width adjustments for tension members. Size adjustment models for visually graded lumber must be rationalized in order to encourage the safe and efficient use of structural timber.

Brittle fracture (weakest link) theory has been used widely to study statistical size effects in structural materials including concrete, ceramics, glass and structural wood products. Variation in ultimate capacity of timber structural members, timber connections and small clear test specimens have been rationalized using brittle fracture concepts. Applications of the classical brittle fracture analysis for the tension perpendicular to grain failure mode (Barrett 1974, Barrett et al. 1975, Colling 1986), and the shear parallel to grain failure mode (Foschi and Barrett 1976, Colling 1986)
related strength to the stressed material volume. Bohannan (1966) showed the bending strength of clear wood members varied with the beam aspect area (i.e., the width times the length).

The classical weakest link model must be modified to incorporate different size effect factors for length effects and width effects in structural wood products (Buchanan 1984, Madsen and Buchanan 1986, Johnson et al. 1989, Barrett and Fewell 1990, Sharp and Suddarth 1991, Madsen 1992). With this exception, the literature suggests that the weakest link size effects analysis provides a useful framework for assessing effects of load configuration and member size on strength of visually graded lumber. Experimental studies (Madsen and Nielsen 1976, Buchanan 1984, Madsen 1990, Madsen 1992) show that length effects for tension and bending members, failing in tension parallel to grain, are similar (Barrett and Fewell 1990, Madsen 1992). Width effect factors deduced from constant length members tested at different widths are somewhat greater than would be anticipated from size parameters based on length effect studies (cf., Madsen and Nielsen 1976, Johnson et al. 1989, Madsen 1990, Barrett and Fewell 1990).

Visually graded 38 mm dimension lumber is produced in standard grades (NLGA 1991). The grading rules define maximum permissible appearance and strength limiting characteristics for each grade. In NLGA dimension lumber grades, maximum permitted knot sizes increase as the member width increases. In this context, each member width may be considered to be a different material since the defect size distributions vary by width. If defect size increases with width then the apparent width effect will be greater than predicted from length effect studies.

Size effects for visually graded lumber may also vary with material quality. Size effects appear to be much greater for visually grade lumber than for clear wood (Bohannan
1966, Barrett and Fewell 1990, Madsen and Tomoi 1991, Madsen 1992). The high quality material within a visual grade may exhibit a smaller width and length size effect than weak material in the same grade. Thus, size effects could be dependent on strength level.

Size effects in bending members are related to tension and compression behavior. Buchanan (1984) provides a theoretical model for predicting bending strength given knowledge of tension and compression strength behavior. The model relates tension strength to bending strength using a weakest link failure concept. Size effects in bending strength for low quality material, are determined almost exclusively by tension behavior since compression strength exceeds tension strength. In high quality material tension strength exceeds compression strength in the failure region and compression yielding occurs prior to ultimate load. Bending capacity is affected by the redistribution of tension stress occurring as a result of compression yielding. Bending size effects may be influenced by clear wood compression strength behavior.

Bending strength varies with changes in member length and width (Madsen and Nielsen 1976, Madsen and Nielsen 1978a, Johnson et al. 1989, Barrett and Fewell 1990, Madsen and Tomoi 1991). The most extensive studies of size effects in bending evaluated beams having a constant ratio of length to depth (width). These studies do not permit direct calculation of separate size factors for width or length effects. Published research provides conflicting evidence on the relative importance of width and lengths effects in bending members. Madsen and Buchanan (1986) found no consistent width effect in an analysis of their own and other published research. Madsen (1990) provides preliminary estimates of width effects for bending members which are of the same order of magnitude as the tension length effect. Madsen (1992) finds no consistent width effect in several studies of bending strength.
Barrett and Fewell (1990) provided a preliminary analysis of bending and tension tests from several North American and European sources. The analysis focussed on size effects at the 5th percentile strength level. Length effects and width effects were species independent. Length effects \((S_L = 0.17)\) and width effects \((S_W = 0.23)\) for tension and bending were similar across a number of species and grades.

The purpose of this paper is to evaluate and rationalize apparent differences in size effect parameters obtained for visually graded structural lumber produced in Canada and the United States. Published research will be combined with unpublished experimental results to evaluate size effect factors for length and width for the bending, tension and compression parallel to grain failure modes.

Brittle Fracture Theory

A large body of published and unpublished research shows that strength properties - tension, compression and bending strength - of visually graded structural dimension lumber vary with member size. A modification of the classical weakest link size effect model has been proposed for analysis of size effects in lumber (Madsen and Buchanan 1986, Johnson et al. 1989, Barrett and Fewell 1990, Sharp and Suddarth 1991) which incorporates the anisotropy in size effects observed in lumber products. Elements of the classical weakest link theory needed for the analysis to be presented herein are presented and extended for analysis of size effects in lumber.

Classical Weakest Link Model

The classical weakest link Weibull theory will be developed assuming, without loss in generality, that the stress distribution in a member can be normalized and expressed as

\[
\tau (x,y,z) = \hat{\tau} G(x,y,z)
\]
(1)
where \hat{t} is a characteristic stress for the member. According to the classical 2 parameter Weibull theory the probability of failure F, for a volume V subjected to the stresses of Eqn. 1 is given by

$$F = 1 - \exp \left(-\int \left(\frac{\hat{t} G}{m} \right)^k dV \right) \quad 2$$

where m and k are the scale and shape parameters for the distribution.

Consider two volumes V_1 and V_2, then at a specified probability level F,

$$\hat{t}_1^k \int_{V_1} G^k_1 \, dV = \hat{t}_2^k \int_{V_2} G^k_2 \, dV \quad 3$$

where \hat{t}_1 and \hat{t}_2 can be the maximum stress in the members the integral of Eqn. 3 can also be expressed as

$$\hat{t}_1^k \int_{V_1} G^k_1 \, dV = \hat{t}_1^k K_1 V_1 \quad 4$$

therefore

$$\hat{t}_1 / \hat{t}_2 = (K_2 V_2 / K_1 V_1)^{1/k} \quad 5$$

where

$$K_i = \frac{1}{V_i} \int_{V_i} G_i^k \, dV$$

For similar members subjected to the same loading condition $K_1 = K_2$ and then Eqn. 5 yields

$$\hat{t}_1 / \hat{t}_2 = (V_2 / V_1)^{1/k} \quad 6$$

From Eqn. 6, strengths of members with similar loading conditions can be related according

$$\ln \hat{t} = a - \frac{1}{k} \ln V \quad 7$$
The shape parameter k, required for analysis of size effects can be derived either by fitting the Weibull distribution to test data at fixed member sizes (Eqn. 2), or by comparing strengths of members subjected to different loading conditions (Eqn. 5) or by regressing logarithm of strength against logarithm of volume (Eqn. 7). For a perfectly brittle material the shape parameter k, should be a material constant.

Weibull (1939) recognized that the size effect may not be volume dependent. If strength was influenced by surface defects strength may depend on member surface area. In more complex cases, competing failure mechanisms - perhaps surface and volume based - affect the failure process. The statistical size effect model must be modified appropriately for each type of material and application.

Size Effects in Visually Graded Lumber

By the late 1970's a large body of experimental data was accumulated that showed size effects in 38 mm thick, visually graded structural lumber strength properties were substantially greater than anticipated from tests of small clear specimens (cf., Schniewind and Lyon 1971, Kunesh and Johnson 1974, Madsen and Nielsen 1976, McGowan et al. 1977, Madsen 1978a, 1978b, Littleford 1978).

Size factors for visually graded lumber have been derived using five principle tests.

1. Width effect test (WET) - member length and loading conditions were fixed and members of different width evaluated.

2. Length effect test (LET) - member width and loading conditions were fixed and members of different length evaluated.
3. Constant ratio test (CRT) - member loading conditions were fixed and member length and width changed while maintaining a constant length to width ratio.

4. Load configuration test (LCT) - member width and length fixed and load configuration varied.

5. Random ratio test (RRT) - member loading is fixed but member length, width and thickness are varied independently from one test specimen size to another.

The Weibull weakest link theory provides a basis for analyzing WET, LET, CRT, LCT and RRT results for length and width size factors. In this study, thickness effects are not considered.

Consider the RRT involving members of two different widths W_1 and W_2 and lengths L_1 and L_2, subjected to the same load configuration. The relationship between member areas ($A_1 = W_1L_1$ and $A_2 = W_2L_2$), and member ultimate strengths (τ_1 and τ_2) derived from Eqn. 3 is:

$$\tau_1 / \tau_2 = (A_2 / A_1)^S_A$$ \hspace{1cm} 8

where S_A is the size parameter derived when member area (A), is used as the scale factor.

For lumber applications, Eqn. 8 can be specialized to accommodate different size factors for width (S_w) and length (S_l) as follows:

$$\tau_1 / \tau_2 = (W_2 / W_1)^{S_w} (L_2 / L_1)^{S_l}$$ \hspace{1cm} 9
For members with a constant length to width ratios, Eqn. 9 becomes

\[
\frac{\tau_1}{\tau_2} = \left(\frac{W_2}{W_1}\right)^{S_x} = \left(\frac{L_1}{L_2}\right)^{S_x}
\]

where \(S_R\) is the size parameter for members with constant length to width ratios. For consistency the parameter \(S_R\) must satisfy the following identities (Barrett and Fewell 1990):

\[
S_R = S_W + S_L \quad 11a
\]

and

\[
S_R = 2S_A \quad 11b
\]

The size parameters \(S_A, S_L, S_W\) and \(S_R\) are commonly determined from the slope of a linear regression relating logarithm of strength to logarithm of a scale factor (Eqn. 7). The size factors are double subscripted to indicate the scale factor (\(L, W, A\) or \(R\)) and the test mode (bending \(b\), tension \(t\) or compression \(c\)). Thus \(S_{Lt}\) is a length effect factor for tension strength; that is, the size factor associated with changes in member length for a tension member.

If tension and bending strength of visually graded lumber follows a weakest link failure mechanism, then the following hypotheses would be true:

Hypothesis I:

Length size factors for bending \((S_{Lb})\) and tension \((S_{Lt})\) are identical.

Hypothesis II:

Width size factors for bending \((S_{Wb})\) and tension \((S_{Wt})\) are identical.
Hypothesis III:

The ratio of tension to bending strength for a fixed width is related to the length size factor.

Hypothesis IV:

Load configuration factors in bending members at a fixed width (depth) are related to the length size factor.

The weakest link concept, specialized for the case of visually graded lumber can be used to derive the relationship between tension strength and bending strength and the effect of load configuration on bending strength. If the bending strength is measured using 2 concentrated loads spaced at a distance a, then the relationship between tension (τ_L) and bending strength (τ_B) for a member of a fixed width is given by:

\[
\frac{\tau_L}{\tau_B} = \left[\frac{L_b}{L_t} \cdot \frac{1+ak/L_o^2}{2(k+1)}\right]^{1/k}
\]

where $k = 1/S_l$ and S_l is the length effect size factor.

L_b and L_t are the lengths of the bending and tension members.

The bending strength of lumber depends on the beam size and load configuration. Let τ_1 be the bending strength of a standard size beam subjected to a standard load configuration (e.g., 1/3 point loading). The standard beam is assumed to have depth $d = d_1$, and a standard span to depth ratio. The strength τ_2, for a member with a length L_2 an arbitrary load configuration and is related to τ_1 according to

\[
\tau_2 = \tau_1 \left(\frac{K_1 L_1}{K_2 L_2}\right)^{S_l}
\]
where \(K_1 = \frac{1}{V_1} \int G_1 \, dV \)

\[K_2 = \frac{1}{V_2} \int G_2 \, dV \]

and \(S_L \) = length effect size factor

For beams with a standard span to depth ratio and load condition the strength \(\tau_1 \) at a depth \(d_1 \) is related to the strength \(\tau_0 \) at a standard depth \(d_0 \), according to

\[\tau_1 = \left(\frac{d_0}{d_1} \right)^{S_R} \tau_0 \tag{14} \]

Then Eqn. 13 yields

\[\tau_2 = \tau_0 \left(\frac{d_0}{d_1} \right)^{S_R} \left(\frac{K_1 L_1}{K_2 L_2} \right)^{S_L} \tag{15} \]

Integrations required to evaluate the coefficients \(K_1 \) and \(K_2 \) are performed over the regions of positive bending stresses (i.e. \(G = 0 \) for regions where bending stresses are less than or equal to zero).

Size Factor Variability

Size factors for visually graded lumber can be highly variable. Madsen and Buchanan (1986) evaluated length effects in bending for 2 grades and 4 sizes of visually graded lumber. The size parameter \(S_L \), at the 5th percentile property level varied from 0.095 to 0.323 (mean = 0.20, standard deviation = 0.066). Size parameter variability can be affected by grade, sample sizes, the number of different widths (or lengths) evaluated, the inherent variability of the material, test group matching efficiency and the probability level chosen for size factor analysis.
Lam and Varoglu (1990) showed that size factor variability can be reduced using group matching techniques. A method for calculating the expected variance of size factors at the mean strength level was provided. Group matching techniques are most applicable to LET or LCT studies, where matched groups of specimens of the same width are selected from the same population. Conventional group matching techniques are difficult to implement for width effect studies.

Variability in size factors can be studied by considering a generic size effect test. Without loss of generality, consider a test to estimate the parameter S_L, involving members of m different lengths L_1, L_2, \ldots, L_m. Samples of size n are chosen for each test length.

Assume that the distribution of property values at the length L_1 is 2-parameter Weibull (Eqn. 2), with shape parameter k and scale parameter m_1. For a true weakest link fracture mode then the shape parameter $k = 1/S_L$ (Eqn. 7). Studies of structural lumber show that S_L, is not generally equal to $1/k$. Therefore, we adopt a 2-parameter Weibull representation of the property distribution for any length L_i ($i = 1, \ldots, m$) with the following form:

$$
\tau_i = m_1 \left(\frac{L_i}{L_1} \right)^{S_L} \left(-\ell n(1-p)\right)^{1/k}
$$

where τ_i is the strength of a member of length L_i. S_L is the size parameter characterizing length effects and p is the probability of failure. This representation will yield individual property distributions for members of any length L_i, having the same constant shape parameter k. The scale parameter for the distribution varies with length. The size effect analysis is based on evaluations of matched groups of members tested at different gauge lengths. Specimens can be allocated to test groups using matching techniques or a random procedure.
Let $\tau_i (p)$ denote the strength of a member of length L_i, at the p-th probability level. Linear regression (Eqn. 7) yields a slope parameter $1/k = S_L$, independent of probability level. For this example, only test length is varied between groups of specimens. Here, the slope of the linear regression (Eqn. 7) can be expressed as:

$$S_L = \frac{1}{\zeta} \sum_{i=1}^{m} \alpha_i Y_i$$

where $X_i = \ln L_i$ and $Y_i = \ln \tau_i (p)$

ζ and α_i are constants given by

$$\zeta = m \sum_{i=1}^{m} X_i^2 - \left(\sum_{i=1}^{m} X_i \right)^2$$

$$\alpha_i = m X_i - \sum_{j=1}^{m} X_j$$

Expanding Eqn. 17 in a Taylor series about the mean values of the random variables Y_i ($i = 1...m$) and truncating the series at the linear terms, the expected value of S_L is given as:

$$E[S_L] = \frac{1}{\zeta} \sum_{i=1}^{m} \alpha_i Y_i$$

Similarly it can be shown that $\sigma^2[S_L]$, the variance of S_L, can be expressed as:

$$\sigma^2[S_L] = \frac{1}{\zeta^2} \left\{ \sum_{i=1}^{m} (\alpha_i Y_i)^2 + \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j \rho_{ij} \sigma_{Y_i} \sigma_{Y_j} \right\}$$
where σ_{Y_i} is the standard deviation of Y_i and ρ_{ij} is the correlation coefficient between Y_i and Y_j.

The sampling distribution of $\tau_i (p)$ for each member length L_i, will be asymptotically normal (Bury 1986) and the variance of $\tau_i (p)$ is given by:

$$\sigma^2[\tau_i (p)] = (p(1-p))/\left(n(f_w[P_i(p)])\right)$$

where p = the probability level for the size analysis, n = the sample size for each length L_i, and $f_w[\tau_i(p)]$ is the 2-parameter Weibull frequency at property level τ_i, corresponding to probability level p.

It can be shown that the coefficient of variation of $\tau_i(p)$ at each length L_i, is:

$$CV[\tau_i (p)] = (p(1-p))/\left(k^2 n(-\ell n(1-p))^2\right) = B_i$$

and

$$\sigma^2[\ell n \tau_i (p)]$$

can be approximated by:

$$\sigma^2[\ell n \tau_i (p)] = CV[\tau_i (p)]$$

Therefore the variance of the size parameter S_L is given by the approximation:

$$\sigma^2[S_L] = \frac{1}{\xi^2} \left\{ \sum_{i=1}^{m} B_i \alpha_i^2 + \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j \rho_{ij} (B_i B_j)^{1/2} \right\}$$

The variance of the size parameter S_L, depends on the particular experimental design: i.e., the sizes of members (L_i), the number of test groups (m), the correlation coefficient ρ_{ij}, the sample size for each group (n), probability level (p) chosen for the evaluation.
Let the standard deviation \(\sigma[S_L] \) be a reference standard deviation calculated for a particular choice of \(L_1, m, \rho_{ij}, n \) and \(p \). Then the standard deviation \(\sigma^*[S_L] \) for other probability levels \(p^* \) and sample sizes \(n^* \) is given by:

\[
\sigma^*[S_L] = \sigma[S_L] \left(\frac{p^*}{1-p^*} \right) \left(\frac{1-p}{p} \right) \left(\frac{\ln(1-p)}{\ln(1-p^*)} \right)^2 \frac{n}{n^*}
\]

where \(k \) and \(n \) are identical for property levels \(\tau_i \) and \(\tau_j \).

The expression for the standard deviation of the size parameter can be used to evaluate trial experimental designs. To illustrate the process, consider a length effect experiment as a case study. Assume \(m = 3 \), \(n = 100 \) and test lengths of 2.5, 3.75 and 5.0 m respectively. The standard deviation of size parameter, \(S_L \), at the 5th percentile strength level was evaluated for a range of shape parameters \(k \), and a range of \(\rho_{ij} \) (the correlation coefficient between test groups \(i \) and \(j \)).

Figure 1 shows the relationship between \(\sigma[S_L] \) and \(k \) at the 5th percentile strength level. With this experimental design, variability in the size effect parameter can be large for randomly sampled groups (\(\rho = 0 \)). It is clear that when \(k \) and \(\rho \) increase, \(\sigma[S_L] \) decreases. For this experiment the standard deviation at the 50th percentile is 32 percent of the standard deviation at the 5th percentile (Eqn. 24). If the sample size is increased from 100 to 400 specimens per group the standard deviation will be decreased by a factor of 2 (Eqn. 24). Size factor variability can also be reduced by group matching techniques which increase the correlation coefficient \(\rho_{ij} \). With this knowledge, the experimenter can optimize experimental designs by increasing \(\rho_{ij} \) or \(n \).

Next, consider a width effect experiment where four widths (89, 140, 184, 235 mm) are evaluated. Since group matching strategies are not generally applicable in width effect
experiments, $p_{ij} = 0$ is assumed. The variance in size parameter S_w, at the 5th percentile strength level was evaluated for a range of shape parameters k for two sample sizes $n = 100$ and 400 (Figure 2). The results are similar to those obtained in the length effect case study. It is evident that unless sample size is rather large, large variability in size parameter can be expected.

Experimental Database

Bending, tension and compression parallel to grain properties for 38 mm, Canadian softwood dimension lumber were developed as part of large research program known as the Canadian Wood Council (CWC) Lumber Properties Program. Results from the CWC study will be evaluated to determine size effects in bending, tension parallel to grain and compression parallel to grain.

Sampling

Bending, tension and compression parallel to grain properties of Canadian commercial species groups - Douglas fir-Larch (D Fir-L), spruce-pine-fir (S-P-F) and Hem-Fir softwood lumber have been evaluated by the in-grade testing method. Sampling for the CWC database was conducted on a stratified basis. The target sample size for each size/grade cell for each commercial species group was 360 pieces.

Specimens were sequentially sampled in "on-grade" lots of 10 pieces from randomly sampled packages of lumber. Each lot (10 pieces) of bending, tension and compression specimens was selected sequentially from each package whenever possible. For each mill, a maximum of 20 pieces was sampled for each size/grade/property combination. Additional randomly sampled packages were selected to complete the sampling required in each mill. Actual sample sizes attained for the property evaluations conducted on select structural (SS), No. 2 grade and No. 3 grade material are given in Table 1.
Test Methods

Structural property evaluations were conducted in accordance with requirements of ASTM D 4761 (ASTM 1991b). All specimens were conditioned to approximately 15 percent moisture content using a combination of mild kiln drying and or air-drying. Flatwise bending modulus of elasticity (MOE) profiles and edge bending MOE were obtained for all specimens prior to destructive testing. A comprehensive set of information including defect sizes, grade controlling characteristic size and location, maximum strength reducing defect (MSRD) size and location and moisture content was recorded for each specimen.

Edge bending MOE and modulus of rupture (MOR) were evaluated using 1/3 point loading and a span of 17 times the member width (depth). For bending evaluations the MSRD was located at random within the 17 times width bending test span whenever feasible. The tension edge of bending specimens was chosen at random.

Tension and compression specimens were evaluated at the gauge lengths given in Table 2. Compression specimens were evaluated full-length with lateral restraints to prevent buckling. Tension specimens were evaluated full length except that approximately 24 inches at each end of the member would be gripped. Whenever possible the MSRD was located in the tested length.

Size Effects Analysis

Bending Properties

Constant Ratio Size Factor S_{RB}

Bending size effects were evaluated for individual grades using the CWC database. The size parameter S_{RB} was determined directly from test data.
The S_{Rb} was calculated at selected probability levels; using Eqn. 17 with width (depth) as the scale factor. The database was examined to determine if S_{Rb} was strength level dependent. For each species and grade, test results for the three sizes were examined at 19 probability levels (0.02, 0.05, 0.10, ..., 0.95, 0.98). The regression relationship was used to generate a strength at a 184 mm width for each probability level. The size factors S_{Rb}, obtained for three species and grades are shown in Figure 3 as a function of the predicted strength at 184 mm width. Linear regression shows a slight tendency for the size factor to decrease with increasing strength.

The influence of grade on S_{Rb} was studied in detail at two probability levels ($p=0.05$ and 0.50) for the three commercial species groups. Size factors are provided for individual property level/grade/species cells and combined grades, combined property levels and combined species data sets in Table 3. Analysis of covariance was used to test the hypothesis that the size parameters S_{Rb} were equal. Rejections of the hypothesis are indicated by an asterisk. All evaluations are made at a 5 percent significance level. For all data combined $S_{Rb} = 0.45$. There were no significant differences in S_{Rb} across the probability levels, grades and species considered with the exception of the probability level effect detected in the S-P-F select structural grade.

Since member width and length both vary with the same scale factor it was not possible to isolate a pure length effect (S_{Lb}) or the pure width effect (S_{Wb}) from the CWC bending properties data set directly.

Length Effect Size Factor S_{Lb}

Bending length effects data for Hem-Fir and S-P-F published by Madsen and Nielsen (1978) and Madsen (1990) were analyzed with length as the scale factor. The best fitting common length effect parameters (S_{Lb}) for the Hem-Fir and S-P-F data sets were 0.18 and 0.16 respectively. The analysis of covariance showed that the hypothesis of
common slopes could not be rejected. Pooled results yielded an overall $S_{Lb} = 0.17$ with no significant differences between the slope parameters for the individual tests. Madsen (1992) reports $S_{Lb} = 0.19$ and 0.31 at the 10th and 50th percentiles for a second study of No. 2 and better Hem-Fir.

Width Effect Size Factor

The bending width size factor (S_{WB}) can be calculated using Eqn. 11, when S_{Rb} and S_{WB} are known. Adopting the values $S_{Rb} = 0.45$ (CWC database) and $S_{WB} = 0.17$, yields $S_{WB} = 0.28$ as the estimated width effect for bending strength of visually graded lumber.

Tension Properties

Tension specimens were evaluated at different gauge lengths (Table 2) precluding direct evaluation of width, length or constant ratio size parameters. The size parameters S_{At} were calculated using the as-tested tension strength data and area ($A = \text{width} \times \text{test gauge length}$) as the scale factor. Results for combined data sets are given in Table 4. No significant differences is S_{At} were found across the grade, percentiles or species combinations evaluated.

Tension Length Size Factor S_{Lt}

Length effect factors can be established based on test data from the literature (Showalter et al. 1987; Lam and Varoglu 1990; Madsen 1990). Analysis of covariance showed the tension size factors for S-P-F obtained by Lam and Varoglu (1990) was 0.12, independent of grade and percentile level. A length effect $S_{Lt} = 0.15$ was obtained for southern pine (Showalter et al. 1987). Madsen (1990) provides results for S-P-F which yield an overall common size parameter $S_{Lt} = 0.18$ with no significant differences between percentiles ($p = 0.05$ and 0.50) or section widths (89 mm and 184 mm). Analysis of covariance yielded the common size parameter $S_{Lt} = 0.17$ for the
three data sets combined. Madsen (1992) reports \(S_{Lt} = 0.26 \) and 0.20 at the 10th and 25th percentile levels for a second study of Hem-Fir No. 2 and better grade.

Tension Width Size Factor \(S_{Wt} \)

Tension strengths for 89 mm wide specimens evaluated in the CWC project, were adjusted to the 3.66 m length using \(S_{Lt} = 0.17 \). The width effect parameter \(S_{Wt} \) was derived from the length adjusted CWC database. Analysis of covariance yielded a common size parameter \(S_{Lt} = 0.21 \) for the CWC database (Table 5). Eqn. 11a, provides a constraint on the relationship between the area, length and width parameters. \(S_{Wt} + S_{Lt} = 0.38 \) which is in close agreement with the requirement that \(S_{Wt} + S_{Lt} = 2S_A \) since \(2S_A = 0.42 \) for the CWC database.

Madsen and Nielsen (1978) reported tension strength results for individual grades tested at a constant gauge length. Analysis of the 5th percentile data for select structural and No.2 grades yields \(S_{Wt} = 0.212 \) as the common size parameter for the three major commercial species groups. The hypothesis of a common size parameter could not be rejected.

Compression Properties

Compression strength test specimens in the CWC project were evaluated at different lengths precluding analysis of length, width or constant ratio size factors. The size factor \(S_{Ac} = 0.11 \) was established as the common size factor using the member area as the scale factor (Table 6). The hypothesis that all data sets had a common size factor was not rejected. Madsen(1990) provided compression length effect results for S-P-F structural lumber. Analysis of covariance yielded a common size parameter \(S_{Lt} = 0.10 \) with no significant differences in the parameter across the width (89 and 184 mm) and property levels (0.05 and 0.50) studied. Madsen (1992) reports a \(S_{Lt} = 0.09 \) in a second study of a No. 2 and better Hem-Fir grade mix.
Compression property data from the CWC study was adjusted to a common gauge length of 3.66 metres using a size factor $S_{lc} = 0.10$. The adjusted compression data set was then analyzed to establish the width parameter S_{wc} (Table 7). The overall common size factor $S_{wc} = 0.11$ was obtained. Then $S_{wc} + S_{lc} = 0.11 + 0.10 = 0.21$ and is therefore approximately equal to $2S_A = 0.22$ satisfying requirements of Eqn. 11. There were no significant differences in the size parameters across species, grades and property levels.

Discussion

The Canadian Wood Council project was conducted as part of a coordinated Canadian and U.S. lumber properties research program to evaluate structural properties of individual grades of commercial species groups of 38 mm thick softwood dimension lumber. The two programs followed very similar sampling, testing and analysis philosophies. Douglas-fir, Hem-Fir and southern pine results collected in the United States are summarized in two reports (Anon 1989; Green and Evans 1989). Selected results from the major Canadian and US studies are summarized in Table 9 and compared with selected results from the earlier in-grade study conducted in Canada (Madsen and Nielsen 1978a, 1978b).

Foschi et al. (1990) used the CWC database to evaluate the structural reliability of lumber members in single member applications. Size adjustment factors were developed to modify design strength properties to maintain uniform reliability. Size adjustment factors derived using the reliability approach were $S_{Rb} = 0.48$, $S_{At} = 0.18$ and $S_{Ac} = 0.13$.

Bending Size Factors

The bending size factor S_{Rb} shows a slight decreasing trend with increasing strength. For very high quality lumber, the size factor would be expected to approach the size
factor for a value clear wood behavior. Bohannan (1966) reports $S_{Rb} = 0.11$ for clear Douglas-fir members. Other Douglas-fir and Hem-Fir clear lumber data (Kunesh and Johnson 1974), yields a tension size factor $S_{Wt} = 0.16$ for width effects. If the length effect is approximately equal to the width effect then S_{Rb} for this material would be approximately 0.3, somewhat smaller than observed for visually grade lumber. Analysis of spruce-pine-fir data (Madsen and Tomol 1991) yields a common size parameter $S_{Rb} = 0.15$ for clear material. Figure 1 shows S_{Rb} for visually graded lumber is much higher than these clear wood values throughout the entire bending strength range.

The size factor $S_{Rb} = 0.45$ obtained for Canadian softwood lumber agrees closely with US studies ($S_{Rb} = 0.40$) and results derived from earlier Canadian studies ($S_{Rb} = 0.43$) shown in Table 8. Thus, there is consensus that the bending size factor (S_{Rb}) is approximately 0.4 for the 38 mm dimension lumber produced in Canada and the United States.

There is conflicting evidence as to which effect - length or width - dominates bending behavior. The length effect parameter available from the studies evaluated in this paper is $S_{Lb} = 0.17$ independent of species grade and size. This result is in general agreement with results published in the literature including the most recent studies (Madsen 1992) which suggested $S_{Lb} \equiv 0.2$.

The major Canadian and US in-grade studies of bending strength of individual grades suggest $S_{Rb} \equiv 0.4$ (Table 8). If $S_{Rb} \equiv 0.4$ and $S_{Lb} \equiv 0.2$, then $S_{Wb} = S_{Rb} - S_{Lb} \equiv 0.2$ in order to satisfy Eqn. 11. Madsen (1992) reports no width effect for bending members even though earlier studies of individual grades (Madsen and Nielsen 1978a, Green and Evans 1989, Barrett and Fewell 1990) report $S_{Rb} \equiv 0.4$.

22
Studies summarized by Madsen (1992) which yielded no width effect in bending, mainly involved evaluation of samples of a No. 2 and better grade mix rather than pure grades. Variation in grade mix from size to size will increase the variance of the estimate of the size parameter and could completely mask the true size effect. For instance, Madsen and Nielsen (1976) report results of tests at four widths (89, 140, 184 and 235 mm) which do not yield a consistent size effect (Madsen and Buchanan 1986). The study was conducted with a No. 3 and better grade mix. The select structural grade percent included in the four widths was 44, 54, 56 and 44 percent respectively. These grade shifts could explain why pure grades yield a consistent width effect in bending across several species while the studies based on samples of mixed grades yield no consistent size effect for bending.

Madsen (1992) found inconsistent evidence of width effects in studies using randomly sampled test groups with a sample size \(n \approx 100 \) per group. Fits of 2-parameter Weibull distributions to bending strength data yield shape parameters \(k \), in the range 4 to 6 for visually graded lumber. Fig. 2 results \((k = 5 \text{ and } S_{Wb} = 0.2) \) show that an \(S_{Wb} \) test result (5th percentile strength level) \(0.08 \leq S_{Wb} \leq 0.32 \) would be within one standard deviation of the expected value. Thus, the expected range of \(S_{Wb} \) is very large. For the CWC database \((n \approx 400) \) the comparable range of \(S_{Wb} \) is \(S_{Wb} 0.14 \leq S_{Wb} \leq \frac{0.26}{2} \). The precision of the estimate of \(S_{Wb} \) obtained from the CWC database is significantly improved over results based on a sample size \(n = 100 \). Thus, the low sample size and the random sampling process used for studies of width effects reported by Madsen (1992) would explain the inconsistencies reported.
Tension Size Factors

Analysis of tension length effect studies from the literature yielded $S_{Lt} = 0.17$ for the length effect in tension. If member capacity is controlled by a weakest link mechanism in tension then a weakest link model would predict size effects for length to be the same for bending and tension member. Thus, the experimental result ($S_{Lt} = S_{Lb} = 0.17$) supports Hypothesis I. If these results are accepted then there is a strong argument for adopting the weakest link model for adjusting tension and bending strength data for member size or loading conditions.

As with bending, it was not possible to derive S_{Wt} directly from the CWC data base. Rather S_{Wt} was calculated to yield $S_{Wt} = 0.21$. This value is consistent with the width effect in bending ($S_{Wb} = 0.28$) considering the limitation discussed previously.

In the earlier Canadian tension testing program (Madsen and Nielsen, 1978b), all tension tests were conducted at the same gauge length. These results (Bury, 1979) were reanalyzed using analysis of covariance methods to yield a common width effect $S_{Wt} = 0.22$ for tension. Madsen (1992) reports $S_{Wt} = 0.19$ for the same data set. The US studies (Green and Evans 1989) yield $S_{Wt} = 0.28$ for the three US species. The estimates of the width effect for visually graded lumber in tension range from 0.21 to 0.28 (Table 9). Width effects in tension for the pure grades also differ from the tension width size factors for mixed grades reported by Madsen (1992).

Bending and tension width effect results reported herein are quite similar considering the limitations of the bending width effect data base. The differences in width effect factors are sufficiently small that it could be claimed that the width effects are similar for tension and bending thereby supporting Hypothesis II. If this were true the analysis of size effects in structural lumber would be greatly simplified.
Compression Size Factors

Length size factors in compression were derived from a study of S-P-F lumber (Madsen 1990). The length effect factor \(S_{lc} = 0.1 \) was used to convert the CWC database to a common length for width effect analysts. The compression width effect was \(S_{wc} = 0.11 \) and \(S_{rc} = 0.11 + 0.10 = 0.21 \) for the three Canadian species (Table 8). Recently published results for a second Hem-Fir study (Madsen 1992), confirm \(S_{lc} = 0.1 \).

Compression parallel to grain studies were conducted in the US used short column compression specimens with a length 2.5 times the member width. Each short column specimen was selected to contain the maximum strength reducing defect located within the full length member. These CRT results were analyzed to yield \(S_{rc} = 0.12 \). The size effect \(S_{rc} \) agrees closely with the width effect obtained from the Canadian compression data (Table 8). This result reflects the differences in test methods adopted for compression tests in Canada and the US. In the US tests the worst defect has been selected for testing. Since only one strength controlling defect exists in each specimen, the size effect can only be associated with a width effect. Thus the results of the two programs are in substantial agreement.

Related Issues

Tension to Bending Relationships

The Canadian and US lumber databases include test results for bending and tension strength which have been used to derive factors to relate strength to member size. The data can also be used to study the ratio of bending strength to tension strength. When a weakest link mechanism controls strength in tension and bending members then the ratio of tension strength to bending strength is related to the length effect size factor according to Eqn. 12 where \(S_L = 1/k \).
Green and Kretschmann (1991) analyzed the US lumber property data on an "as tested" basis. Gauge lengths for tension specimens differed from size to size. Bending members were subjected to 1/3 point loads. At bending strengths less than 50 MPa, tension strength was found to be approximately 56 percent of bending strength. This property ratio would be consistent with the size parameter $S_{L_t} = S_{L_b} = 0.166$.

Barrett et al., (1992) have completed a detailed investigation of property relationships for Canadian species. The tension to bending property ratios are species dependent. Results for three species adjusted to a 38 x 184 x 3130 mm basis are shown in Figure 4. The non-linear trend in the tension/bending property ratio suggests that the size effect may change with strength level. In the lower 50 percent of the bending strength range the tension strength is approximately 55 percent of bending strength. For a ratio of 0.55, the computed size parameter is $S_L = 0.174$ (Eqn. 16). This size factor is remarkably consistent with the size factor $S_L = 0.17$ obtained from tension and bending length effect tests. The tension to bending strength ratio can be calculated based on the weakest link theory and the tension (or bending) length effect size parameters (S_{L_b} or S_{L_t}) thereby support Hypothesis III.

Tension and bending size factors for Canadian dimension lumber agree closely with those derived by Barrett and Fewell (1990) based on an analysis of European and Canadian species. The ratio of tension strength to bending strength is also very similar for European, Canadian and US species.

Load Configuration Factors

Madsen (1992) reports two limited studies where bending strength has been evaluated for different load conditions including center point, 1/3 point, and 1/4 point loads for simply supported and built-in beam conditions. The general agreement between the expected (Eqn. 17, $S_L = 0.17$) and the observed results, supports Hypothesis IV.
Further experimental studies based on pure grades is required to evaluate Hypothesis IV in detail.

Harmonized Size Factors for Codes

The consistency observed in tension to bending property ratios and the length and width size factors for Canadian, US and European species suggests the adoption of a common set of size adjustment factors for visually graded softwood lumber. For harmonization of international standards the size factors should be based on as many species, sizes and grades as possible. Barrett and Fewell (1990) suggested size factors for length ($S_L = S_{Lb} = S_{Lt} = 0.17$) and width ($S_W = S_{Wh} = S_{Wt} = 0.23$) for bending and tension which agree closely with the results herein. Compression size factors for length ($S_{Lc} = 0.10$) and width ($S_{Wc} = 0.11$) are consistent across several Canadian and US species groups.

Considering all available results and the variability associated with the size analysis, the rounded size factors given in Table 10 are recommended for use in conjunction with a weakest link fracture model to adjust test data to the characteristic sizes.

Conclusions

Brittle fracture theory provides a rational framework for evaluating the influence of member size and loading conditions on tension and bending strength properties of structural lumber. Weakest link brittle fracture theory was used to establish size factors for bending, tension and compression strength for visually graded softwood structural lumber. The results of the analysis support the following conclusions:

1. Size effects in visually graded structural lumber are remarkably consistent. Hypothesis tests that specific size factors are equal across grades, species and property percentile level were not rejected at the 5 percent significance level.
2. Length effect factors for tension \((S_{Lt} = 0.17) \) and bending \((S_{Lb} = 0.17) \) are similar.

3. Width effect factors calculated for bending \((S_{Wb} = 0.28) \) are slightly higher than the tension factor \((S_{Wt} = 0.21) \) for Canadian commercial species groups.

4. The length and width size factors for compression are \(S_{Le} = 0.10 \) and \(S_{We} = 0.11 \).

5. The relationship between tension and bending strength for member of the same width can be determined using a weakest link failure model and a size factor \(S_{Lr} = S_{Lb} = 0.17 \).

6. The effect of load condition on bending strength at a fixed width (depth) can be calculated using weakest link analysis and a length effect size factor \(S_{L} = 0.17 \).

7. The size factors \(S_{Rb}, S_{At} \) and \(S_{Ac} \) derived in this study agree closely with those required to achieve constant reliability and therefore the same size factors may be used for both allowable stress design and load and resistance factor design code applications.

8. For international harmonization of procedures for adjusting tension, bending and compression strength properties, the width and length size factors can be taken to be equal. For bending and tension \(S_{W} = S_{L} = 0.2 \) and for compression \(S_{W} = S_{L} = 0.1 \) for softwood visually graded lumber.
References

Anon. (1989) "In-grade testing of structural lumber." Forest Products Research Society, Madison, WI.

Bohannan, B. (1966) "Effect of size on bending strength of wood members." USDA Forest Service, Research Paper FPL 56, Forest Products Laboratory, Madison, WI.

<table>
<thead>
<tr>
<th>Species Group</th>
<th>Width (mm)</th>
<th>Bending Grade</th>
<th>Compression Grade</th>
<th>Tension Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SS 2 3</td>
<td>SS 2</td>
<td>SS 2</td>
</tr>
<tr>
<td>D Fir-L</td>
<td>89</td>
<td>370 370 150</td>
<td>372 374</td>
<td>372 373</td>
</tr>
<tr>
<td></td>
<td>164</td>
<td>373 370 149</td>
<td>374 371</td>
<td>373 371</td>
</tr>
<tr>
<td></td>
<td>235</td>
<td>372 374 150</td>
<td>375 373</td>
<td>373 370</td>
</tr>
<tr>
<td>Hem-Fir</td>
<td>89</td>
<td>381 380 170</td>
<td>382 381</td>
<td>360 362</td>
</tr>
<tr>
<td></td>
<td>164</td>
<td>382 402 158</td>
<td>383 382</td>
<td>381 381</td>
</tr>
<tr>
<td></td>
<td>235</td>
<td>379 385 159</td>
<td>381 380</td>
<td>383 378</td>
</tr>
<tr>
<td>S-P-F</td>
<td>89</td>
<td>441 440 180</td>
<td>440 441</td>
<td>440 444</td>
</tr>
<tr>
<td></td>
<td>164</td>
<td>444 986 200</td>
<td>440 443</td>
<td>441 440</td>
</tr>
<tr>
<td></td>
<td>235</td>
<td>440 441 210</td>
<td>420 418</td>
<td>446 463</td>
</tr>
</tbody>
</table>

Note: No. 3 grade was sampled for bending only.
Table 2. Test Spans and Gauge Lengths for Bending, Tension and Compression Property Tests.

<table>
<thead>
<tr>
<th>Member Width (mm)</th>
<th>Test Span</th>
<th>Gauge Length</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bending (mm)</td>
<td>Tension (mm)</td>
</tr>
<tr>
<td>89</td>
<td>1510</td>
<td>2640</td>
</tr>
<tr>
<td>184</td>
<td>3130</td>
<td>3680</td>
</tr>
<tr>
<td>235</td>
<td>3990</td>
<td>3680</td>
</tr>
</tbody>
</table>
Table 3: Bending Strength Size Parameters, S_{Rb}.

<table>
<thead>
<tr>
<th>Property Level</th>
<th>SPECIES</th>
<th>All Species</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D. Fir-Larch</td>
<td>Hem-Fir</td>
</tr>
<tr>
<td>5th</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS</td>
<td>0.516</td>
<td>0.579</td>
</tr>
<tr>
<td>No. 2</td>
<td>0.368</td>
<td>0.466</td>
</tr>
<tr>
<td>No. 3</td>
<td>0.397</td>
<td>0.555</td>
</tr>
<tr>
<td>All Grades</td>
<td>0.426</td>
<td>0.533</td>
</tr>
<tr>
<td>50th</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS</td>
<td>0.306</td>
<td>0.439</td>
</tr>
<tr>
<td>No. 2</td>
<td>0.447</td>
<td>0.521</td>
</tr>
<tr>
<td>No. 3</td>
<td>0.425</td>
<td>0.455</td>
</tr>
<tr>
<td>All Grades</td>
<td>0.393</td>
<td>0.471</td>
</tr>
<tr>
<td>All</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS</td>
<td>0.411</td>
<td>0.509</td>
</tr>
<tr>
<td>No. 2</td>
<td>0.407</td>
<td>0.493</td>
</tr>
<tr>
<td>No. 3</td>
<td>0.409</td>
<td>0.505</td>
</tr>
<tr>
<td>All Grades</td>
<td>0.409</td>
<td>0.502</td>
</tr>
</tbody>
</table>

*Reject H_0: All size parameters are equal (significance level 5%)
Table 4: Tension Strength Size Parameters for Area, S_{At}, Obtained Using Member Width Times Length as the Scale Factor.

<table>
<thead>
<tr>
<th>Property Level</th>
<th>GRADE</th>
<th>D. Fir-Larch</th>
<th>Hem-Fir</th>
<th>S-P-F</th>
<th>All Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>5th</td>
<td>All</td>
<td>0.215</td>
<td>0.251</td>
<td>0.197</td>
<td>0.220</td>
</tr>
<tr>
<td>50th</td>
<td>All</td>
<td>0.153</td>
<td>0.224</td>
<td>0.194</td>
<td>0.190</td>
</tr>
<tr>
<td>ALL</td>
<td>All</td>
<td>0.184</td>
<td>0.238</td>
<td>0.193</td>
<td>0.205</td>
</tr>
</tbody>
</table>

All grades: No. 2 and SS
Table 5: Tension Strength Size Parameters for Width, S_{W_F} obtained using Tension Strength Properties Adjusted to a Length $L = 3.68$ m.

<table>
<thead>
<tr>
<th>Property Level</th>
<th>Grade</th>
<th>D Fir-Larch</th>
<th>Hem-Fir</th>
<th>S-P-F</th>
<th>All Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>5TH</td>
<td>SS</td>
<td>0.222</td>
<td>0.253</td>
<td>0.287</td>
<td>0.254</td>
</tr>
<tr>
<td></td>
<td>No. 2</td>
<td>0.263</td>
<td>0.306</td>
<td>0.107</td>
<td>0.225</td>
</tr>
<tr>
<td></td>
<td>All Grades</td>
<td>0.242</td>
<td>0.280</td>
<td>0.197</td>
<td>0.240</td>
</tr>
<tr>
<td>50th</td>
<td>SS</td>
<td>0.122</td>
<td>0.257</td>
<td>0.230</td>
<td>0.203</td>
</tr>
<tr>
<td></td>
<td>No. 2</td>
<td>0.139</td>
<td>0.232</td>
<td>0.130</td>
<td>0.167</td>
</tr>
<tr>
<td></td>
<td>All Grades</td>
<td>0.131</td>
<td>0.245</td>
<td>0.180</td>
<td>0.185</td>
</tr>
<tr>
<td>All</td>
<td>SS</td>
<td>0.172</td>
<td>0.255</td>
<td>0.258</td>
<td>0.229</td>
</tr>
<tr>
<td></td>
<td>No. 2</td>
<td>0.201</td>
<td>0.269</td>
<td>0.119</td>
<td>0.196</td>
</tr>
<tr>
<td></td>
<td>All Grades</td>
<td>0.186</td>
<td>0.262</td>
<td>0.188</td>
<td>0.212</td>
</tr>
<tr>
<td>Property Level</td>
<td>Grade</td>
<td>D Fir-Larch</td>
<td>Hem-Fir</td>
<td>S-P-F</td>
<td>All Species</td>
</tr>
<tr>
<td>---------------</td>
<td>-------</td>
<td>-------------</td>
<td>---------</td>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>5th</td>
<td>All</td>
<td>0.103</td>
<td>0.121</td>
<td>0.122</td>
<td>0.115</td>
</tr>
<tr>
<td>50th</td>
<td>All</td>
<td>0.073</td>
<td>0.091</td>
<td>0.125</td>
<td>0.096</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>0.088</td>
<td>0.106</td>
<td>0.123</td>
<td>0.106</td>
</tr>
</tbody>
</table>

All Grades: No. 2 and Select Structural
Table 7: Compression Strength Size Parameters for Width, S_{Wc}

<table>
<thead>
<tr>
<th>Property Level</th>
<th>Grade</th>
<th>D Fir-Larch</th>
<th>Hem-Fir</th>
<th>S-P-F</th>
<th>All Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>5th</td>
<td>All</td>
<td>0.105</td>
<td>0.133</td>
<td>0.133</td>
<td>0.124</td>
</tr>
<tr>
<td>50th</td>
<td>All</td>
<td>0.058</td>
<td>0.086</td>
<td>0.139</td>
<td>0.094</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>0.082</td>
<td>0.110</td>
<td>0.136</td>
<td>0.109</td>
</tr>
</tbody>
</table>
Table 8: Summary of Bending, Compression and Tension Size Parameters.

<table>
<thead>
<tr>
<th>Property</th>
<th>Size Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S_R (1)</td>
</tr>
<tr>
<td>Bending</td>
<td>0.45</td>
</tr>
<tr>
<td>Tension</td>
<td>0.405</td>
</tr>
<tr>
<td>Compression</td>
<td>0.215</td>
</tr>
</tbody>
</table>

1Based on Madsen and Buchanan (1986), Madsen and Nielson (1976), Madsen (1990).
4Calculated value.
5Average of calculated values from Col. 5 and 6.
Table 9: Comparisons of Size Parameters Derived from Evaluations of Canadian and U.S. Commercial Species Groups.

<table>
<thead>
<tr>
<th>Property</th>
<th>Size Parameter</th>
<th>Project</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Canadian¹</td>
</tr>
<tr>
<td>Bending</td>
<td>S_{Rb}</td>
<td>0.45</td>
</tr>
<tr>
<td>Tension</td>
<td>S_{Wt}</td>
<td>0.21</td>
</tr>
<tr>
<td>Compression</td>
<td>S_{Rc}</td>
<td>0.21</td>
</tr>
</tbody>
</table>

¹CWC Database - 5th and 50th percentile data.
²Madsen and Nielsen (1978a, 1978b) - 5th percentile data.
<table>
<thead>
<tr>
<th>Property</th>
<th>S_L</th>
<th>S_W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bending</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Tension</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Compression</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Figure 2. Influence of Weibull shape parameter and sample size on the standard deviation of the size parameter S.
Figure 3: Variation of the bending size parameter z_{ab} with strength level.

Strength (ksi)

Size Factor, S_{rb}

Equation: $A = 0.49$

Equation: $B = 0.01$

Equation: $\alpha = 49 x + B$
Figure 4.

Variation of the ratio of tension strength to bending strength with bending strength load.

MOR (ksi)

UTS/MOR

Legend:
- S-p-F
- Hem-Fr
- D-Fr-Tarch
INTERNATIONAL COUNCIL FOR BUILDING RESEARCH STUDIES AND DOCUMENTATION

WORKING COMMISSION W18 - TIMBER STRUCTURES

A GUIDE FOR APPLICATION OF QUALITY INDEXES FOR DRIVEN FASTENERS USED IN CONNECTIONS IN WOOD STRUCTURES

by

E G Stern
Virginia Polytechnic Institute and State University
U S A

MEETING TWENTY - FIVE
ÅHUS
SWEDEN
AUGUST 1992
A GUIDE FOR
APPLICATION OF QUALITY INDEXES FOR DRIVEN FASTENERS
USED IN CONNECTIONS IN WOOD STRUCTURES

by

E. George Stern
Earle B. Norris Research Professor Emeritus of Wood Construction
Virginia Polytechnic Institute and State University
Blacksburg, VA 24063-0361 USA

ABSTRACT

Quality indexes for driven fasteners, designed to resist axial and lateral forces, were originally developed to facilitate the computerized design of wood pallets and related structures. This guide makes it feasible to apply these indexes to a broader range of structural components and structures. The use of the information presented in this guide can result in accurate prediction of the structural performance of nailed and stapled connections in wood structures and in optimum benefits which can be provided by these fasteners.

Prepared for Presentation at Meeting of
International Council for Building Research Studies and Documentation (CIB)
Working Commission on Timber Structures (W18A)
in Åhus, Sweden, August 24-27, 1992
APPLICATION OF QUALITY INDEXES FOR DRIVEN FASTENERS USED IN CONNECTIONS IN WOOD STRUCTURES

By

E. George Stern

Earle B. Norris Research Professor Emeritus of Wood Construction
Virginia Polytechnic Institute and State University, Blacksburg, VA 24063-0361 USA

This guide suggests an expanded application of a design system which was originally developed for wood pallets and related structures. It is based on the use of certain quality indexes for driven fasteners, empirical formulae, and extensive test data on, and structural models derived for, wood pallets, to be applied to the broader range of wood-framed components and structures. It is applicable to such engineered structural components and structures that are exposed to high vibrational and impact forces, waves, and wind gusts. They include wood trestles, bridges, grandstands, marine structures, and pole-type structures framed with non-treated, treated, and pressure-impregnated wood and wood-base products. This guide does not apply to such non-engineered wood-frame construction as standard residential construction where fastener quality has little influence on the performance of the finished product.

In such engineered structural components and structures, the connections and, especially, rigid connections of members and components can be of influence on the performance of the structures. The use of improved fasteners and engineered design of the connections can result in improved and longer lasting as well as vibration and impact, earthquake, wave, and storm-resistant structures.

This guide provides practical, effective, and efficient means of determining design values for driven fasteners of many kinds, styles, sizes, and quantities for designing connections of wooden structural components and structures assembled with these fasteners. The use of the information presented in this practice results in the optimum benefits that can be provided by these fasteners. They include nails, spikes, and staples made of regular-stock and stiff-stock steel, aluminum, stainless steel, copper, brass, bronze, Monel, and certain plastics; bright and coated, with plain and helically threaded shanks, and, if of steel, non-hardened and hardened.

The quality indexes, covering the Fastener Withdrawal Index (FWI) and the Fastener Shear Index (FSI), are based on the geometry and the material properties of the fasteners and are applicable to the fastener per se and independent of the connection assembled with these fasteners. The application of FWI and FSI to driven fasteners of shank diameters smaller and larger than those listed in Tables 11 and 12 is based on extrapolation of the data presented in these tables. Such extrapolated data have not been verified by tests.

Significance and Use

The withdrawal and shear quality indexes (FWI and FSI) are used in determining the fastener withdrawal resistance (FWR) and the fastener shear resistance (FSR), respectively. Using these indexes, the structural performance of nailed connections in wood structures can be predicted.

For connections containing multiple driven fasteners for load transfer from member to member, a conservative strength estimate is made if the design load of a single driven fastener is multiplied by the number of fasteners in the connection. This is the case, in the light of the load sharing by the closely spaced fasteners and in the light of the fact that the mean strength of a group of driven fasteners is considerably above that of the lower fifth-percentile exclusion limit of the sum of single driven fasteners. If the multiple fasteners are load sharing and act in the connection as a group, a more realistic, higher-percentile, lower exclusion limit value, closer to the mean value, can be justified because of the anticipated load redistribution and the resulting low probability of system failure, provided appropriate engineering data are available to justify such a step.
Rationale

The deterministic design of connections of structural members assembled with driven fasteners is, in the USA, normally based on the tabulated normal allowable withdrawal and shear resistance values for driven fasteners which are adjusted by the appropriate modification factors for given design parameters as published in the National Design Specification for Wood Construction (NDS). These design values were derived from empirical formulae developed by the U.S.D.A. Forest Products Laboratory and published in the Wood Handbook. These design values are applicable to plain-shank steel nails and spikes as well as "threaded" hardened-steel nails and spikes; although the shear values for the threaded fasteners need to be limited to helically threaded, hardened-steel nails and spikes in the light of the decreased thread-root diameter of annularly threaded fasteners, which would govern their shear resistance.

The 1986 and 1991 editions of NDS do not cover staples and do not give any consideration to the effects of (a) variations in the specific materials of which the fasteners are made, (b) variations in the fastener treatment and the resulting variations in the toughness of the fasteners, (c) the thread geometry of the threaded fasteners, that is the thread type, the thread-crest diameter, the thread angle, and the number of thread grooves, (d) the type and size of the fastener point and head and their influence on the fastener performance, (e) permissible tolerances and other factors, such as fastener coatings and finishes. All of these variables should be given consideration in the determination of fastener quality. In the light of their importance, the significance of these variables is covered in the following sections.

Materials

Nails, spikes, and staples are made of regular-stock steel, that is low-carbon steel with less than 0.15 pct carbon content, and medium low-carbon steel with 0.15 to 0.23 pct carbon content; while nails and spikes are also made of harder and tougher stiff-stock steel, that is low or medium high-carbon steel with 0.23 to 0.44 pct carbon content which makes feasible effective hardening of these fasteners. Other fastener materials are 2024, 5056, 6061, and 6110-alloy aluminum, austenitic (304) and ferritic (400) stainless steel, copper, copper-clad steel, brass, bronze, Monel, and certain plastics.

Stiff-stock steel nails and spikes resist higher buckling forces during driving and transfer shear forces deeper into the connected members than similar regular-stock steel fasteners. Properly hardened stiff-stock steel nails and spikes are even more effective.

Regular-stock steel fasteners shall have a minimum average ultimate tensile stress, depending on the fastener-shank diameter, as is indicated in Table 1.

<table>
<thead>
<tr>
<th>Fastener-Diameter Ranges</th>
<th>Minimum Average Ultimate Tensile Stresses</th>
</tr>
</thead>
<tbody>
<tr>
<td>In. (Mm)</td>
<td>Psi (MPa)</td>
</tr>
<tr>
<td>< 0.063 (1.6)</td>
<td>100,000 (690)</td>
</tr>
<tr>
<td>0.063 ≤ 0.110 (1.6 ≤ 2.8)</td>
<td>85,000 (585)</td>
</tr>
<tr>
<td>0.110 ≤ 0.193 (> 2.8 ≤ 4.9)</td>
<td>72,000 (500)</td>
</tr>
<tr>
<td>> 0.193 (> 4.9)</td>
<td>65,000 (450)</td>
</tr>
</tbody>
</table>
Stiff-stock steel fasteners and those made of other metals shall have a minimum average ultimate tensile stress, as shown in Table 2.

<table>
<thead>
<tr>
<th>Fastener Materials</th>
<th>Minimum Average Ultimate Tensile Stresses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Psi (MPa)</td>
</tr>
<tr>
<td>Stiff-stock steel</td>
<td>120,000 (825)</td>
</tr>
<tr>
<td>Hardened stiff-stock steel</td>
<td>166,000 (1140)</td>
</tr>
<tr>
<td>Stainless steel</td>
<td>99,000 (620)</td>
</tr>
<tr>
<td>Aluminum</td>
<td>55,000 (380)</td>
</tr>
<tr>
<td>Copper</td>
<td>32,000 (220)</td>
</tr>
<tr>
<td>Brass</td>
<td>50,000 (340)</td>
</tr>
</tbody>
</table>

Minimum average flexural yield stress values for driven fasteners have not been established.

Occasionally, the hardness of the rod or wire, from which nails and spikes are made, is specified in an attempt to provide quality criteria for these fasteners. However, their hardness and toughness are influenced by work hardening of the steel resulting from the wire-drawing procedure as well as the deformation of the wire during fastener manufacture. Thus, the hardness of the rod or wire can be different from the hardness of the finished fastener. Therefore, the specified hardness of the rod or wire is useful as a guide for the fastener manufacturer in selecting the appropriate rod or wire; but not for the fastener user to predict fastener quality.

Stiff-stock steel nails and spikes are non-hardened or hardened to increase their toughness; hence, to increase their buckling resistance during driving and their bending resistance during lateral load transfer between connected members. Because of this improved performance, properly hardened nails and spikes, especially if provided with highly effective threads along their shanks, can be relatively slender, offering decreased driving resistance and reduced wood-splitting characteristics during driving. Therefore, slender fasteners allow the location of an increased number of nails and spikes in a given connection area and nearer the member end.

If made of inappropriate steel or improperly hardened, such hardened-steel nails and spikes are often brittle. Such brittle fasteners shall not be used, as they can break during driving and/or transfer of shear loads and, especially, impacted shear loads. The driving of brittle nails and spikes is dangerous because of the possibility of breakage and flying particles during driving. Hardened-steel nails and spikes shall not be driven without appropriate protection of workers and others in the work area.

All fasteners shall be sufficiently ductile to withstand static cold bending through a given number of degrees over a mandrel not greater than the shank diameter, unless specified otherwise. The minimum average static cold bend angles to be attained without fracture of the fastener for some of the common materials of which driven fasteners are made are listed in Table 3.

<table>
<thead>
<tr>
<th>Fastener Materials</th>
<th>Minimum Average Static Bend Angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Deg</td>
</tr>
<tr>
<td>Regular-stock steel</td>
<td>180</td>
</tr>
<tr>
<td>Stiff-stock steel</td>
<td>90</td>
</tr>
<tr>
<td>Hardened steel</td>
<td>20</td>
</tr>
<tr>
<td>Stainless steel</td>
<td>180</td>
</tr>
<tr>
<td>Aluminum alloys</td>
<td>90</td>
</tr>
<tr>
<td>Copper and brass</td>
<td>180</td>
</tr>
</tbody>
</table>
The macroscopic observation of a partial or complete break is considered failure.

The Morgan Impact Bend Angle Nail Tester (MIBANT device) provides information on the resistance of driven fasteners to given impact forces. The mass of the impacting weights can be changed for testing of fasteners of largely different slenderness. Thus, the standard 2.50-lb (15.6-N) drop weight is exchanged for one of lesser mass when warranted. The MIBANT angle is influenced by the diameter of the fastener shank and the material from which the fastener is made as well as by the way the fastener wire is drawn, formed, or deformed. Acceptable ranges of average MIBANT angles for the classification of fasteners of 0.106 to 0.135-in (2.9 to 3.4-mm) shank diameter and their quality ranking, based on 25 random samples from a single lot of fasteners, are given in Tables 4a and 4b.

Table 4a. - Fastener Classification According to MIBANT Angles

<table>
<thead>
<tr>
<th>Average Bend Angles Deg.</th>
<th>Fastener Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 to 28</td>
<td>Hardened steel</td>
</tr>
<tr>
<td>29 to 46</td>
<td>Stiff-stock steel</td>
</tr>
<tr>
<td>47 and more</td>
<td>Soft steel</td>
</tr>
</tbody>
</table>

These bend-angle ranges are valid if a given mass is dropped from a given height to impact on the head of the cantilevered fastener. A certain percentage of partial and complete head and shank failures are acceptable without causing fastener rejection. When using the standard 3.50-lb (15.6-N) drop weight, free-falling from a height of 12 in. (300 mm), not more than 8 pct of the nail heads and shanks shall fail during impact.

Whenever cold-bend or MIBANT data cannot be provided, stiff-stock steel nails and spikes shall have a minimum hardness of HRC 24, as determined by conversion of tensile strength to hardness in accordance with SAE J 417b; while hardened-steel nails and spikes shall have a minimum hardness of HRC 37, unless specified otherwise.

Nail (Spike) Shank

The purpose of the nail shank is to hold two or more connection members together and to transfer withdrawal and shear forces from the nailed member to the nailing member and vice versa.

The shank length and wire diameter of driven fasteners are basic parameters of influence on the performance of connections assembled with these fasteners. The connection geometry influences the selection of both variables. Where feasible, the minimum fastener penetration into the nailing member of plain-shank fasteners should be 1-1/2 in. (38 mm) and that of high-quality threaded nails should be 1-1/4 in. (32 mm) where high-quality connections are, or should be, specified. Where the end distance of the fastener and the spacing between fasteners has to be short, the fastener should be slender to reduce, if not to eliminate, fastener splitting of the wood member. This is particularly important in the fastening of dense woods and is a major reason for giving preference to the use of tool-driven slender staples over nails where these staples can economically fulfil the performance requirements.

Stout nails and spikes, having a low length/diameter ratio and 1/4-in (6.4-mm) or larger shank diameters, act like pins and dowels inserted into undersize holes when transferring shear loads, especially in connections with such multiple fasteners. Their effectiveness shall be determined accordingly.
Helically threaded nails are roll-threaded, with a non-threaded section, called clearance, between head and threads. If no more than two-thirds of the nail shank nearest the point is threaded, the thread is fully effective in the nailing member under most conditions normally encountered. A clearance of one-third of the nail length usually allows the nail to turn during final driving and, thus, the nailed member to be drawn tightly to the nailing member.

If a plain-shank section exists between helical thread sections along the nail shank, the nail cannot form an effective helical thread as a threaded nail without such a section in the wood into which the nail is driven. This interrupted thread results in a lower nail-withdrawal resistance compared to that of a nail with a continuous helical thread along its shank. Performance factors for such nails have not been established.

Helically threaded nails can be provided with a variety of threads. Flat-bottom threads are more effective than round-bottom threads. Non-symmetrical, one-directional, one-way threads with a fish-hook-like performance are more effective than symmetrical threads. The effectiveness of one-directional threads is readily determined by placing the threaded portion of the nail shank between thumb and finger, applying pressure, and trying to pull the nail in both directions along the nail axis. An effective thread allows the nail to be pulled in the direction of the nail point and resists pull in the direction of the nail head.

Thread crests are either single or double, with the latter type of crest being more effective. Threads can be designed in such a way that the wood fibers slide over the thread crests into the thread grooves during nail driving. The thread configuration shall prevent the wood fibers from sliding back during application of withdrawal forces. To accomplish this, the leading flank on the point side of the thread shall be noticeably inclined; while the following flank on the head side of the thread shall be nearly perpendicular to the axis of the nail shank. These "improved" threads result in a superior performance expected of well-threaded nails, particularly if their thread-crest diameter is large relative to the shank diameter and the thread angle is not excessive, that is within the range of 60 to 67 deg from the vertical to the nail shank. These "improved" nails justify the high design values attributed to these fasteners.

If provided with a steep thread angle, larger than 60 deg to the nail-shank axis, a helically threaded nail turns like a wood screw during driving through the fastened member into the fastening member and forms a thread in the wood, that mates with the thread of the nail. As a result, the driven nail acts much like a wood screw. During forced nail withdrawal, the wood fibers which cantilever into the space between the thread flanks are basically stressed in compression perpendicular to the grain of the wood. The wood fibers have to be sheared off before connection failure can occur, provided the nail does not back out due to an excessively large thread angle.

Because of the fact that the withdrawal resistance of properly threaded nails is only overcome when the wood fibers cantilevering into the space between the thread flanks are sheared off, and because the shear resistance of wood fibers increases when wood seasons to a lower moisture content after nail driving, the withdrawal resistance of properly threaded nails increases slightly during such seasoning of the connection. On the other hand, the withdrawal resistance of plain-shank nails, relying solely on friction between the nail shank and the surrounding wood, decreases considerably, as much as four-fifths, because of the relaxation of the wood fibers which were compressed during nail insertion and because of shrinkage of the wood surrounding the nail shank during wood seasoning after its assembly. This is the reason why the NDS requires that the permissible withdrawal and shear-load values be reduced by 75 and 25 pct, respectively, if plain-shank nails are driven into green or partially seasoned wood which dries out after nailing or into dry wood which repetitively absorbs and loses moisture during service; while threaded nails do not require the application of these design-load reduction factors.

The thread-crest diameters shall be at least 12 pct, preferably 18 pct and more, larger than the shank diameters. For example, a nail with a 0.110-in. (2.8-mm) shank diameter should have a 0.138-in. (3.5-mm) thread-crest diameter and a nail with a 0.120-in. (3.05-mm) shank diameter should have a 0.145-in. (3.7-mm) thread-crest diameter. The relative assessment of nail quality of helically threaded nails according to the difference between thread-crest diameter and wire diameter is given in Table 5.
Table 5. - Quality Ranking of Helically Threaded Nails According to Difference Between Thread-Crest Diameter and Wire Diameter of Fastener

<table>
<thead>
<tr>
<th>Difference Between Thread-Crest Diameter and Wire Diameter, in In.</th>
<th>Relative Fastener Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>More than 0.020</td>
<td>Excellent</td>
</tr>
<tr>
<td>0.016 to 0.020</td>
<td>Good</td>
</tr>
<tr>
<td>0.012 to 0.015</td>
<td>Marginal</td>
</tr>
<tr>
<td>Less than 0.012</td>
<td>Poor</td>
</tr>
</tbody>
</table>

The thread-root diameter is slightly larger than twice the shank diameter minus the thread-crest diameter; e.g., $2 \times 0.110 - 0.138 \geq 0.082$ in. (2.1 mm) in the case of the nail with a 0.110-in. (2.8-mm) shank diameter.

Optimum thread angles, measured perpendicular to the nail-shank axis, for helically threaded nails range from 60 to 67 deg. Nails with larger thread angles, often called 'lazy' helically threaded nails, can provide decreased withdrawal resistance, as they tend to turn backward during application of withdrawal forces after friction between nail shank and surrounding wood has been overcome. Thread angles smaller than 60 deg reduce the possibility of the helically threaded nail turning during driving and forming a clean thread in the wood similar to the thread along the nail shank.

The number of continuous helical grooves along the threaded portion of the nail shank with a thread angle of 60 to 67 deg should be four and not more than six.

Staple Legs

The purpose of staple legs is the same as that of the nail shank.

The usually slender staple legs are plain or coated to reduce driving resistance and possibly increase withdrawal resistance. The pair of staple legs provide some torsional resistance for the connection; while a single nail shank does not.

Nail (Spike, Staple) Point

The principal purpose of the nail point is to facilitate nail driving.

The nail point is usually a pyramidal shaped diamond point, unless specified otherwise or another type of point is considered to be the standard point for a given fastener. Nails are manufactured with blunt points, that is, points less than 0.150 in. (4 mm) in length, or even pointless where excessive splitting during driving of a pointed nail would result in unsatisfactory and unacceptable connections. Some points, such as wedge points, act to some extent like wedges during driving, tending to split the wood; while pointless nails act like broaches. Such pointless nails are likely to penetrate the wood in a straighter manner, thereby reducing, if not eliminating, points protruding from the sides of narrow wood members, that is, "skinners".

Nail (Spike) Head

The purpose of the nail head is to provide a strike surface for the hammer and tool and machine driver, and a bearing area to resist head pull-through forces. Standard head diameters for nails of given shank diameter are listed in Table 11. Slightly larger head diameters of high-quality nails can improve nail performance under certain use conditions, especially in the fastening of low-density wood to higher-density wood and of plywood.
The nail head is usually round with a flat top surface and requires a fillet between head and shank. The striking surface of the flat head may be plain, lettered, numbered, checkered, striated, or knurled. Countersunk heads, used where countersinking is required, are conically shaped on their underside, having a medium included angle of 75 to 99 deg or a large included angle of 100 to 160 deg.

Some nails have an incomplete head, that is, with a segment of the head deleted to make it feasible to collate nails tightly next to each other in strips or coils to be fed into the magazine of driving tools. Nails with incomplete heads shall have the same bearing areas under the heads as similar nails with complete heads of the same shank diameter, if the same head pull-through resistance is required.

Staple Crown

The purpose of the staple crown, located opposite the staple-point ends, is to connect the two staple legs effectively, and to serve the same purpose as the nail head.

The staple crown is flattened to provide a larger bearing area than would be provided by round or rounded wire. The staple-crown length, that is, the distance between the staple legs is critical in evaluating effectiveness of the staple crown in resisting crown pull-through forces.

Nail (Spike, Staple) Surface

The purpose of modifying the nail surface is to decrease the driving resistance and possibly increase the withdrawal resistance as well as the corrosion resistance of the fastener, in addition to providing a clean surface.

The nail surface is bright or blued; chemically treated, e.g., parkerized or phosphatized (bonderized); chemically etched, resulting in a microscopically roughened surface; barbed, serrated, or knurled; lacquered, painted (japanned), enameled, aluminized and/or anodized; electro-plated; cement, resin, or conversion-coated with thermo-plastic or thermo-setting polymers; galvanized, that is tumbled in zinc powder (sherradized), hot-dip galvanized, that is dipped into molten zinc once or, if necessary, twice, or mechanically galvanized (peen galvanized), that is provided with an impacted zinc coating, without or with a supplementary chromate or dichromate treatment.

Hot-dip and mechanical galvanizing are, practically speaking, equally effective for many use conditions, if an equal amount of zinc is deposited onto the fastener surface, and are equally acceptable in many instances. However, hardened-steel nails shall be mechanically galvanized, not hot-dip galvanized, since the required hardness is affected detrimentally by the heat applied during hot-dip galvanizing. The galvanized coating shall meet the specified requirements of weight and adherence.

Staples are often fabricated from galvanized-steel wire which shall meet the specified requirements.

Nail (Spike) Identification and Codification

Nails are identified by grip marks along the shank near the head and at times by letters, numbers, or embossed or indented designs on the nail head. Identification of the size of nails used in diaphragm connections is not required if the nail heads are larger than those required for standard, plain-shank, common wire nails; and, if stouter, helically threaded, diaphragm nails with large heads are used. A centered nail-head depression of 0.01-
in. (0.25 mm) depth and 0.106 to 0.126-in. (2.7 to 3.2-mm) diameter is required for pallet nails of less than 3-1/2-
in. (90 mm) length, if the nails are to meet the requirements of Specification UCFI 435-2 for European pool pallets.

Helically threaded nails are codified and referenced by descriptive code, as shown on Table 11, that is by numbers indicative of the nail length and shank diameter, followed by two letters referring to the thread-crest
diameter and the thread angle. Thus, a 250x112AA nail is 2-1/2 in. (64 mm) long and has a 0.112-in. (2.8-mm) shank diameter, a 0.132-in. (3.4-mm) thread-crest diameter, and a 60-deg thread angle.

Staple Identification and Codification

Staples are identified by the dimensions of the leg length and cross-section as well as the color of the coating(s).

Staples are codified and referenced by descriptive code, as is shown in Table 12, that is by numbers indicating the staple length and nominal wire diameter, followed by one letter referring to a bright or coated finish, in line with Standard MH1.7. Thus, a 250 x 072A staple is 2-1/2 in. (64 mm) long, has a 0.072-in. (1.8-mm) nominal wire diameter, and is bright, that is without a coating; while a 250 x 072B staple is identical to the above staple, yet provided with a coating.

Nail (Spike) Tolerances

Nail and spike tolerances are applicable to the fastener length, shank diameter, thread-crest diameter, thread angle, and head diameter. The tolerances are not applicable where minimum or maximum values are specified.

With the nail length measured from the maximum diameter in the head-bearing surface to the extreme point end, the nail- and spike-length tolerances listed in Table 6 are applicable.

<table>
<thead>
<tr>
<th>Nail Lengths In. (Mm)</th>
<th>Tolerances In. (Mm)</th>
<th>Tolerances In. (Mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 1.0 (25)</td>
<td>± 0.047 (1.2)</td>
<td>± 0.031 (0.8)</td>
</tr>
<tr>
<td>>1.0 to 2.5 (25 to 64)</td>
<td>± 0.079 (2.0)</td>
<td>± 0.062 (1.6)</td>
</tr>
<tr>
<td>> 2.5 (64)</td>
<td>± 0.118 (3.0)</td>
<td>± 0.094 (2.4)</td>
</tr>
<tr>
<td>>7.0 (178) and more</td>
<td>-----------</td>
<td>± 0.125 (4.8)</td>
</tr>
</tbody>
</table>

NOTE: 1 - For evaluation of nail performance, use one-third of the length of the nail point.

With the shank diameter measured away from the grip marks and prior to the application, or after removal, of any finishes or coatings, the nail-shank diameter tolerances shown in Table 7 are applicable.

<table>
<thead>
<tr>
<th>Shank Diameters In. (Mm)</th>
<th>Tolerances In. (Mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 0.079 (2.0)</td>
<td>± 0.002 (0.05)</td>
</tr>
<tr>
<td>>0.079 to 0.117 (2.0 to 3.0)</td>
<td>± 0.004 (0.10)</td>
</tr>
<tr>
<td>>0.117 (3.0)</td>
<td>± 0.008 (0.20)</td>
</tr>
</tbody>
</table>

With the thread-crest diameter being the maximum diametric dimension along the deformed portion of the nail shank, the crest-diameter tolerances shown in Table 8 are applicable.
Table 8. - Thread-Crest Diameter Tolerances for Nails

<table>
<thead>
<tr>
<th>Crest Diameters</th>
<th>Tolerances</th>
</tr>
</thead>
<tbody>
<tr>
<td>In. (Mm)</td>
<td>In. (Mm)</td>
</tr>
<tr>
<td>≤ 0.177 (3.0)</td>
<td>± 0.004 (0.10)</td>
</tr>
<tr>
<td>> 0.177 (3.0)</td>
<td>± 0.008 (0.20)</td>
</tr>
</tbody>
</table>

With the thread angle, in deg, measured from the perpendicular to the nail-shank axis, the thread-angle tolerance is ± 2 deg.

With the major and minor nail-head diameters not to exceed 15 pct of the nominal head diameter, its tolerance is ± 15 pct.

Staple Tolerances

With the length of the tool-driven staples measured from the top of the staple crown to the tip of the staple points, the length tolerances of these staples are the same as those for nails. With the length of hammer-driven staples measured from the underside of the staple crown to the tip of the staple points, the length tolerance of these staples is ± 0.10 in. (2.5 mm).

The nominal wire diameter of staples is measured prior to staple forming. The staple width and thickness are measured prior to the application, or after removal, of finishes or coatings, or along that staple-leg portion which is not coated. The diameter tolerances for flattened wire staples are shown in Table 9.

Table 9. - Leg-Width Tolerances for Staples

<table>
<thead>
<tr>
<th>Leg Widths</th>
<th>Tolerances</th>
</tr>
</thead>
<tbody>
<tr>
<td>In. (Mm)</td>
<td>In. (Mm)</td>
</tr>
<tr>
<td>0.020 to 0.028 (0.51 to 0.71)</td>
<td>± 0.001 (0.025)</td>
</tr>
<tr>
<td>>0.028 to 0.035 (0.71 to 0.89)</td>
<td>± 0.0015 (0.038)</td>
</tr>
<tr>
<td>>0.035 to 0.112 (0.89 to 2.80)</td>
<td>± 0.002 (0.050)</td>
</tr>
</tbody>
</table>

Dimensional Nail (Spike, Staple) Variables

Actual variations in the physical properties of driven fasteners are influenced by the permissible fastener tolerances. Length, shank diameter, thread angle, and number of thread grooves vary relatively little within and between fastener lots from the same source. However, thread-crest diameter and thread depth vary considerably more, since they are influenced by the die and the amount of its wear with which the fastener shanks are threaded. This wear influences the fastener quality properties, that is the Fastener Withdrawal Index (FWI) and the Fastener Shear Index (FSI). The quality is governed by the permissible tolerances of the thread-crest diameters which, for this reason, are important dimensions to be controlled rigorously during the manufacture of threaded nails and spikes.

For a number of lots of helically threaded, non-hardened or hardened steel nails of 0.113 to 0.121-in. (2.9 to 3.1-mm) shank diameters, the standard deviations shown in Table 10 were observed.
Table 10 - Standard Deviations for Nails of Given Shank Diameters

<table>
<thead>
<tr>
<th>Nail Properties</th>
<th>Mean Shank Diameters</th>
<th>Standard Deviations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>In. (Mm) or Deg</td>
<td>In. (Mm) or Deg</td>
</tr>
<tr>
<td>Shank Diameter:</td>
<td>0.113 (2.9)</td>
<td>0.0012 (0.03)</td>
</tr>
<tr>
<td></td>
<td>0.121 (3.1)</td>
<td>0.0009 (0.02)</td>
</tr>
<tr>
<td>Thread-Crest Diameter:</td>
<td>0.126 (3.2)</td>
<td>0.069 (1.8)</td>
</tr>
<tr>
<td></td>
<td>0.136 (3.5)</td>
<td>0.069 (1.8)</td>
</tr>
<tr>
<td>Thread Angle:</td>
<td>67 for 0.113 (2.9)</td>
<td>2.10</td>
</tr>
<tr>
<td></td>
<td>67 for 0.121 (3.1)</td>
<td>1.90</td>
</tr>
<tr>
<td>MIBANT Angle:</td>
<td>39 for 0.113 (2.9)</td>
<td>12.13</td>
</tr>
<tr>
<td></td>
<td>33 for 0.121 (3.1)</td>
<td>16.47</td>
</tr>
<tr>
<td>Head Diameter:</td>
<td>0.274 (7.0)</td>
<td>0.127 (3.2)</td>
</tr>
<tr>
<td></td>
<td>0.280 (7.2)</td>
<td>0.089 (2.3)</td>
</tr>
</tbody>
</table>

Performance of Driven Fasteners

The flexural yield stress of plain-shank, regular-stock steel nails is influenced slightly by the shank diameter, with nails of smaller diameter having higher yield stresses, most likely because of the work-hardening during wire drawing. This observation is not applicable to hardened-steel nails, because the effects of work-hardening is overshadowed by the effects of heat-treatment and subsequent tempering during the hardening process. Similarly, for plain-shank, regular-stock steel nails and for non-hardened and hardened steel nails of 0.106 to 0.135-in. (2.7 to 3.4-mm) shank diameters, changes in yield stresses have not been observed. This is explained by the small range of the shank diameters investigated. Fig. 1 provides regression lines for the data observed for regular-stock steel nails and spikes of various shank diameters.

The quality and performance of nails, spikes, and staples are measured by the Fastener Withdrawal Index (FWI) and the Fastener Shear Index (FSI), based on the geometry and the material properties of the fasteners. Both indexes are representative of the quality and performance of the fastener per se and independent of the connection assembled with the fastener.

When the head pull-through resistance is smaller than the shank withdrawal resistance of nails and spikes and when the crown pull-through resistance is smaller than the leg withdrawal resistance of staples, the former property is the governing criterion and shall be determined.

FWI is independent of the material properties of the fasteners; while FSI is influenced by these material properties, that is the fastener toughness as is indicated by the MIBANT angle of the finished fasteners.

Both FWI and FSI are relative measures of fastener quality and performance. Both represent the performance of a particular fastener relative to the performance of the "base" nail with FWI = 100 and FSI = 99. With respect to FWI, the helically threaded, steel, "base" nail has a 0.112-in. (2.8 mm) shank diameter, a 0.132-in. (3.4-mm) thread-crest diameter, four helical grooves, a 60-deg thread angle, and 5.57 helices per in. (per 25.4 mm) of thread length. With respect to FSI, this "base" nail is classified as a hardened-steel nail with a 20-deg MIBANT angle.

The relative quality indexes for standardized, helically threaded, non-hardened and hardened-steel nails of 1-1/2 to 3-1/2-in. (38 to 90-mm) lengths are given in Table 11, with the nail length, shank diameter, thread-crest diameter, thread angle, and nail toughness as variables. The relative quality indexes for standardized, bright
and coated, regular-stock steel, tool-driven staples of 2 to 3-3/4-in. (50 to 95-mm) lengths are given in Table 12, with the staple length, nominal wire diameter, finish, and staple toughness as variables. The quality indexes of driven fasteners of sizes different from those given in Tables 11 and 12 are determined, as required, from available test data or by extrapolation (see Fig. 2).

Fastener Withdrawal Index (FWI)

FWI is determined by using the following formulae:

For plain-shank, round-wire fasteners, where the number of helixes and the difference between shank diameter and thread-crest diameter is zero, insert factors 1.00 in formulae 2a and 2b:

for Imperial units: \(\text{FWI} = 221 \ (WD) \) \ (1a)

for SI units: \(\text{FWI} = 8.7 \ (WD) \) \ (1b)

For helically threaded nails and spikes,

for Imperial units: \(\text{FWI} = 221 \ (WD) \ [1 + 27.15 \ (TD - WD) \ (H/TL)] \) \ (2a)

for SI units: \(\text{FWI} = 8.7 \ (WD) \ [1 + 27.15 \ (TD - WD) \ (H/TL)] \) \ (2b)

For flattened-wire staples with two same-length legs,

for Imperial units: \(\text{FWI} = 221 \ (1.273) \ (WW + WT), \text{for each staple leg} \) \ (3a)

for SI units: \(\text{FWI} = 8.7 \ (1.273) \ (WW + WT), \text{for each staple leg} \) \ (3b)

NOTE 2 - For coated plain-shank fasteners, whose delayed withdrawal resistance is at least 33 pct higher than that of an identical non-coated fastener, a factor not exceeding 1.33 shall be applied. For coated fasteners, whose immediate or delayed withdrawal resistance is lower than that of an identical non-coated fastener, the lower withdrawal resistance value shall be governing.

Fastener Shear Index (FSI)

FSI per shear plane is determined by using the following formulae:

For plain-shank and helically threaded, round-wire fasteners of given MIBANT angle (M):

for Imperial units: \(\text{FSI} = 263,260 \ (WD)^{1.5} / (3M + 40) \) (in the case of staples, for each staple leg) \ (4a)

for SI units: \(\text{FSI} = 2056 \ (WD)^{1.5} / (3M + 40) \) (in the case of staples, for each staple leg) \ (4b)

For flattened-wire staples with two same-length legs,

for Imperial units: \(\text{FSI} = 263,260 \ [(0.848 \ (WW + WT))]^{1.5} / (3M + 40) \) \ (5a)

for SI units: \(\text{FSI} = 2056 \ [(0.848 \ (WW + WT))]^{1.5} / (3M + 40) \) \ (5b)

NOTE 3 - For annularly threaded nails and spikes and helically threaded screwsnails and spikes with a thread angle of less than 20 deg, WD shall be the thread-root diameter.
Performance of Connections Assembled with Driven Fasteners

The performance of connections assembled with nails, spikes, and staples is measured by the Fastener Withdrawal Resistance (FWR) and the Fastener Head/Crown Pull-Through Resistance (HPR), whichever is smaller, and the Fastener Shear Resistance (FSR). Based on the lower fifth-percentile exclusion limits for FWR and HPR and based on the ultimate connection load, requiring the application of a reduction factor of six to seven to arrive at the design load at the allowable connection slip of 0.015 in. (0.38 mm) for FSR, the allowable design values, in lbf (N), are determined by using the following formulae:

Fastener Withdrawal Resistance,

\[
\text{FWR} = 222.2 \left(\text{FWI} \right) \left(\text{GS} \right)^{2.25} \left(P \right) / (\text{MC - 3}) \quad (6a)
\]

for Imperial units:

\[
\text{FWR} = 38.9 \left(\text{FWI} \right) \left(\text{GS} \right)^{2.25} \left(P \right) / (\text{MC - 3}) \quad (6b)
\]

for SI units:

NOTE 4 - The following improved, alternate, Imperial-unit formula was introduced for use in the computerized Pallet Design System (PDS):

\[
\text{FWR} = (1 - A) \left[11.2 \left(\text{FWI} \right) \left(\text{GS} \right)^{2.25} \left(P \right) \right] + 148 \left(A \right) \quad (6c)
\]

Fastener Head/Crown Pull-Through Resistance,

For nails and spikes,

\[
\text{HPR} = 1,250,000 \left(T \right) \left(\text{GD} \right)^{2.25} \left[\left(\text{HD} \right)^{2} - \left(\text{WD} \right)^{2} \right] / (\text{MC - 3}) \quad (7a)
\]

for Imperial units:

\[
\text{HPR} = 339 \left(T \right) \left(\text{GD} \right)^{2.25} \left[\left(\text{HD} \right)^{2} - \left(\text{WD} \right)^{2} \right] / (\text{MC - 3}) \quad (7b)
\]

for SI units:

For flattened-wire staples,

\[
\text{HPR} = 1,592,000 \left(T \right) \left(\text{GD} \right)^{2.25} \left[\left(\text{HD} \right)^{2} - \left(\text{WD} \right)^{2} \right] / (\text{MC - 3}) \quad (8a)
\]

for Imperial units:

\[
\text{HPR} = 432 \left(T \right) \left(\text{GD} \right)^{2.25} \left[\left(\text{HD} \right)^{2} - \left(\text{WD} \right)^{2} \right] / (\text{MC - 3}) \quad (8b)
\]

for SI units:

Fastener Shear Resistance,

\[
\text{FSR} = 61.93 \left(\text{FSI} \right) \left(G \right) \left(T \right) / (\text{MC - 3}) \quad (9a)
\]

for Imperial units:

\[
\text{FSR} = 10.84 \left(\text{FSI} \right) \left(G \right) \left(T \right) / (\text{MC - 3}) \quad (9b)
\]

for SI units:

NOTE 5 - In the case of torsional shear resistance, FSR applies to connections assembled with two nails within the range 0.20 ≤ T/P ≤ 1.90, and to each nail in connections assembled with more than two nails, within the above range, with the thickness of the fastened member being at least 3/8 in. (9.5 mm) and that of the fastening member meeting the requirements for fastener penetration stated in Note 6.

NOTE 6 - For the computation of the FSR values, the depth of penetration in the fastening member is 10, 11, 13, and 14 shank diameters for species Groups I, II, III, and IV, respectively, with the species groups identified in Table 8.1A of 1986 edition of NDS. The corresponding, actual minimum depths of penetration for effectively helically and annularly threaded, non-hardened stiff-stock steel fasteners are 7.5, 8.2, 9.8, and 10.5 shank diameters; and for such hardened steel fasteners are 5.0, 5.5, 6.5, and 7.0 shank diameters. The FSR values cannot be increased when the depth of penetration is larger than that specified. When the depth of penetration is less than that specified for plain-shank, regular-stock steel fasteners and the specified FSR values for the specified depth of penetration are to be applied, these fasteners shall be clinched for a length of at least three shank diameters at an angle ranging from 45 to 90 deg to the fiber direction of the fastening member. When the depth of penetration is less than that specified, the FSR values are determined by straight-line interpolation between zero and the
applicable FSR value, except that the depth of penetration shall not be less than one-third of the applicable value.

Design Parameters

The described design procedure, based on the computed fastener - evaluation procedures, leads to the establishment of normal design values comparable to those published in Tables 8.8B and C of the 1986 edition and Tables 12A to D of the 1991 edition of NDS. Such parameters as grain direction, depth of fastener penetration, moisture content and changes in moisture content in the wood members, member treatment, duration of load, single and multiple shear, as published in NDS, shall be given consideration and the appropriate factors applied when the performance is determined of connections assembled with driven fasteners.

The 1991 edition of NDS, in establishing design procedures, refers to the following design parameters covering driven fasteners:

Specific Gravity of Wood

Average oven-dry specific gravity, G1.75, based on weight and volume of representative clear oven-dry sample specimen of fastening member, of wood species used, ranging from 0.31 to 0.73 for common commercial North-American wood species; applicable to fastener withdrawal resistance in pounds per inch of penetration into the side grain of fastening member.

Embedding Resistance of Wood

Dowel bearing resistance of wood members of connection, in psi (Pa).

Fastener Bending Yield Stress

Average flexural yield stress of fastener, in psi (Pa), determined by the 5 pct diameter offset method of analyzing the load-displacement curves generated from fastener bending tests. (This represents a major change in design approach which was based on the ultimate stress in previous NDS editions. Minimum average flexural yield stress values for driven fasteners have not been established.)

The yield stress, as used in the 1991 edition of NDS, is found by drawing a line parallel to the initial linear region of the load-deformation curve with an offset equal to a deformation of 5 pct of the fastener-shank diameter. This yield stress lies between the proportional-limit and the ultimate stresses and is generally below the stress level at which micro-cracking occurs during the bending test. This yield stress is approximately equal to the numeric average of fasteners tensile yield stress and tensile ultimate stress. In contrast, the fastener flexural yield stress, as used in the CIB Code and in the Eurocode, is defined as the ultimate stress at fastener failure or that at the 45-deg bend angle of the fastener during the bending test, whichever is the smaller value.

Fastener Diameter

Fastener shank diameter in the case of plain-shank and helically threaded nails along clearance between head and threads (thread-root diameter in the case of annularly threaded nails), in in. (mm).
Fastener Penetration Depth

Depth of penetration of fastener in fastening or main member of connection, in in. (mm), for determination of withdrawal resistance; and to be twelve shank diameters for determination of lateral (shear) resistance of connection, with minimum penetration to be six shank diameters for proportionally reduced design value.

Member Thickness

Thickness of fastened or side member of connection, in in. (mm).

Wood Grain

For fasteners not driven into the side grain of the connection members, a reduction in strength values is prescribed. For fastener driven into the end grain of the connection member, with the fastener axis parallel to the wood fibers, the wood grain factor for laterally loaded fasteners is 0.67. This wood grain factor is not applicable to driven fasteners axially loaded in withdrawal and driven into the end grain of the connection member, since driven fasteners are not to be loaded in withdrawal from end grain. (The latter provision should not be applicable to properly helically threaded nails, where the wood grain factor of 0.67 should be applicable.)

Fastener Bending Yield Mode

The yield mode design procedure is applicable to laterally loaded driven fasteners in wood-to-wood and metal-to-wood or wood-to-metal connections, with the fastener in single shear (two-member connection) or double shear (three-member connection), where (a) the fastener is driven into the side grain of the wood members perpendicular to the wood fibers, and (b) the fastener penetration depth in the fastening or main member is greater than or equal to the minimum penetration required for proportionally reduced design values. The lateral design values are determined as influenced by the applicable yield mode,

(a) with Modes I, III, III, and IV applicable to wood-to-wood connections in single shear;

(b) with Modes III, III, and IV applicable to wood-to-metal or metal-to-wood connections in single shear, and with the metal plates to resist forces in tension, shear, and compression (bearing of metal on metal); and

(c) with Modes I, III, III, and IV applicable to wood-to-wood connections in double shear, with lateral design values for the connection to be twice the smallest design value based on the applicable yield mode, and with the side members thicker than six fastener shank diameters, and with the penetration-depth parameter applicable to the fastener penetration into the third connection member.

Load Duration

Based on 10-year occupancy live loads, the design values are multiplied by

0.90 for permanent loads, such as dead loads
1.15 for 2-month loads, such as snow loads
1.25 for 7-day loads, such as construction loads
1.60 for 10-min loads, such as wind and earthquake loads

except when the connection capacity is controlled by the strength of the metal of the fastener and connection member.
Diaphragm Design

In diaphragm construction, a factor of 1.1 is applicable for driven fasteners transmitting lateral (shear) loads.

Wet Service

For wood connections of unseasoned (wet) or partially seasoned (with moisture content above 19 pct) members or exposed to wet service conditions (subject to wetting and drying), a factor of 0.25 is applicable to driven fasteners transmitting axial withdrawal loads; and a factor of 0.75 is applicable to driven fasteners transmitting lateral (shear) loads. These reduction factors are not applicable to toe nails transmitting axial withdrawal loads and to threaded hardened-steel nails and should not be applied to threaded stainless-steel nails.

Temperature

For wood connections assembled with driven fasteners with sustained exposure to elevated temperatures up to 150° F, the following temperature factors are applicable:

<table>
<thead>
<tr>
<th>In-Service Moisture Condition</th>
<th>Temperature Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T < 100° F</td>
</tr>
<tr>
<td>Dry</td>
<td>1.0</td>
</tr>
<tr>
<td>Wet</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Toe Nails

For wood connections assembled with driven toe-nailed fasteners transmitting axial withdrawal loads, a toe-nail factor of 0.67 is applicable and, in the case of lateral (shear) load transmission, a toe-nail factor of 0.83 is applicable.

Wood Treatment

An appropriate factor is to be applied as required by the company providing the treatment and redrying the wood members of the connection.

Application of Quality Indexes for Driven Fasteners

Quality indexes for nails, spikes, and staples are tools for the designer of connections in wood structures. These indexes give the fastener manufacturer and user the opportunity to select the most effective and efficient fastener which is readily available for given end-use conditions and requirements.

The fastener manufacturer can indicate, in addition to the customary description of the fastener, the fastener quality indexes of his products in his catalogues, order forms, invoices, and package labels. Thereby, he provides a meaningful statement of the quality of his products, which he guarantees.

The fastener specification writer can call for the use of the optimum fastener under given conditions and can expect it to perform as anticipated, if his specification refers to the applicable fastener indexes.

The fastener user orders, warehouses, and controls the quality of the specified fastener on the basis of the guaranteed quality indexes. He gives the fastener manufacturer the opportunity to recommend substitution of a readily available fastener for another specified fastener on the basis of fastener quality and performance.
Thus, the introduction of fastener quality indexes opens up new opportunities which are beneficial to all involved.

The described design procedure for connections in wood structures assembled with driven fasteners, based on their quality indexes, is a more comprehensive approach than that based on the empirical formulae developed by the USDA Forest Products Laboratory years ago and that based on the conservative design values tabulated in the NDS. This procedure is more comprehensive because full consideration is given in the design of connections to the pertinent, actual physical and mechanical properties of the fasteners; while the previously advanced design procedures had to be based on conservative performance values in the light of the variability of the fasteners on the market.

FWI and FSI have been used successfully in the computerized design of such wood assemblies as pallets, where the use of highly effective fasteners is of considerable benefit to the performance of the assemblies. Thus, by selecting the most appropriate nail of 32 standardized nails, listed in Table 10, the anticipated life of a pallet can be increased as much as 3-1/2 times in comparison with the life of an identical pallet assembled with the least performing of the standardized pallet nails meeting the appropriate specifications for that pallet. This large increase in pallet performance is based on the computerized Pallet Design System (PDS) estimate.

Similar benefits can result from the use of improved fasteners in other wood-framed structures, especially if built of pressure-impregnated wood and wood-based products exposed to adverse environmental conditions.
APPENDIX A

DOCUMENTATION
ASTM Standards, ASTM, Philadelphia, PA, USA

A 153-82 Specification for Zinc Coating (Hot Dip) on Iron and Steel Hardware
A 641-80 Specification for Zinc-Coated (Galvanized) Carbon Steel Wire
B 695-85 Specification for Coating of Zinc Mechanically Deposited on Iron and Steel
D 1761-88 Methods of Testing Mechanical Fasteners in Wood
F 547-77(90) Terminology of Nails for Use with Wood and Wood-Base Materials
F 592-84 Terminology of Collated and Cohered Fasteners and Their Application Tools
F 680-80(87) Test Methods for Nails

ASME Standards, ASME, New York, NY, USA

MH1.6-87 Procedures for Determination of Durability of Wooden Pallets and Related Structures
MH1.7-88 Driven Fasteners for Assembly of Pallets and Related Structures

SAE Standard, Society of Automotive Engineers, SAE, Warrendale, VA, USA

SAE J 417b Hardness Tests and Hardness Number Conversion

UCFI Standard, Union Chérmain de Fer International, UCFI, Paris, France

UCFI 435-2 Quality for European Flat Pallets Made of Wood, with Floor Openings and Measuring 800 by 1200 Mm

Other Publications

APPENDIX B

Terminology Specific to This Guide

Driven fasteners - nails, 6 in. (150 mm) or less in length; spikes, nail-like fasteners, with few exceptions longer than 6 in. (150 mm); staples with two same-size legs connected by crown; designed to be driven by hammer, machine, or special tool

Connections - structural junctions of wood and wood-base members, components, and assemblies of wood structures, assembled with driven fasteners

Fastener withdrawal index (FWI) - factor representing the measure of anticipated quality of a driven fastener with respect to its resistance to withdrawal forces, based on fastener geometry; applicable to fastener per se and independent of connection assembled with fastener; based on lower fifth-percentile exclusion limit of maximum withdrawal-resistance values

Fastener shear index (FSI) - factor representing the measure of anticipated quality of a driven fastener with respect to its resistance to shear forces, based on fastener geometry and material properties; applicable to fastener per se and independent of connection assembled with fastener; based on lower fifth-percentile exclusion limit of maximum shear-resistance values

APPENDIX C

Symbols

\[A = 0.016 \text{ (28 - MC)} \]

\[\text{CL} = \text{staple-crown length, in. (mm), the distance between the staple legs} \]

\[F = \text{number of thread grooves along fastener shank} \]

\[\text{FSI} = \text{fastener shear index} \]

\[\text{FSR} = \text{fastener shear resistance, in lb (N), per shear plane; based on mean load at connection deformation of 0.015 in. (0.38 mm); applicable to connections within the range } 0.20 \leq T/P \leq 1.90 \]

\[\text{FWI} = \text{fastener withdrawal index} \]

\[\text{FWR} = \text{fastener withdrawal resistance, in lb (N); based on mean maximum test value} \]

\[G = \text{oven-dry specific gravity of wood members; published mean value for member with lowest specific gravity (see Table 8.1A of NDS)} \]

\[\text{GD} = \text{oven-dry specific gravity of fastened wood member; published mean value (see Table 8.1A of NDS)} \]
GS = oven-dry specific gravity of fastening wood member; published mean value (see Table 8.1A of NDS)

\(H = \) number of helixes along thread length; that is, number of points, along thread length, at intersections of thread crests and parallel to nail-shank axis; arrived at by (a) measuring the thread length, in in. (mm), (b) observing the number of helixes per inch (25.4 mm) (by dividing the number of helixes with their observed overall distance, in in. (mm), along the parallel to the nail-shank axis), and (c) multiplying the number of helixes per inch (25.4 mm) with the thread length, in in. (mm). Also, thread length (TL) divided by thread lead (TE), with \(TE = 3.14 \times WD \times \tan TA \)

NOTE - The calculation of the number of helixes is a convenient step in determining the area of the helical thread in contact with the wood penetrated by the nail. The formula is based on the assumption that the mean of the thread-crest and thread-root diameters approximates the shank diameter of the nail. The formula is valid for the numbers of helixes penetrating the fastening member. If the depth of shank penetration into the fastening member is shorter than the thread length, multiply the number of helixes by the ratio of the depth of penetration of the helical portion of the nail shank and the thread length. This is necessary in order to obtain the number of helixes applicable for the calculation of the contact area of the helical portion of the nail shank with the wood surrounding it.

HD = nail-head diameter, in in. (mm)

HPR = head/crown pull-through resistance factor, in lbf (N); limited by \(T \leq 3/4 \) in. (19 mm)

M = MIBANT angle of fastener, in deg; average value of 25 random samples

MC = moisture content of wood members during connection assembly; maximum for green wood: 28 pct; minimum for dry wood: 12 pct

P = penetration of plain-shank fastener or threaded portion of fastener shank in fastening member, in in. (mm). A depth of penetration of 10, 11, 13, and 14 shank diameters is required in the fastening member of species Groups I, II, III, and IV, respectively (as identified in Table 8.1A of NDS) for the computation of FSR of all driven fasteners.

T = thickness of fastened member, in in. (mm); limited to maximum of 3/4 in. (19 mm) for the computation of HPR

TA = thread angle, in deg, of fastener with four thread grooves, with \(TA = \text{ARCTAN} \left[F/(TD \times \pi \times (H/TL)) \right] \) and with \(\text{ARCTAN} = 1/TAN \)

\(T/P = \) ratio of thickness of fastened member to penetration of fastener shank or legs in fastening member, limited to range \(0.20 \leq T/P \leq 1.90 \) when computing FSR

TD = thread-crest diameter of fastener, in in. (mm)

TL = thread length along fastener shank, in in. (mm)

WD = diameter of plain shank or plain-shank section of fastener, in in. (mm)

WT = thickness of staple leg, in in. (mm); measured parallel to crown axis

WW = width of staple leg, in in. (mm); measured perpendicular to crown axis
Fig. 2a.- Relationship between quality index with respect to withdrawal resistance and wire diameter, thread crest diameter, and thread angle of standard pallet nails.

Fig. 2b.- Relationship between quality index with respect to shear resistance and wire diameter and MIBANT angle of standard pallet nails.

<table>
<thead>
<tr>
<th>Code</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>150x105AA</td>
<td>0.105</td>
</tr>
<tr>
<td>0.124</td>
<td>0.08</td>
</tr>
<tr>
<td>A</td>
<td>8</td>
</tr>
<tr>
<td>B</td>
<td>7.5</td>
</tr>
<tr>
<td>C</td>
<td>7</td>
</tr>
<tr>
<td>D</td>
<td>6.5</td>
</tr>
<tr>
<td>E</td>
<td>6</td>
</tr>
<tr>
<td>F</td>
<td>5.5</td>
</tr>
<tr>
<td>G</td>
<td>5</td>
</tr>
<tr>
<td>H</td>
<td>4.5</td>
</tr>
<tr>
<td>I</td>
<td>4</td>
</tr>
<tr>
<td>J</td>
<td>3.5</td>
</tr>
<tr>
<td>K</td>
<td>3</td>
</tr>
<tr>
<td>L</td>
<td>2.5</td>
</tr>
<tr>
<td>M</td>
<td>2</td>
</tr>
<tr>
<td>N</td>
<td>1.5</td>
</tr>
<tr>
<td>O</td>
<td>1</td>
</tr>
<tr>
<td>P</td>
<td>0.5</td>
</tr>
<tr>
<td>Q</td>
<td>0</td>
</tr>
<tr>
<td>R</td>
<td>-0.5</td>
</tr>
<tr>
<td>S</td>
<td>-1</td>
</tr>
<tr>
<td>T</td>
<td>-1.5</td>
</tr>
<tr>
<td>U</td>
<td>-2</td>
</tr>
<tr>
<td>V</td>
<td>-2.5</td>
</tr>
<tr>
<td>W</td>
<td>-3</td>
</tr>
<tr>
<td>X</td>
<td>-3.5</td>
</tr>
<tr>
<td>Y</td>
<td>-4</td>
</tr>
<tr>
<td>Z</td>
<td>-4.5</td>
</tr>
<tr>
<td>AA</td>
<td>-5</td>
</tr>
<tr>
<td>BB</td>
<td>-5.5</td>
</tr>
<tr>
<td>CC</td>
<td>-6</td>
</tr>
<tr>
<td>DD</td>
<td>-6.5</td>
</tr>
<tr>
<td>EE</td>
<td>-7</td>
</tr>
<tr>
<td>FF</td>
<td>-7.5</td>
</tr>
<tr>
<td>GG</td>
<td>-8</td>
</tr>
<tr>
<td>HH</td>
<td>-8.5</td>
</tr>
<tr>
<td>II</td>
<td>-9</td>
</tr>
<tr>
<td>JJ</td>
<td>-9.5</td>
</tr>
<tr>
<td>KK</td>
<td>-10</td>
</tr>
<tr>
<td>LL</td>
<td>-10.5</td>
</tr>
<tr>
<td>MM</td>
<td>-11</td>
</tr>
<tr>
<td>NN</td>
<td>-11.5</td>
</tr>
<tr>
<td>OO</td>
<td>-12</td>
</tr>
<tr>
<td>PP</td>
<td>-12.5</td>
</tr>
<tr>
<td>QQ</td>
<td>-13</td>
</tr>
<tr>
<td>RR</td>
<td>-13.5</td>
</tr>
<tr>
<td>SS</td>
<td>-14</td>
</tr>
<tr>
<td>TT</td>
<td>-14.5</td>
</tr>
<tr>
<td>UU</td>
<td>-15</td>
</tr>
<tr>
<td>VV</td>
<td>-15.5</td>
</tr>
<tr>
<td>WW</td>
<td>-16</td>
</tr>
<tr>
<td>XX</td>
<td>-16.5</td>
</tr>
<tr>
<td>YY</td>
<td>-17</td>
</tr>
<tr>
<td>ZZ</td>
<td>-17.5</td>
</tr>
<tr>
<td>AAA</td>
<td>-18</td>
</tr>
<tr>
<td>BBB</td>
<td>-18.5</td>
</tr>
<tr>
<td>CCC</td>
<td>-19</td>
</tr>
<tr>
<td>DDD</td>
<td>-19.5</td>
</tr>
<tr>
<td>EEE</td>
<td>-20</td>
</tr>
<tr>
<td>FFF</td>
<td>-20.5</td>
</tr>
<tr>
<td>GGG</td>
<td>-21</td>
</tr>
<tr>
<td>HHH</td>
<td>-21.5</td>
</tr>
<tr>
<td>IJJ</td>
<td>-22</td>
</tr>
<tr>
<td>KKK</td>
<td>-22.5</td>
</tr>
<tr>
<td>LLL</td>
<td>-23</td>
</tr>
<tr>
<td>MNN</td>
<td>-23.5</td>
</tr>
<tr>
<td>OOO</td>
<td>-24</td>
</tr>
<tr>
<td>PPP</td>
<td>-24.5</td>
</tr>
<tr>
<td>QQQ</td>
<td>-25</td>
</tr>
<tr>
<td>RRR</td>
<td>-25.5</td>
</tr>
<tr>
<td>SSS</td>
<td>-26</td>
</tr>
<tr>
<td>TTT</td>
<td>-26.5</td>
</tr>
<tr>
<td>UUU</td>
<td>-27</td>
</tr>
<tr>
<td>VVV</td>
<td>-27.5</td>
</tr>
<tr>
<td>WVV</td>
<td>-28</td>
</tr>
<tr>
<td>XXX</td>
<td>-28.5</td>
</tr>
<tr>
<td>YYY</td>
<td>-29</td>
</tr>
<tr>
<td>ZZZ</td>
<td>-29.5</td>
</tr>
<tr>
<td>AAAA</td>
<td>-30</td>
</tr>
<tr>
<td>BBBB</td>
<td>-30.5</td>
</tr>
<tr>
<td>CCCC</td>
<td>-31</td>
</tr>
<tr>
<td>DDDD</td>
<td>-31.5</td>
</tr>
<tr>
<td>EEEE</td>
<td>-32</td>
</tr>
<tr>
<td>FFFF</td>
<td>-32.5</td>
</tr>
<tr>
<td>GGGG</td>
<td>-33</td>
</tr>
<tr>
<td>HHHH</td>
<td>-33.5</td>
</tr>
<tr>
<td>IIJJ</td>
<td>-34</td>
</tr>
<tr>
<td>KKKK</td>
<td>-34.5</td>
</tr>
<tr>
<td>LLLL</td>
<td>-35</td>
</tr>
<tr>
<td>MMMM</td>
<td>-35.5</td>
</tr>
<tr>
<td>OOOO</td>
<td>-36</td>
</tr>
<tr>
<td>PPPP</td>
<td>-36.5</td>
</tr>
<tr>
<td>QQQQ</td>
<td>-37</td>
</tr>
<tr>
<td>RRRR</td>
<td>-37.5</td>
</tr>
<tr>
<td>SSSS</td>
<td>-38</td>
</tr>
<tr>
<td>TTTT</td>
<td>-38.5</td>
</tr>
<tr>
<td>UUUU</td>
<td>-39</td>
</tr>
<tr>
<td>VVVV</td>
<td>-39.5</td>
</tr>
<tr>
<td>WWWW</td>
<td>-40</td>
</tr>
<tr>
<td>XXXX</td>
<td>-40.5</td>
</tr>
<tr>
<td>YYYY</td>
<td>-41</td>
</tr>
<tr>
<td>ZZZZ</td>
<td>-41.5</td>
</tr>
<tr>
<td>AAAA</td>
<td>-42</td>
</tr>
<tr>
<td>BBBB</td>
<td>-42.5</td>
</tr>
<tr>
<td>CCCC</td>
<td>-43</td>
</tr>
<tr>
<td>DDDD</td>
<td>-43.5</td>
</tr>
<tr>
<td>EEEE</td>
<td>-44</td>
</tr>
<tr>
<td>FFFF</td>
<td>-44.5</td>
</tr>
<tr>
<td>GGGG</td>
<td>-45</td>
</tr>
<tr>
<td>HHHH</td>
<td>-45.5</td>
</tr>
<tr>
<td>IIJJ</td>
<td>-46</td>
</tr>
<tr>
<td>KKKK</td>
<td>-46.5</td>
</tr>
<tr>
<td>LLLL</td>
<td>-47</td>
</tr>
<tr>
<td>MMMM</td>
<td>-47.5</td>
</tr>
<tr>
<td>OOOO</td>
<td>-48</td>
</tr>
<tr>
<td>PPPP</td>
<td>-48.5</td>
</tr>
<tr>
<td>QQQQ</td>
<td>-49</td>
</tr>
<tr>
<td>RRRR</td>
<td>-49.5</td>
</tr>
<tr>
<td>SSSS</td>
<td>-50</td>
</tr>
<tr>
<td>TTTT</td>
<td>-50.5</td>
</tr>
<tr>
<td>UUUU</td>
<td>-51</td>
</tr>
<tr>
<td>VVVV</td>
<td>-51.5</td>
</tr>
<tr>
<td>WWWW</td>
<td>-52</td>
</tr>
<tr>
<td>XXXX</td>
<td>-52.5</td>
</tr>
<tr>
<td>YYYY</td>
<td>-53</td>
</tr>
<tr>
<td>ZZZZ</td>
<td>-53.5</td>
</tr>
<tr>
<td>AAAA</td>
<td>-54</td>
</tr>
</tbody>
</table>

** Basis of comparison. **

* Values for nails not available commercially.
<table>
<thead>
<tr>
<th>Code</th>
<th>Length Code</th>
<th>Nominal Diameter, in.</th>
<th>Finish</th>
<th>Quality Index (FWI)</th>
<th>Quality Index (FSI) with Respect to Computed MIBANT Angle, β</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Wire Thickn., Width</td>
<td>Bright Coated (FWI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Used for Determination of FWI and FSI Only)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td></td>
<td>Bright Coated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Used for Determination of FWI and FSI Only)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200x062A</td>
<td>B</td>
<td>0.062</td>
<td>0.055</td>
<td>0.061</td>
<td>x</td>
</tr>
<tr>
<td>200x072A</td>
<td>B</td>
<td>0.072</td>
<td>0.067</td>
<td>0.073</td>
<td>-x</td>
</tr>
<tr>
<td>200x080A</td>
<td>B</td>
<td>0.080</td>
<td>0.075</td>
<td>0.080</td>
<td>x</td>
</tr>
<tr>
<td>225x062A</td>
<td>B</td>
<td>0.062</td>
<td>0.055</td>
<td>0.061</td>
<td>x</td>
</tr>
<tr>
<td>225x072A</td>
<td>B</td>
<td>0.072</td>
<td>0.067</td>
<td>0.073</td>
<td>x</td>
</tr>
<tr>
<td>225x080A</td>
<td>B</td>
<td>0.080</td>
<td>0.075</td>
<td>0.080</td>
<td>x</td>
</tr>
<tr>
<td>250x072A</td>
<td>B</td>
<td>0.072</td>
<td>0.067</td>
<td>0.073</td>
<td>x</td>
</tr>
<tr>
<td>250x080A</td>
<td>B</td>
<td>0.080</td>
<td>0.075</td>
<td>0.080</td>
<td>x</td>
</tr>
<tr>
<td>300x072A</td>
<td>B</td>
<td>0.072</td>
<td>0.067</td>
<td>0.073</td>
<td>x</td>
</tr>
<tr>
<td>300x080A</td>
<td>B</td>
<td>0.080</td>
<td>0.075</td>
<td>0.080</td>
<td>x</td>
</tr>
<tr>
<td>375x072A</td>
<td>B</td>
<td>0.072</td>
<td>0.067</td>
<td>0.073</td>
<td>x</td>
</tr>
<tr>
<td>375x080A</td>
<td>B</td>
<td>0.080</td>
<td>0.075</td>
<td>0.080</td>
<td>x</td>
</tr>
</tbody>
</table>

1 in. = 25.4 mm
INTERNATIONAL COUNCIL FOR BUILDING RESEARCH STUDIES AND DOCUMENTATION

WORKING COMMISSION W18 - TIMBER STRUCTURES

35 YEARS OF EXPERIENCE WITH CERTAIN TYPES OF CONNECTORS AND CONNECTOR PLATES
USED FOR THE ASSEMBLY OF WOOD STRUCTURES AND THEIR COMPONENTS

by

E.G. Stern
Virginia Polytechnic Institute and State University
USA

MEETING TWENTY - FIVE
ÅHUS
SWEDEN
AUGUST 1992
35 YEARS OF EXPERIENCE WITH CERTAIN TYPES OF CONNECTORS AND CONNECTOR PLATES USED FOR THE ASSEMBLY OF WOOD STRUCTURES AND THEIR COMPONENTS

by

E. George Stern
Earle B. Norris Research Professor Emeritus of Wood Construction
Virginia Polytechnic Institute and State University
Blacksburg, VA 24063-0361

ABSTRACT

This paper describes some personal experiences of the author in the field of connectors and connector plates used for the assembly of wood structures and their components and lists as many as 225 publications covering this subject matter and published in the USA and abroad.

Certain connectors and connector plates among those described have been successfully used, or are proposed for use, for connecting members and components of lumber trusses and, particularly trussed rafters, frames, and other building components made of wood. Some of these connecting devices have also served to reinforce components of wood pallets, such as notched stringers; and connections of deckboards to stringers, stringerboards, and blocks of wood pallets; as well as anti-splitting devices for railway ties, scaffolding planks, and pallet stringer ends.

The performance has been observed over the years of five types of connections used for the assembly of trussed rafters of W-design and 9.1-m (30-ft) free span of an architectural laboratory building of the Building Construction Department of Virginia Polytechnic Institute and State University at Blacksburg, Virginia, erected 35 years ago. These trussed rafters did, and hopefully will, continue to serve their purpose for many years to come. The connectors used include lumber and plywood gusset plates nailed or nail-glued to the structural members, split-ring connectors, and solid and prepunched metal connector plates. None of the trussed rafters described were assembled with the metal connector plates with integral teeth in common use today.

Prepared for Presentation at Meeting of
International Council for Building Research Studies and Documentation (CIB)
Working Commission on Timber Structures (W18A)
in Åhus, Sweden, August 24-27, 1992
35 YEARS OF EXPERIENCE WITH CERTAIN TYPES OF CONNECTORS AND CONNECTOR PLATES USED FOR THE ASSEMBLY OF WOOD STRUCTURES AND THEIR COMPONENTS

By
E. George Stern
Earle B. Norris Research Professor Emeritus of Wood Construction
Virginia Polytechnic Institute and State University, Blacksburg, VA 24063-0361 USA

Metal Connector Plates, a Subject of Worldwide Standardization

Metal connector plates, commonly called "truss plates", are solid or prepunched plates, with or without nail holes and/or integral teeth (barbs, plugs, and prongs) projecting perpendicular from one or both plate surfaces. They are fabricated from 0.9 to 2.0-mm (0.035 to 0.080-in.; 20 to 14-gage) coiled strips of structural quality steel sheet and, for certain end uses, stainless steel. They are a product originally introduced in the USA after World War II, with their use having subsequently been spread worldwide. The many types of plates, commercially introduced by more than a dozen American plate manufacturers (see Fig. 1) and the design of trussed rafters based on the use of these plates have been subject to standardization for many years. Originally, this was the task of the Joint Industry Advisory Committee on Roof Truss Design, activated during 1961 under the chairmanship of Hugh Angleton of the National Association of Home Builders' Research Laboratory. During the same year, the Truss Plate Institute (TPI), a trade association, was established to coordinate the efforts and correlate the vast amount of research of the major fabricators of connector plates. Considerable technical assistance was provided to this industry for many years by the University of Illinois' Small Homes Council - Building Research Council under the leadership of Don. H. Percival and Stan K. Suddarth.

In addition to industry standards, as promulgated by TPI, American voluntary consensus standards covering metal connector plates were developed by the American Society for Testing and Materials (ASTM) and its Committee E06 on Performance of Building Constructions. These standards are under the jurisdiction of Subcommittee E06.13 on Performance of Connections in Building Constructions, with the author as its chairman since its inception some 25 years ago. ASTM standard test methods for tensile and shear strength properties of metal connector plates are covered in E489 and E767, respectively. A test method on the performance of metal connector plates in connections of wood members is covered in ASTM Standard D1761 on Testing Mechanical Fasteners in Wood. This standard is under the jurisdiction of ASTM Committee D07 on Wood and its Subcommittee D07.05.02 on Wood Connections.

The Rule of Assessment of Punched Metal Plate Timber Fasteners was published by the European Union of Agreement (EUA) in M.O.A.T. No. 16, during 1979. The International Standards Organization (ISO) published, during 1990, ISO 8969 on Timber Structures -- Testing of Unilateral Punched Metal Plate Fasteners and Joints. A Working Group of the Technical Committee of the European Standards Organization, CEN/TC124/WG1, is preparing at this time a European test standard for connectors with integral nail plates. In addition, the International Council for Building Research Studies and Documentation (CIB) established CIB/W18A/TC6 on Assessment of Punched Metal Plate Timber Fasteners. Its partial scope reads as follows:

"to identify significant problems and establish requirements, including the need for specific information, to serve as a basis for the establishment and promulgation of an appropriate up-to-date ISO test standard which leads to reliable test data, making it feasible to evaluate them properly and to design appropriately connections of timber (lumber) components and assemblies fabricated with metal connector plates (truss plates) with or without integral teeth."

Major voluntary consensus standards covering metal connector plates are listed in Appendix A. Additional American Standards promulgated by TPI are listed in Appendix B.

Metal connector plates are, according to ASTM E489, manufactured from coiled strips of structural quality sheet metal with or without integral plate projections or nail holes, or a combination of both. The projections are sheared from the solid plate. They project from the plate in a single direction or both directions perpendicular to the plate-surface area. Common plate thicknesses (gages), are given in Table 1.
Table 1. - Common thicknesses of metal connector plates.

<table>
<thead>
<tr>
<th>Mm</th>
<th>In.</th>
<th>Washburn & Moen Steel Gage</th>
<th>ASTM Standard A 525 (Table 17) for Galvanized Sheet Steel, In.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9</td>
<td>0.035</td>
<td>20</td>
<td>0.0396</td>
</tr>
<tr>
<td>1.0</td>
<td>0.041</td>
<td>19</td>
<td>0.0456</td>
</tr>
<tr>
<td>1.2</td>
<td>0.047</td>
<td>18</td>
<td>0.0516</td>
</tr>
<tr>
<td>1.4</td>
<td>0.054</td>
<td>17</td>
<td>0.0575</td>
</tr>
<tr>
<td>1.6</td>
<td>0.063</td>
<td>16</td>
<td>0.0635</td>
</tr>
<tr>
<td>1.8</td>
<td>0.072</td>
<td>15</td>
<td>0.0710</td>
</tr>
<tr>
<td>2.0</td>
<td>0.080</td>
<td>14</td>
<td>0.0785</td>
</tr>
</tbody>
</table>

Metal connector plates are produced in various sizes, that is lengths and widths, and designed to connect wood members and to transmit forces from one wood member (or section) to another member (or section).

Types of Metal Connector Plates

The various types of metal connector plates promulgated for use during the past 3-1/2 decades (Fig. 1) include solid plates; prepunched plates with nail holes located at specified locations in given patterns (Fig. 2) and with nail holes reinforced with concentric dimples with or without pointed, moon-shaped, or ring-shaped projections (Fig. 3); prepunched with a single triangular barb per plate hole (Fig. 4), multiple (four) bars per plate hole (Fig. 5), and two bars per plate hole and additional nail holes as well as reinforcing plate corrugations (Fig. 6); prepunched with four bars per plate hole projecting in both directions perpendicular to the plate area (Fig. 7); prepunched with a single tooth per plate hole (Fig. 8), with two teeth per plate hole (Fig. 9), and three teeth per plate hole (Fig. 10).

A combination prepunched metal connector plate is the proposed Finnish plate with two projecting teeth per nail hole and a row of peripheral teeth (Fig. 11). A so-called hybrid metal connector plate has one section with projecting teeth to be machine-pressed into the wood member and another section with nail holes for field-nailing a pre-assembled building component to another one, as in the case of field-assembled multi-section trusses (Fig. 12). A special plate with integral teeth, consisting of two parts which can be rotated around a connecting grommet (Fig. 13), allows angular adjustment of connected members of folded or fully assembled trussed rafters. It can be used with or without a load-transferring bolt penetrating the grommet in a pinned connection.

Some of these metal connector plates are no longer commercially produced; while some others are in the development stage.

Typical uses of metal connector plates are for the connections of members of trussed rafters, such as in heel connections (Fig. 14) and ridge connections (Fig. 15). Metal connector plates with bars projecting into both directions from the plate area (Fig. 7) are used when the plates are placed between the wood members and the bars pressed into the faces of adjacent members (Fig. 16).

Long-Time Performance of Metal Connector Plates

The performance of trussed rafters made of lumber members and assembled with five types of connecting means, commercially used during the middle of this century, was observed and recorded at Virginia Polytechnic Institute and State University (VPI&SU) for a period of almost 35 years. These trussed rafters were used for the roof structure of a student-built, wind and weather-exposed laboratory of the University's Building Construction Department. This laboratory was built under the guidance of the late Professor William L. Favaro. The observations were made by the staff of the University's Wood Research and Wood Construction Laboratory (WR&WCL) in cooperation with the industries involved. The 21 trussed rafters of W-design (Fig. 17) of 9.1-m
(30-ft) free span and 3 in 12 roof slope were spaced 0.61-m (2-ft) on centers. They were designed to carry a roof load of 1675 Pa (35 psi).

The five means of connecting the lumber members are listed below:

1. All-nailed connections designed and assembled by the staff of the University's WR&WCL, with the lumber gusset and splice plates fastened to the members with 82-mm (3-1/4-in.), helically threaded, hardened-steel nails, a product of the Independent Nail and Packing Company of Bridgewater, MA. All nails were driven from one side of the trussed rafter and loaded in double shear.

2. Split-ring connections designed by the Timber Engineering Company of Washington, DC, and student-assembled with TECO's Wedge-Fit split rings of 64-mm (2-1/2-in.) diameter.

3. H-BRACE connections designed by the H-Brace Company of West Palm Beach, FL, and assembled by the James River Lumber Company of Richmond, VA. The connectors were one-piece, 1.0-mm (19-gage), prepunched, steel plates bent to form an H between the members and fastened with 38-mm (1-1/2-in.), helically threaded, hardened-steel nails driven through both prepunched side plates of the connector.

4. TIM-PLATE connections designed and assembled by Timber Fabrications of Perry, FL, using 0.9-mm (20-gage), solid, galvanized-steel plates inserted into two symmetrically spaced saw kerfs at each member end. The shear loads were transmitted by 38-mm (1-1/2-in.), helically threaded, hardened-steel nails driven through the lumber members and inserted solid steel plates. All nails were driven from one side of the trussed rafter and transmitted load in double shear.

5. Nail-glued connections designed by the Small Homes Council of the University of Illinois and assembled by Lester Brothers of Martinsville, VA. The connections were made with exterior-type Douglas-fir plywood nail-glued to the members.

Trussed rafters assembled with the five types of connections are no longer commercially produced mainly for economic reasons, since metal connector plates with integral teeth projecting from the plates took the place of the formerly popular means of connecting the lumber members of commercially produced trussed rafters. Nonetheless, the observed performance of the installed trussed rafters provides valuable comparative information.

The performance of the trussed rafters was observed by measuring their deflection at midspan before, during, and after their installation, at appropriate times up to almost 35 years after their assembly. The individual test data for the quadruple trussed rafters were averaged and the average test values were plotted (Fig. 18).

The following observations were made:

1. The moisture content of the southern pine 2x6s of the trussed rafters, almost 35 years after their installation, was approximately 8%, when the temperature was 46°F, with a low of 30°F and a high of 54°F during the day when the deflection readings were taken.

2. The average midspan deflections, in in., of the lower chord of the five types of trussed rafters were observed and are presented in Table 2.
Table 2 - Average mid-span deflections, in in., of the lower chord of five types of trussed rafter of 9.1-m (30-ft) free span.

<table>
<thead>
<tr>
<th>Connections</th>
<th>After Installation</th>
<th>After 1/2 yr</th>
<th>After 3/4 yr</th>
<th>After 1 yr</th>
<th>After 2 yr</th>
<th>After 3-1/2 yr</th>
<th>After 4-1/4 yr</th>
<th>After 6 yr</th>
<th>After 34 yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>All-nailed</td>
<td>0.53</td>
<td>0.76</td>
<td>0.84</td>
<td>0.88</td>
<td>0.86</td>
<td>0.97</td>
<td>0.95</td>
<td>0.98</td>
<td>1.00</td>
</tr>
<tr>
<td>Split-ring</td>
<td>0.58</td>
<td>0.77</td>
<td>0.83</td>
<td>0.78</td>
<td>0.74</td>
<td>0.83</td>
<td>0.78</td>
<td>0.76</td>
<td>0.76</td>
</tr>
<tr>
<td>H-BRACE</td>
<td>0.75</td>
<td>0.86</td>
<td>0.80</td>
<td>0.83</td>
<td>0.80</td>
<td>0.89</td>
<td>0.85</td>
<td>0.86</td>
<td>1.00</td>
</tr>
<tr>
<td>TIM-PLATE</td>
<td>0.78</td>
<td>0.80</td>
<td>0.76</td>
<td>0.82</td>
<td>0.86</td>
<td>0.88</td>
<td>0.93</td>
<td>1.07</td>
<td>0.80</td>
</tr>
<tr>
<td>Nail-glued</td>
<td>0.90</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>1.10</td>
<td>1.16</td>
<td>1.15</td>
<td>1.18</td>
<td>1.38*</td>
</tr>
</tbody>
</table>

* Two of the four trussed rafters deflected as much as 1.65 and 1.68 in., while the other two deflected only 1.05 and 1.14 in.

While most of the trussed rafters performed satisfactorily, with their average mid-span deflections not exceeding 25 mm (1 in.) 34 years after their installation, two of the four nail-glued trussed rafters, located next to the building gable, had deflected more than 38 mm (1-1/2 in.) at that time. The relatively large deflection may be attributable to the deterioration of the bond between glue line and lumber surface and mold formation along the glue line, as observed 3-1/2 years after trussed rafter installation (Fig. 19).

In the light of the observations made, four of the five, if not all five, types of trussed rafters can be expected to fulfill their anticipated purpose. The nail-glued trussed rafters call for continued observation especially after any exposure to full, and possibly excessive, design loading, if such loading should occur.

Metal Connector Plate Improvements

Recent research in the field of metal connector plates covers the use of improved plates with integral teeth projecting in both directions (Fig. 7), with triple teeth per plate hole (Fig. 10), and with peripheral teeth (Fig. 11). Additionally, the performance is studied, at the U.S. Forest Products Laboratory, of metal connector plates in lumber connections under a variety of field conditions by using not only standard test procedures to derive connection model parameters for a variety of plate configurations, wood species, and treatments; but also nonstandard tests to evaluate connections subject to combined bending and tension forces, high temperature exposure, various load durations, and moisture cycling. Tests are also under way, at VPI&SU, on the potential improvement in performance of pallet stringers as a result of their reinforcement with metal connector plates.

Literature Survey

Research papers and publications covering metal connector plates and their use are listed in Appendix B.

Summary

This limited survey of the status of the art and the published literature provides an overview of the scope of the activities undertaken during the past 3-1/2 decades. It does not cover the vast amount of research and development work undertaken by the industries involved, as represented by the Truss Plate Institute.
APPENDIX A: RELATED STANDARDS

International Standards Organization, Geneva, Switzerland (ISO):

ISO 6891 (1983) Timber Structures - Joints made with mechanical fasteners - General principles for the determination of strength and deformation characteristics.

ISO R86 (Tensile testing of steel sheet and strip).

ISO R87 (Adhesion of coating)

European Standards Organization:

prEN 26-891 (1990) Timber Structures - Joints made with mechanical fasteners - General principles for the determination of strength and deformation characteristics.

European Union of Agreement, Paris, France (UEAte):

M.O.A.T. No. 16 (1979) Rule for the assessment of punched metal plate timber fasteners.

International Union for Testing and Research Laboratories for Materials and Structures, Paris, France (RILEM):

American Society for Testing and Materials, Philadelphia, PA, USA (ASTM):

ASTM A446 Specification for steel sheet, zinc-coated (galvanized) by the hot-dip process, structural (physical) quality.

ASTM E 489 Test method for tensile strength properties of steel truss plates (metal connector plates).

ASTM E 767 Test method for shear resistance of steel truss plates (metal connector plates).
APPENDIX B: RELATED LITERATURE

Carling, O. 1990. Strain rate in nailed connection between sheet sheathing and timber when it is loaded in shear and subjected to temperatures above 300°C. Department of Building Materials, Royal Institute of Technology, Stockholm, Sweden, Report TRITA-BYMA 1990-2.

Egerup, A. 1975. Theoretical and experimental determination of stiffness and the ultimate load of timber trusses. Technical University of Denmark, Hellerup, Denmark.

Foschi, R.O. 1977. Analysis of wood diaphragms and

Klein, Gary. 19--. Effect of partial embedment on the strength of plate-connected joints. Presentation to Truss Plate Institute Technical Advisory Committee.

Leivo, M. 1991. On the stiffness changes in nail plate trusses. Technical Research Centre of Finland, Espoo,

timber fasteners: Short- and long-term models. Forintek Canada Corporation.

Piskunov, Y.V. 1989. The development of design codes for timber structures made of composite bars with plate joints based in cylindrical nails. Proceedings of Meeting of International Council for Building Research Studies and

Triece, M.S., and S.K. Suddarth. 1988. Advanced design of...
metal plate connector joints. Forest Products Journal 38(9):7-12.

Truss Plate Institute. 1985. Interim design methodology for PCT-CII 2x4/2x6 wood trusses. Truss Plate Institute, Madison, Wisconsin, TPI-85 Supplement.

APPENDIX C: TERMINOLOGIES IN RELATED FIELDS

Fig. 1 - Various types of prepunched metal connector plates in use or proposed for use.
Fig. 2a.— Flat, prepunched, 0.9-mm (20-gage), galvanized-steel, TECO metal connector plate nailed to each side of the connection with 38 x 3.43-mm (1½ x 0.135-in.) galvanized-steel nails driven from both sides of member and loaded in single shear.

Fig. 2b.— Single piece H-BRACE plate fabricated from 0.9-mm (20-gage), galvanized steel, with one plate side prepunched with patterned nail holes and other plate side backed by fiberboard to allow automatic clinching of a special, cement-coated, 57 x 3.33-mm (2⅛ x 0.131-in.) nail with clinching notch near nail point. Nailing is accomplished from one side, with nails loaded in double shear. An alternate H-BRACE plate is a single-piece plate with both sides pieces provided with prepunched nail holes and fastened to the members with 38-mm (1½-in.), helically threaded, hardened-steel nails driven from both member sides and loaded in single shear.
Fig. 3.—Galvanized, 0.9-mm (20-gage), DENWOOD plates with ring-shaped projections and concentric dimples around punched nail holes to facilitate tool-driving of 38 x 2.87-mm (1½ x 0.113-in.), T-head nails with large head fillet.
Fig. 4. - SANFORD GRI-P-LATE with single triangular barb per plate hole, to be supplementary fastened to wood member with annularly threaded nail.
Fig. 5a.- Galvanized BARBGRIP plates with four barbs per plate hole, to be supplementary fastened to wood member with annularly threaded nail.

Fig. 5b.- Galvanized MITEK X-CELLENT plate with four barbs per plate hole.
Fig. 6.- Galvanized, corrugated SANFORD GRIP-MASTER plate with two barbs per plate hole; to be supplementary fastened to wood member with hammer-driven nails.
Fig. 7.—Galvanized WALTERS 102 by 127-mm (4.0 by 5.0-in.) and 51 by 127-mm (2.0 by 5.0-in.) shear transfer plates of 0.9-mm (20-gage) steel with four 8-mm (5/16-in.) long teeth per plate hole punched in both directions perpendicular to plate area.
Fig. 8a. - Galvanized GANG-NAIL plate with single tooth per nail plate, front and back view.

Fig. 8b. - Galvanized TRUSS-O-MATIC plate of 2-mm (14-gage) steel with curved, 20-mm (3/4-in.) long teeth spaced 10 mm (3/8 in.) on centers.
Fig. 9.—Galvanized connector plate of 0.9-mm (20-gage) steel with two integral 7-mm (9/32-in.) long teeth per plate hole.
Fig. 10.- Galvanized Finnish connector plate of 1.2-mm (18-gage) steel with three integral 12.7-mm (½-in.) long teeth per plate hole.
Fig. 11.— Proposed Finnish metal connector plate with two projecting teeth per nail hole and a row of peripheral teeth, left, prior to bending and, right, after bending perpendicular to plate area, patented by Tuomo Poutanen, Tampere, Finland.
Fig. 12: Metal connector plate with one section with projecting teeth to be machine-pressed into the wood member and another section with nail holes for field-nailing the preassembled component to another one.
Fig. 13. Two-part galvanized ALPINE connector plate of 0.96-mm (19g-gage) steel with two integral 8.7-mm (1/32-in.) long teeth per plate hole, with the two plate parts rotatable around a 10.3-mm (13/32-in.) inside-diameter connecting grommet.
Fig. 14a.- Heel connection of trussed rafter assembled with H-BRACE metal connector plate, with nails driven from both member sides and loaded in single shear.

Fig. 14b.- Heel connection of trussed rafter assembled with BARGRIP metal connector plates with barbs machine-pressed into both member sides.
Fig. 15.—Ridge connection of trussed rafter assembled with BARBCRIP metal connector plates with barbs machine-pressed into both member sides, front view and cross-section through barbs.
Fig. 15. Three-member connection of parallel-arranged wood members assembled with metal connector plates with barbs projecting into both directions from plate area and plates placed between wood members, with one side member removed for inspection.
Fig. 17. Some of the 21 trussed rafters used for roof construction of Architectural Laboratory Building at Virginia Polytechnic Institute and State University. From back to front, nail-glued, TIM-plate connected, H-BRACE connected, and split-ring connected trussed rafters.
Fig. 18.- Midspan deflection of five types of trussed rafters at VPI & SU Architectural Laboratory Buildings during 34 years of service.
Fig. 19.- Contact side of plywood gusset plate of nail-glued trussed rafter, located next to the gable end of the VPI&SU Architectural Laboratory Building, after removal 3½ years after trussed-rafter installation from connection by pulling the nails, samples of which are shown. Note complete glue coverage, minimal wood failure, almost 100% glue failure, and mold formation.
INTERNATIONAL COUNCIL FOR BUILDING RESEARCH STUDIES AND DOCUMENTATION

WORKING COMMISSION W18 - TIMBER STRUCTURES

CHARACTERISTIC STRENGTH OF SPLIT-RING AND SHEAR-PLATE CONNECTIONS

by

H J Blass
Technical University of Delft
The Netherlands
J Ehlbeck
M Schlager
University of Karlsruhe
Germany

MEETING TWENTY - FIVE
ÅHUS
SWEDEN
AUGUST 1992
Characteristic strength of split-ring and shear-plate connections

H.J. Blass, J. Ehlbeck and M. Schlager

Introduction

During the last CEN TC 124 WG4 meeting in Trento, Italy, the convenor of WG4 presented a calculation model describing the load-bearing behaviour of split-ring and shear plate connections subjected to tensile forces parallel to the grain. Using this model existing test data are evaluated to determine characteristic strength values of split-ring and shear-plate connections. The result of the evaluation is compared to today's allowable loads of this type of mechanical timber connections.

Calculation model

The model used to describe the failure of split-ring and shear-plate connections assumes a shear block failure of the wood in front of the connector [1]. The embedment stresses which in reality are unevenly distributed over the half circle of the split-ring are assumed to be uniformly distributed and acting parallel to the load direction. The embedment stresses are then transferred through shear stresses into the tension member (see Fig. 1). For tension members the capacity of the bolt is neglected, since the bolt usually is placed in oversized holes and only just starts bearing when the split-ring connection fails. Figure 2 shows a failed tension test specimen with shear failure both in the middle and one side member.

Fig. 1: Stresses in a split-ring joint and corresponding shear areas
The capacity of the connection consequently depends on the shear area in front of the connector and on the shear strength of the wood. The shear area within the connector is not taken into account since in most tests the wood core within the connector sheared off before the ultimate load of the connection was reached.

![Shear failure of middle and side member in a split-ring connection loaded in tension](image)

Fig. 2: Shear failure of middle and side member in a split-ring connection loaded in tension

The load bearing capacity of a split-ring or shear-plate connector loaded in tension parallel to the grain can therefore be written as:

\[R_c = f_v \cdot A_s \]

where

- \(R_c \) = load bearing capacity of one connector,
- \(f_v \) = apparent or average shear strength and
- \(A_s \) = shear area per connector.

The apparent shear strength decreases with increasing shear area. In [1] the following relation between the apparent shear strength and the shear area is proposed:

\[f_v = K \cdot A_s^{-0.25} \]

Hence, the load bearing capacity of a split-ring or shear-plate connector results as:
\[R_c = K \cdot A_s^{0.75} \]
(3)

For a joint with one connector per shear plane the shear area is (see Fig. 1):

\[A_s = (d_c + h_c) \cdot a_{3,t} - \pi \cdot d_c^2 / 8 \]
(4)

where

- \(d_c \) = connector diameter
- \(h_c \) = connector height for split-ring connectors and twice the connector height for shear-plate connectors
- \(a_{3,t} \) = loaded end distance.

For joints with several connectors arranged in a line, the shear area for the second and each further connector is:

\[A_s = (d_c + h_c) \cdot a_1 - \pi \cdot d_c^2 / 4 \]
(5)

where

- \(a_1 \) = connector spacing parallel to the grain.

For connectors arranged in a staggered pattern, the shear area per connector can be calculated by determining the corresponding average shear area from the joint geometry.

Fig. 3: Splitting failure of split ring connections loaded under an angle to the grain
Connector joints loaded in tension under an angle of more than 30° to the grain or in compression, respectively, show different failure modes. Connections with load-grain angles between about 30° and 150° show a splitting failure mode, whereas compression joints fail in a combined embedding-splitting failure mode (see Figs. 3 and 4). The sometimes considerable deformation of bolts in failed compression joints indicates a load sharing between bolt and connector for this type of loading.

Fig. 4: Embedding-splitting failure of a split ring connection loaded in compression

Tests with split-ring and shear-plate connections

The tests reported here [2 - 24] were performed in the Stevin-Laboratory of Delft University of Technology between 1957 and 1991. One shear-plate diameter, 67 mm, and two split-ring diameters, 73 mm and 112 mm, were used. A total amount of 908 tests were evaluated. Table 1 gives the number of tests with the different configurations of species, connector diameter, angle between force and grain direction and number of connector units of the test specimens. Tests with an angle of 0° are tension tests parallel to the grain, whereas an angle of 180° denotes a compression test. Since all tests have been carried out as double-shear tests, one connector unit stands for two connectors and one bolt.
The test procedure of those tests carried out before 1962 includes two dealling steps from 50% and 70%, respectively, of the estimated maximum load F_{est} down to 10% of F_{est} and a third dealling from 90% down to 30% of F_{est}. The time necessary to reach the ultimate load was about 20 minutes. From 1962 on the tests followed the procedure described in EN 26891 with one dealling step from 40% to 10% of the estimated maximum load. In the evaluation of the test results, the influence of the different test procedures on the results has been neglected.

Table 1: Species, connector diameter, load-grain angle and number of connector units of the tested connections

<table>
<thead>
<tr>
<th>Load-grain angle and number of connectors per shear plane</th>
<th>Timber species and connector diameter [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Spruce 73</td>
</tr>
<tr>
<td>0°/1</td>
<td>227</td>
</tr>
<tr>
<td>0°/2</td>
<td>48</td>
</tr>
<tr>
<td>0°/3</td>
<td>25</td>
</tr>
<tr>
<td>30°/1</td>
<td>35</td>
</tr>
<tr>
<td>45°/2</td>
<td>3</td>
</tr>
<tr>
<td>60°/1</td>
<td>30</td>
</tr>
<tr>
<td>60°/2</td>
<td>-</td>
</tr>
<tr>
<td>70°/1</td>
<td>21</td>
</tr>
<tr>
<td>180°/1</td>
<td>79</td>
</tr>
<tr>
<td>180°/2</td>
<td>40</td>
</tr>
<tr>
<td>180°/3</td>
<td>45</td>
</tr>
<tr>
<td>Sum</td>
<td>553</td>
</tr>
</tbody>
</table>

The purpose of the tests originally was to establish allowable loads for timber connections with split-rings and shear-plates for the Dutch timber code. A large number of tests was necessary to estimate the influence of parameters like moisture content, end and edge distance or timber dimensions on the ultimate load of connector joints. Table 2 shows the range of those parameters covered by the reported tests. The spacing a as given in Table 2 is the actual distance between two connectors, independent of the connector arrangement ($a = (a_1^2 + a_2^2)^{0.5}$).
Table 2: Range of related specimen dimensions and of moisture content

<table>
<thead>
<tr>
<th></th>
<th>(a_3/d_c)</th>
<th>(a/d_c)</th>
<th>(t_m/h_c)</th>
<th>(t_s/h_c)</th>
<th>(b_m/d_c)</th>
<th>moisture content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tension</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>1,57</td>
<td>1,66</td>
<td>2,56</td>
<td>2,06</td>
<td>1,55</td>
<td>14,6</td>
</tr>
<tr>
<td>Maximum</td>
<td>3,42</td>
<td>2,55</td>
<td>3,09</td>
<td>3,54</td>
<td>2,64</td>
<td>27,1</td>
</tr>
<tr>
<td>Minimum</td>
<td>0,89</td>
<td>1,18</td>
<td>1,63</td>
<td>1,13</td>
<td>1,27</td>
<td>9,0</td>
</tr>
<tr>
<td>Number</td>
<td>665</td>
<td>151</td>
<td>645</td>
<td>645</td>
<td>665</td>
<td>417</td>
</tr>
<tr>
<td>Compression</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>1,25</td>
<td>1,67</td>
<td>2,73</td>
<td>1,89</td>
<td>1,77</td>
<td>14,2</td>
</tr>
<tr>
<td>Maximum</td>
<td>1,61</td>
<td>2,55</td>
<td>3,09</td>
<td>2,92</td>
<td>3,12</td>
<td>18,0</td>
</tr>
<tr>
<td>Minimum</td>
<td>0,89</td>
<td>1,18</td>
<td>1,63</td>
<td>1,17</td>
<td>1,27</td>
<td>10,0</td>
</tr>
<tr>
<td>Number</td>
<td>243</td>
<td>100</td>
<td>243</td>
<td>233</td>
<td>243</td>
<td>143</td>
</tr>
</tbody>
</table>

Evaluation of the tests

From the ultimate load and the timber dimensions the parameter K according to equation (3) was determined for each test specimen. To take into account the influence of the moisture content, the value of the parameter K was then multiplied by 1.24 if the average moisture content of the timber members exceeded 20%. The factor 1.24 was derived from the average ratio of the \(k_{mod}\)-values for service class 1/2 and 3, respectively, according to draft Eurocode 5 Part 1, 3.2.4 (Working draft Christmas 1991).

The influence of the member thickness was taken into account as follows: If the middle and side member thicknesses exceeded minimum values of 2.5 and 1.67 times the connector height \(h_c\), respectively, the thickness factor applied was 1.0. If those minimum thickness values were not reached, the factor applied was the ratio between the minimum and the actual thickness.

The different characteristic density of the timber used for the joint specimens required a third modification factor for the parameter K. Apart from spruce with an assumed characteristic density of 380 kg/m³, the tropical hardwood species Yang and Afzelia were used for split-ring connections. Based on data in [25], the characteristic density of those two species was estimated to 560 kg/m³ for Yang and 680 kg/m³ for Afzelia. The modification factor applied was the square root of the ratio of the characteristic values of the density.

For each test, the parameter K consequently was determined as:
\[K = \left(\frac{R_c}{A_s^{0.75}} \right) \cdot k_1 \cdot k_2 \cdot k_3 \]

(6)

where

- \(k_1 \) = modification factor moisture content
- \(k_1 = 1.24 \) for moisture content exceeding 20%
- \(k_1 = 1 \) for moisture content below 20%
- \(k_2 \) = modification factor member thickness
 - \(k_2 = 1 \) if \(t_m \geq 2.5 \ h_c \) and \(t_s \geq 1.67 \ h_c \)
 - \(k_2 = \max \left(2.5 \ h_c/t_m; 1.67 \ h_c/t_s \right) \) if \(t_m < 2.5 \ h_c \) and/or \(t_s < 1.67 \ h_c \)
- \(k_3 \) = modification factor characteristic density of timber
 - \(k_3 = \left(\frac{380}{\rho_k} \right)^{0.5} \)
- \(t_m \) = middle member thickness
- \(t_s \) = side member thickness

Table 3 shows the average, standard deviation, maximum and minimum values as well as the non-parametric 5-percentile value of the parameter K in N/mm\(^{1.5} \) according to equation (6) for the tension specimens.

Although the calculation model only describes the behaviour of tension specimens loaded under an angle up to about 30°, equation (6) has been applied to all tested connector joints. Apart from the specimens with one connector unit loaded under an angle of 70° with a very large end distance of 250 mm, the model gives rather uniform results with respect to the 5-percentile value of the parameter K.

This can be explained by the fact that the end distance and the connector spacing also influence the ultimate load for other failure modes than block shearing. If splitting is the governing failure mode, an increased end distance obviously increases the area loaded in tension perpendicular to the grain up to a certain extent. The same applies for embedding failure, which is nearly always combined with the splitting of the wood through the bolt hole (see Fig. 4).

Only if the end distance becomes very large and the failure mode does not include splitting, a further increase of connection strength with increasing end distance cannot be expected. In this case, the value of the parameter K becomes unrealistically low.
Table 3: Average, standard deviation, maximum and minimum values and non-parametric 5-percentile value of the parameter K for different tension test configurations

<table>
<thead>
<tr>
<th>test configuration</th>
<th>average</th>
<th>standard deviation</th>
<th>maximum</th>
<th>minimum</th>
<th>5-percentile</th>
<th>number</th>
</tr>
</thead>
<tbody>
<tr>
<td>one connector 0°</td>
<td>30.2</td>
<td>8.28</td>
<td>72.8</td>
<td>14.7</td>
<td>19.6</td>
<td>320</td>
</tr>
<tr>
<td>two connectors 0°</td>
<td>26.1</td>
<td>4.34</td>
<td>38.4</td>
<td>15.6</td>
<td>20.3</td>
<td>119</td>
</tr>
<tr>
<td>three connectors 0°</td>
<td>27.8</td>
<td>3.54</td>
<td>32.9</td>
<td>21.2</td>
<td>21.7</td>
<td>25</td>
</tr>
<tr>
<td>all 0°</td>
<td>29.0</td>
<td>7.48</td>
<td>72.8</td>
<td>14.7</td>
<td>20.0</td>
<td>464</td>
</tr>
<tr>
<td>one connector 30°</td>
<td>36.6</td>
<td>9.00</td>
<td>54.9</td>
<td>14.0</td>
<td>20.4</td>
<td>84</td>
</tr>
<tr>
<td>one connector 60°</td>
<td>32.1</td>
<td>6.89</td>
<td>55.2</td>
<td>20.0</td>
<td>22.6</td>
<td>89</td>
</tr>
<tr>
<td>one connector 70°</td>
<td>37.2</td>
<td>3.86</td>
<td>44.6</td>
<td>30.2</td>
<td>31.5</td>
<td>11</td>
</tr>
<tr>
<td>all</td>
<td>30.5</td>
<td>8.03</td>
<td>72.7</td>
<td>14.0</td>
<td>20.1</td>
<td>655</td>
</tr>
</tbody>
</table>

For the compression tests, Table 4 contains the corresponding values of the parameter K according to equation (6). Since the bolt takes over part of the load in connector joints loaded in compression, the load carrying capacity of the bolt was deducted from the ultimate load per connector before calculating the parameter K. Here, the ultimate load per connector denotes the ultimate test load of the connection divided by the number of connectors. The characteristic value of the bolt capacity was determined according to draft Eurocode 5 Part 1, 6.2 (Working draft Christmas 1991). A value of 320 N/mm² was assumed for the mean value of tensile and yield strength of the bolt steel.

The results of the tension test evaluation show no indication of an influence of number of connectors for up to three connector units per joint. The same applies for the compression joints where a clear relation between the 5-percentile value of the parameter K and the number of connector units per joint cannot be established.
Table 4: Average, standard deviation, maximum and minimum values and non-parametric 5-percentile value of the parameter K for different compression test configurations

<table>
<thead>
<tr>
<th>test configuration</th>
<th>average</th>
<th>standard deviation</th>
<th>maximum</th>
<th>minimum</th>
<th>5-percentile</th>
<th>number</th>
</tr>
</thead>
<tbody>
<tr>
<td>one connector 180°</td>
<td>44.3</td>
<td>14.0</td>
<td>85.4</td>
<td>21.1</td>
<td>25.6</td>
<td>143</td>
</tr>
<tr>
<td>two connectors 180°</td>
<td>27.9</td>
<td>6.89</td>
<td>41.7</td>
<td>13.8</td>
<td>18.6</td>
<td>55</td>
</tr>
<tr>
<td>three connectors 180°</td>
<td>34.4</td>
<td>11.3</td>
<td>63.8</td>
<td>20.9</td>
<td>22.4</td>
<td>45</td>
</tr>
<tr>
<td>all 180°</td>
<td>38.7</td>
<td>14.0</td>
<td>85.4</td>
<td>13.8</td>
<td>21.7</td>
<td>243</td>
</tr>
</tbody>
</table>

Although the number of tests with load-grain angles between 30° and 70° is not very large, the 5-percentile value of the parameter K also seems to be independent of the load-grain angle in this area.

Design proposal

Based on the results of tests with split-ring and shear-plate connections, the following equation to determine the characteristic strength per connector of joints with up three split-ring or shear-plate connector units, respectively, is proposed:

$$R_{x,k} = K \cdot A_s^{0.75} / (k_1 \cdot k_2 \cdot k_3) + \eta \cdot R_{b,k}$$ \hspace{1cm} (7)

where

- $$K = 20 \text{ N/mm}^{1.5}$$
- $$A_s$$ = shear area per connector according to Fig. 1 in mm2
- $$k_1, k_2, k_3$$ = modifying factors taking into account the influence of moisture content, member thickness and characteristic density (see equation (6))
- $$\eta = 0$$ for load-grain angles between 0° and less than 150°
- $$\eta = 1$$ for load-grain angles between 150° and
180°

\[R_{n,k} = \] characteristic load-carrying capacity of
the bolt in N according to Eurocode 5
Part 1

Comparison with allowable loads

In order to compare today’s allowable loads of split-ring
and shear-plate connections with the characteristic load-carrying
capacities according to equation (7), the ratios
between the characteristic strength and the corresponding
allowable loads according to the Dutch NEN 3852 "TGB Hout" and
the German DIN 1052 "Holzbauwerke - Berechnung und Ausführung"
have been calculated. The calculation is based on double-shear
tensile joints in service class 1/2, a load-grain angle of 0°
and one connector unit per joint. The timber dimensions and
the end distances have been chosen to fulfil the respective
minimum code requirements.

Table 5: Ratio between characteristic connection strength and
allowable loads according to Dutch and German standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>(d_c) [mm]</th>
<th>(h_p) [mm]</th>
<th>(t_m) [mm]</th>
<th>(t_r) [mm]</th>
<th>(a_j) [mm]</th>
<th>(R_{n,k}) [kN]</th>
<th>(R_{a,all}) [kN]</th>
<th>(R_{n,k} / R_{a,all})</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEN 3852</td>
<td>73</td>
<td>19.1</td>
<td>39</td>
<td>27</td>
<td>140</td>
<td>17.3</td>
<td>8.0</td>
<td>2.16</td>
</tr>
<tr>
<td></td>
<td>73</td>
<td>19.1</td>
<td>45</td>
<td>33</td>
<td>140</td>
<td>20.0</td>
<td>8.5</td>
<td>2.35</td>
</tr>
<tr>
<td></td>
<td>73</td>
<td>19.1</td>
<td>58</td>
<td>39</td>
<td>140</td>
<td>21.2</td>
<td>9.5</td>
<td>2.23</td>
</tr>
<tr>
<td></td>
<td>112</td>
<td>24</td>
<td>45</td>
<td>33</td>
<td>180</td>
<td>24.8</td>
<td>13.0</td>
<td>1.91</td>
</tr>
<tr>
<td></td>
<td>112</td>
<td>24</td>
<td>58</td>
<td>39</td>
<td>180</td>
<td>32.0</td>
<td>14.5</td>
<td>2.21</td>
</tr>
<tr>
<td></td>
<td>112</td>
<td>24</td>
<td>70</td>
<td>45</td>
<td>180</td>
<td>33.1</td>
<td>16.0</td>
<td>2.07</td>
</tr>
<tr>
<td>DIN 1052</td>
<td>65</td>
<td>30</td>
<td>60</td>
<td>40</td>
<td>140</td>
<td>17.9</td>
<td>11.5</td>
<td>1.56</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>30</td>
<td>60</td>
<td>50</td>
<td>180</td>
<td>24.1</td>
<td>14.0</td>
<td>1.72</td>
</tr>
<tr>
<td></td>
<td>95</td>
<td>30</td>
<td>60</td>
<td>60</td>
<td>220</td>
<td>30.8</td>
<td>17.0</td>
<td>1.81</td>
</tr>
<tr>
<td></td>
<td>126</td>
<td>30</td>
<td>60</td>
<td>60</td>
<td>250</td>
<td>39.0</td>
<td>20.0</td>
<td>1.95</td>
</tr>
<tr>
<td></td>
<td>128</td>
<td>45</td>
<td>60</td>
<td>60</td>
<td>300</td>
<td>33.2</td>
<td>28.0</td>
<td>1.19</td>
</tr>
<tr>
<td></td>
<td>160</td>
<td>45</td>
<td>100</td>
<td>100</td>
<td>340</td>
<td>67.9</td>
<td>34.0</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>190</td>
<td>45</td>
<td>100</td>
<td>100</td>
<td>430</td>
<td>90.0</td>
<td>48.0</td>
<td>1.87</td>
</tr>
</tbody>
</table>
Table 5 contains the connector and timber dimensions, the allowable loads and the characteristic strength values of all split-ring and shear-plate connectors listed in the two standards. The ratio between the characteristic joint strength and the allowable load corresponds to the product of the partial safety coefficients for actions and resistance, respectively, divided by the modifying factor k_{mod}.

The comparatively low values of the ratio between characteristic strength and allowable loads according to DIN 1052 are mainly caused by the low minimum member thicknesses related to the connector height.

Conclusions

In order to establish characteristic strength values of split-ring and shear-plate connections old test data have been evaluated. The results of the evaluation show the suitability of a calculation model presented and discussed in Working Group 4 of CEN TC 124. This model assumes a block shear failure mode for joints loaded in tension. The influence of the bolt on the load-bearing capacity is neglected. Besides, the model provides consistent results also for joints loaded under an angle to the grain. For joints loaded in compression, the capacity of the bolt may additionally be taken into account.

An influence of number of connector units per joint could not be found within the range covered by the test data. The same applies to the influence of the angle between load and grain direction. For angles up to 70° the 5-percentile value of the strength per connector was independent of the load-grain angle.

The results of this evaluation may serve as a basis for determining characteristic values for split ring and shear plate connections in EN.TC 124.402. The authors ask for further available test data from other institutions to include them into the evaluation.

References

Onderzoek naar het draagvermogen van houtverbindingsmiddelen.
Rapport 4-56-1-HV-1, Stevin-Laboratorium, Delft University of Technology, Netherlands.

Onderzoek naar het draagvermogen van houtverbindingsmiddelen. De rechte eenassige tweevoudige trekverbinding.
Rapport 4-56-3-HV-3, Stevin-Laboratorium, Delft University of Technology, Netherlands.

Aanvullend onderzoek naar het draagvermogen van meerassige ringdeuvel-drukverbindingen.
Rapport 4-57-4-HV-8, Stevin-Laboratorium, Delft University of Technology, Netherlands.

Rapport 4-57-1-HV-5, Stevin-Laboratorium, Delft University of Technology, Netherlands.

Onderzoek naar het draagvermogen van houtverbindingsmiddelen. De twee- en drieassige, op trek belaste ringdeuvelverbindingen.
Rapport 4-57-2-HV-6, Stevin-Laboratorium, Delft University of Technology, Netherlands.

Proeven op rechte ringdeuvelverbindingen met verschillend vochtgehalte in het hout, en met een afwijkende eindafstand.
Rapport 4-59-3-HV-17, Stevin-Laboratorium, Delft University of Technology, Netherlands.

Druk- en trekproeven op rechte, een-assige verbindingen met TECO-ringdeuvels 112 mm (4").
Rapport 4-61-13-R-1, Stevin-Laboratorium, Delft University of Technology, Netherlands.

De sterkte van verbindingen met plaatdeuvels 67 mm bij toepassing van volgplaten met verschillende afmetingen.
Rapport 4-73-5-V-17, Stevin-Laboratorium, Delft University of Technology, Netherlands.

Creep and damage research on timber joints. Part one.

Duurproeven ter bestudering van het verband tussen belastingduur en sterkte bij houtverbindingen. Sterkteverminderingsproeven.
Rapport 4-84-4-HD-21, Stevin-Laboratorium, Delft University of Technology, Netherlands.

Creep and damage research on timber joints. Part two.
Rapport 25.4-89-15/C/HD-24, Stevin-Laboratorium, Delft University of Technology, Netherlands.

Creep and damage research on timber joints. Part three.
Rapport 25.4-90-12/C/HD-26, Stevin-Laboratorium, Delft University of Technology, Netherlands.

Creep and damage research on timber joints. Part four.
Rapport 25.4-91-06/C/HD-28, Stevin-Laboratorium, Delft University of Technology, Netherlands.

Proeven op scheve, een-assige verbindingen met TECO-ringdeuvels 73 mm.
Rapport 4-62-1-HV26, Stevin-Laboratorium, Delft University of Technology, Netherlands.

Proeven op 2-assige rechte verbindingen met TECO-ringdeuvels 112 mm.
Rapport 4-62-10-R-3, Stevin-Laboratorium, Delft University of Technology, Netherlands.

Proeven op scheve, 2-assige verbindingen met TECO-ringdeuvels 73 mm.

Proeven op rechte en scheve 1-assige verbindingen met TECO-ringdeuvels 112 mm en 73 mm.
Rapport 4-64-3-R-4, Stevin-Laboratorium, Delft University of Technology, Netherlands.

Duurproeven ter bestudering van het verband tussen belastingduur en sterkte bij houtverbindingen: bepaling van de breukbelastingen.

Proeven op ringdeuvel- en draadnagelverbindingen vervaardigd uit hout met lage druksterkte.
Rapport 4-63-17-V-5, Stevin-Laboratorium, Delft University of Technology, Netherlands.
sity of Technology, Netherlands.

Proeven op ring- en plaatdeuvelverbindingen in vurehout; onderzoek naar de invloed van bout, resp. draadeind.

Proeven op ringdeuvelverbindingen in yang.
Rapport 4-67-1-R-8, Stevin-Laboratorium, Delft University of Technology, Netherlands.

Ringdeuvelverbindingen in loofhout. Enkele houteigen-
schappen, proefresultaten van verbindingen in afzelia en
voorstel toelaatbare belastingen.
Rapport 4-67-10-R-10, Stevin-Laboratorium, Delft University of Technology, Netherlands.

Houtsoorten. Informatie voor de praktijk.
Houtinstituut TNO, Delft, Netherlands.
INTERNATIONAL COUNCIL FOR BUILDING RESEARCH STUDIES AND DOCUMENTATION

WORKING COMMISSION W18 - TIMBER STRUCTURES

CHARACTERISTIC STRENGTH OF TOOTH-PLATE CONNECTOR JOINTS

by

H J Blass
Technical University of Delft
The Netherlands
J Ehlbeck
M Schlager
University of Karlsruhe
Germany

MEETING TWENTY - FIVE
ÅHUS
SWEDEN
AUGUST 1992
Characteristic strength of tooth-plate connector joints

H.J. Blass, J. Ehlbeck and M. Schlager

Introduction

The change of code formats in European timber codes from an allowable load format towards a partial safety coefficient format requires characteristic strength values of the material and of connections. For joints with pin-type fasteners, the characteristic connection strength can be calculated using a solution based on the work of Johansen [1]. Eurocode 5 provides those equations to calculate single and double-shear joints with nails, screws, dowels or bolts based on the joint geometry and the strength of the timber and the fastener. For other types of mechanical timber joints, characteristic strength values have still to be determined. The members of CEN TC 124 WG4 have the task to establish characteristic strength values for connector joints. During the last CEN TC 124 WG4 meeting in Trento, Italy, a calculation model describing the load-bearing capacity of tooth-plate connections was presented. Using this model existing test data are evaluated to determine characteristic strength values of tooth-plate connections. The result of the evaluation is compared to today’s allowable loads of this type of mechanical timber connections.

Calculation model

The model used to describe the load-carrying capacity of tooth-plate connections is based on the assumption of a load-sharing between tooth plate connector and bolt. The connection strength can therefore be described by:

\[R_{j,k} = R_{c,k} + \eta \cdot R_{b,k} \] \hspace{1cm} (1)

where

- \(R_{j,k} \) = characteristic load-carrying capacity of the tooth plate connection containing both tooth plates and bolts
- \(R_{c,k} \) = characteristic load-carrying capacity of the tooth plate connector
- \(R_{b,k} \) = characteristic load-carrying capacity of the bolt according to Eurocode 5 Part 1
- \(\eta \) = factor between 0 and 1 to account for the effect of load distribution between tooth-plate connector and bolt
An evaluation of the allowable loads of tooth-plate connectors according to DIN 1052 "Holzbauwerke - Berechnung und Ausführung" resulted in the following relation between the load-carrying capacity of a circular tooth-plate connector and its diameter:

\[R_{c,k} = A \cdot d_c^{1.5} \]

(2)

where

\[A = \text{factor depending on the connector type to determine through tests} \]

\[d_c = \text{connector diameter} \]

Tests with tooth-plate connections

The tests reported here [2 - 11] were performed in the Stevin-Laboratory of Delft University of Technology between 1957 and 1991. Only one type of tooth-plate connector, the Bulldog connector, was used. Circular connectors with diameters between 50 mm and 117 mm, two square shaped connectors with 100 mm and 130 mm side length and an oval connector 70 mm by 130 mm were tested in spruce specimens. A total amount of 426 tests has been evaluated. Table 1 gives the number of tests in the different configurations of connector dimension, angle between force and grain direction and number of connectors per shear plane of the test specimens. Tests with an angle of 0° are tension tests parallel to the grain, whereas an angle of 180° denotes a compression test. Since all tests have been carried out as double-shear tests, one connector unit stands for two connectors. Apart from 17 tests with one Bulldog Ø 75 mm per shear plane where two bolts were used, all tests have been carried out with one bolt per connector unit.

The failure mode of the tested specimens was in many cases embedding failure of the wood under both the connector teeth and the bolt. With increasing deformations, splitting and shear failure of the wood could be observed (see Fig. 1).

The test procedure of those tests carried out before 1962 includes two unloading steps from 50% and 70%, respectively, of the estimated maximum load \(F_{est} \) down to 10% of \(F_{est} \) and a third unloading from 90% down to 30% of \(F_{est} \). The time necessary to reach the ultimate load was about 20 minutes. From 1962 on the tests followed the procedure described in EN 26891 with one unloading step from 40% to 10% of the estimated maximum load. In the evaluation of the test results, the influence of the different test procedures on the results has been neglected.
Fig. 1: Typical failure of a Bulldog tooth-plate connection

Table 1: Connector dimension, load-grain angle and number of connector units of the tested tooth-plate connections

<table>
<thead>
<tr>
<th>Load-grain angle and number of connectors per shear plane</th>
<th>Tooth-plate connector dimensions [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>e 50</td>
</tr>
<tr>
<td>0°/1</td>
<td>20</td>
</tr>
<tr>
<td>0°/2</td>
<td>-</td>
</tr>
<tr>
<td>0°/3</td>
<td>-</td>
</tr>
<tr>
<td>30°/1</td>
<td>-</td>
</tr>
<tr>
<td>60°/1</td>
<td>-</td>
</tr>
<tr>
<td>90°/1</td>
<td>-</td>
</tr>
<tr>
<td>180°/1</td>
<td>-</td>
</tr>
<tr>
<td>Sum</td>
<td>20</td>
</tr>
</tbody>
</table>
As for similar tests with split-ring and shear-plate connections, the purpose of the tests originally was to establish allowable loads for timber connections with Bulldog connectors for the Dutch timber code. Table 2 shows the range of the related parameters end distance, spacing, timber, bolt and connector dimensions covered by the reported tests. For the square and oval tooth plate connectors, a connector diameter \(d_c\) has been calculated which corresponds to a circle with the same area as the actual connector area. The spacing \(a\) as given in Table 2 is the actual distance between two connectors, independent of the connector arrangement \((a = (a_1^2 + a_2^2)^{0.5})\).

Table 2: Range of related dimensions and of moisture content

<table>
<thead>
<tr>
<th></th>
<th>(a_3/d_c)</th>
<th>(a/d_c)</th>
<th>(t_m/h_c)</th>
<th>(t_s/h_c)</th>
<th>(b_m/d_c)</th>
<th>(a_3/d_b)</th>
<th>(a/d_b)</th>
<th>Moisture content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>1.14</td>
<td>1.53</td>
<td>2.48</td>
<td>1.37</td>
<td>1.27</td>
<td>6.48</td>
<td>8.70</td>
<td>13.6</td>
</tr>
<tr>
<td>Maximum</td>
<td>1.81</td>
<td>1.80</td>
<td>4.38</td>
<td>2.19</td>
<td>1.93</td>
<td>7.48</td>
<td>9.80</td>
<td>17.0</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.68</td>
<td>1.28</td>
<td>1.53</td>
<td>0.88</td>
<td>1.12</td>
<td>4.02</td>
<td>6.41</td>
<td>9.0</td>
</tr>
<tr>
<td>Number</td>
<td>426</td>
<td>89</td>
<td>426</td>
<td>426</td>
<td>426</td>
<td>426</td>
<td>89</td>
<td>406</td>
</tr>
</tbody>
</table>

\(a_3 = \text{end distance}\)
\(a = \text{connector spacing}\)
\(d_c = \text{connector diameter}\)
\(h_c = \text{connector height}\)
\(t_m = \text{middle member thickness}\)
\(t_s = \text{side member thickness}\)
\(b_m = \text{middle member width}\)
\(d_b = \text{bolt diameter}\)

Evaluation of the tests

From the timber dimensions the characteristic load-carrying capacity of the bolt was determined for each specimen according to draft Eurocode 5 Part 1, 6.2 (Working draft Christmas 1991). A value of 320 N/mm\(^2\) was assumed for the mean value of tensile and yield strength of the bolt steel. The characteristic density of the spruce was assumed to 380 kg/m\(^3\). For those specimens, where the required loaded end distance of 7d for bolted connections was not reached, the corresponding characteristic embedding strength value of the timber was decreased by the factor \(k_a\) according to draft Eurocode 5 Part 1, Table 6.6a (Working draft Christmas 1991). The resulting load-carrying capacity of the bolt multiplied with the load-distribution factor \(\eta\) was then deducted from the ultimate load per connector before calculating the parameter \(A\). Here, the ultimate load per connector denotes the ultimate test load of the connection divided by the number of connectors.
The parameter A according to equation (2) was determined for each test specimen. A modification to take into account the different moisture content of the test specimens has not been carried out since all specimens had an average moisture content within the range of service class 1/2 according to draft Eurocode 5 Part 1, 3.2.4 (Working draft Christmas 1991).

The influence of the member thickness was automatically taken into account through the calculation of the characteristic load-carrying capacity of the bolt. A further influence of member thickness on the connection capacity was not considered.

For each test, the parameter A consequently was determined as:

$$A = (R_{j,k} - \eta \cdot R_{h,k}) / d^1.5$$

(3)

Table 3 shows the average, standard deviation, maximum and minimum values as well as the non-parametric 5-percentile value of the parameter A in N/mm² according to equation (3) for the tested specimens and $\eta = 1.0$. The corresponding values for $\eta = 0.9$ and $\eta = 0.8$ are shown in Table 4 and 5, respectively.

Table 3: Average, standard deviation, maximum, minimum and non-parametric 5-percentile value of the parameter A for different test configurations and $\eta = 1.0$

<table>
<thead>
<tr>
<th>test configuration</th>
<th>average</th>
<th>standard deviation</th>
<th>maximum</th>
<th>minimum</th>
<th>5-percentile</th>
<th>number</th>
</tr>
</thead>
<tbody>
<tr>
<td>one connector 0°</td>
<td>20.1</td>
<td>4.28</td>
<td>37.3</td>
<td>11.0</td>
<td>14.8</td>
<td>282</td>
</tr>
<tr>
<td>two connectors 0°</td>
<td>23.6</td>
<td>5.36</td>
<td>33.0</td>
<td>8.3</td>
<td>15.3</td>
<td>74</td>
</tr>
<tr>
<td>three connectors 0°</td>
<td>19.1</td>
<td>4.10</td>
<td>25.2</td>
<td>12.8</td>
<td>13.4</td>
<td>15</td>
</tr>
<tr>
<td>all 0°</td>
<td>20.8</td>
<td>4.73</td>
<td>37.3</td>
<td>8.3</td>
<td>14.8</td>
<td>371</td>
</tr>
<tr>
<td>one connector 30°-180°</td>
<td>25.8</td>
<td>4.98</td>
<td>34.3</td>
<td>14.1</td>
<td>16.1</td>
<td>55</td>
</tr>
<tr>
<td>all</td>
<td>21.4</td>
<td>5.05</td>
<td>37.3</td>
<td>8.3</td>
<td>14.8</td>
<td>426</td>
</tr>
</tbody>
</table>
Table 4: Average, standard deviation, maximum, minimum and non-parametric 5-percentile value of the parameter A for different test configurations and $\eta = 0.9$

<table>
<thead>
<tr>
<th>test configuration</th>
<th>average</th>
<th>standard deviation</th>
<th>maximum</th>
<th>minimum</th>
<th>5-percentile</th>
<th>number</th>
</tr>
</thead>
<tbody>
<tr>
<td>one connector 0'</td>
<td>21.1</td>
<td>4.43</td>
<td>39.3</td>
<td>12.7</td>
<td>15.6</td>
<td>282</td>
</tr>
<tr>
<td>two connectors 0'</td>
<td>24.7</td>
<td>5.27</td>
<td>33.9</td>
<td>9.7</td>
<td>16.6</td>
<td>74</td>
</tr>
<tr>
<td>three connectors 0'</td>
<td>20.2</td>
<td>4.01</td>
<td>26.2</td>
<td>13.9</td>
<td>14.7</td>
<td>15</td>
</tr>
<tr>
<td>all 0'</td>
<td>21.8</td>
<td>4.82</td>
<td>39.3</td>
<td>9.7</td>
<td>15.5</td>
<td>371</td>
</tr>
<tr>
<td>one connector 30'-180'</td>
<td>26.6</td>
<td>5.00</td>
<td>35.1</td>
<td>14.8</td>
<td>16.8</td>
<td>55</td>
</tr>
<tr>
<td>all</td>
<td>22.4</td>
<td>5.13</td>
<td>39.3</td>
<td>9.7</td>
<td>15.5</td>
<td>426</td>
</tr>
</tbody>
</table>

Table 5: Average, standard deviation, maximum, minimum and non-parametric 5-percentile value of the parameter A for different test configurations and $\eta = 0.8$

<table>
<thead>
<tr>
<th>test configuration</th>
<th>average</th>
<th>standard deviation</th>
<th>maximum</th>
<th>minimum</th>
<th>5-percentile</th>
<th>number</th>
</tr>
</thead>
<tbody>
<tr>
<td>one connector 0'</td>
<td>22.0</td>
<td>4.60</td>
<td>41.2</td>
<td>13.5</td>
<td>16.3</td>
<td>282</td>
</tr>
<tr>
<td>two connectors 0'</td>
<td>25.8</td>
<td>5.19</td>
<td>34.8</td>
<td>11.2</td>
<td>17.7</td>
<td>74</td>
</tr>
<tr>
<td>three connectors 0'</td>
<td>21.4</td>
<td>3.92</td>
<td>27.2</td>
<td>15.0</td>
<td>15.9</td>
<td>15</td>
</tr>
<tr>
<td>all 0'</td>
<td>22.8</td>
<td>4.93</td>
<td>41.2</td>
<td>11.2</td>
<td>16.3</td>
<td>371</td>
</tr>
<tr>
<td>one connector 30'-180'</td>
<td>27.3</td>
<td>5.00</td>
<td>35.9</td>
<td>15.6</td>
<td>17.6</td>
<td>55</td>
</tr>
<tr>
<td>all</td>
<td>23.4</td>
<td>5.16</td>
<td>41.2</td>
<td>11.2</td>
<td>16.3</td>
<td>426</td>
</tr>
</tbody>
</table>
The results of the test evaluation show no indication of an influence of number of connectors on the strength per connector for up to three connector units per joint. Although the number of tests with load-grain angles between 30° and 180° is quite small, the 5-percentile value of the parameter A also seems to be independent of the load-grain angle.

Design proposal

Based on the results of tests with tooth-plate connections, the following equation to determine the characteristic connection strength per Bulldog connector and shear plane for joints with up to three connector units is proposed:

\[R_{j,k} = R_{c,k} + R_{b,k} \] \hspace{1cm} (4)

where

\[R_{j,k} \] = characteristic load-carrying capacity in N of the tooth plate connection containing both tooth plates and bolts

\[R_{c,k} \] = characteristic load-carrying capacity in N of the tooth plate connector

\[R_{b,k} \] = characteristic load-carrying capacity in N of the bolt according to Eurocode 5 Part 1

\[R_{c,k} = 15 \cdot d_c^{1.5} \] \hspace{1cm} (5)

where

\[d_c \] = connector diameter for circular connectors and

\[d_c = (4 \cdot A_c / \pi)^{0.5} \] for non-circular connectors

\[A_c \] = connector area

Comparison with allowable loads

In order to compare today’s allowable loads of tooth-plate connections with the characteristic load-carrying capacities according to equation (4), the ratios between the characteristic strength and the corresponding allowable loads according to the Dutch NEN 3852 "TGB Hout" and the German DIN 1052 "Holzbauwerke - Berechnung und Ausführung" have been calculated. The calculation is based on double-shear tensile joints in service class 1/2, a load-grain angle of 0° and one connector unit per joint. The timber dimensions and the end distances have been chosen to fulfil the respective minimum code requirements.
Table 6 contains the connector and timber dimensions, the allowable loads and the characteristic strength values of all Bulldog-connectors listed in the two standards. The ratio between the characteristic joint strength and the allowable load corresponds to the product of the partial safety coefficients for actions and resistance, respectively, divided by the modifying factor k_{mod}.

Table 6: Ratio between characteristic connection strength and allowable loads according to NEN 3852 and DIN 1052

<table>
<thead>
<tr>
<th>Standard</th>
<th>d_c [mm]</th>
<th>d_b [mm]</th>
<th>t_m [mm]</th>
<th>t_s [mm]</th>
<th>$R_{c,k}$ [kN]</th>
<th>$R_{b,k}$ [kN]</th>
<th>$R_{c,\text{all}}$ [kN]</th>
<th>$R_{b,\text{all}}$ [kN]</th>
<th>ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEN 3852</td>
<td>50</td>
<td>80</td>
<td>20</td>
<td>19</td>
<td>5.3</td>
<td>2.8</td>
<td>2.0</td>
<td>0.9</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>62</td>
<td>12</td>
<td>26</td>
<td>19</td>
<td>7.3</td>
<td>4.3</td>
<td>3.0</td>
<td>1.4</td>
<td>2.63</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>12</td>
<td>29</td>
<td>19</td>
<td>9.7</td>
<td>4.8</td>
<td>4.0</td>
<td>1.6</td>
<td>2.61</td>
</tr>
<tr>
<td></td>
<td>95</td>
<td>16</td>
<td>38</td>
<td>25</td>
<td>13.9</td>
<td>8.0</td>
<td>5.5</td>
<td>2.7</td>
<td>2.65</td>
</tr>
<tr>
<td></td>
<td>117</td>
<td>20</td>
<td>58</td>
<td>39</td>
<td>19.0</td>
<td>14.5</td>
<td>8.0</td>
<td>5.2</td>
<td>2.53</td>
</tr>
<tr>
<td></td>
<td>100x100</td>
<td>16</td>
<td>32</td>
<td>21</td>
<td>18.0</td>
<td>6.7</td>
<td>7.0</td>
<td>2.3</td>
<td>2.66</td>
</tr>
<tr>
<td></td>
<td>130x130</td>
<td>20</td>
<td>40</td>
<td>27</td>
<td>26.7</td>
<td>10.0</td>
<td>11.0</td>
<td>3.6</td>
<td>2.51</td>
</tr>
<tr>
<td></td>
<td>70x130</td>
<td>16</td>
<td>58</td>
<td>39</td>
<td>15.2</td>
<td>10.1</td>
<td>6.0</td>
<td>4.2</td>
<td>2.49</td>
</tr>
<tr>
<td>DIN 1052</td>
<td>48</td>
<td>12</td>
<td>60</td>
<td>40</td>
<td>5.0</td>
<td>6.4</td>
<td>5.0</td>
<td>0</td>
<td>2.29</td>
</tr>
<tr>
<td></td>
<td>62</td>
<td>12</td>
<td>60</td>
<td>40</td>
<td>7.3</td>
<td>6.4</td>
<td>7.0</td>
<td>0</td>
<td>1.97</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>16</td>
<td>60</td>
<td>50</td>
<td>9.7</td>
<td>10.8</td>
<td>9.0</td>
<td>0</td>
<td>2.28</td>
</tr>
<tr>
<td></td>
<td>95</td>
<td>16</td>
<td>60</td>
<td>50</td>
<td>13.9</td>
<td>10.8</td>
<td>12.0</td>
<td>0</td>
<td>2.06</td>
</tr>
<tr>
<td></td>
<td>117</td>
<td>20</td>
<td>80</td>
<td>80</td>
<td>19.0</td>
<td>18.2</td>
<td>16.0</td>
<td>0</td>
<td>2.32</td>
</tr>
<tr>
<td></td>
<td>140</td>
<td>24</td>
<td>80</td>
<td>80</td>
<td>24.8</td>
<td>22.7</td>
<td>22.0</td>
<td>0</td>
<td>2.16</td>
</tr>
<tr>
<td></td>
<td>165</td>
<td>24</td>
<td>80</td>
<td>80</td>
<td>31.8</td>
<td>22.7</td>
<td>30.0</td>
<td>0</td>
<td>1.82</td>
</tr>
<tr>
<td></td>
<td>100x100</td>
<td>20</td>
<td>60</td>
<td>60</td>
<td>18.0</td>
<td>15.0</td>
<td>17.0</td>
<td>0</td>
<td>1.94</td>
</tr>
<tr>
<td></td>
<td>130x130</td>
<td>24</td>
<td>60</td>
<td>60</td>
<td>26.7</td>
<td>17.1</td>
<td>23.0</td>
<td>0</td>
<td>1.90</td>
</tr>
</tbody>
</table>

The allowable loads for bolts according to DIN 1052 are given as zero, since DIN 1052 only provides allowable loads for
connector/bolt combinations. The ratios between the characteristic connection strength and the allowable loads according to DIN 1052 for those connectors with a diameter or a side length of 130 mm and more are in reality larger, because DIN 1052 requires one or two additional bolts per splice for these connectors at the splice ends.

Conclusions

In order to establish characteristic strength values of Bulldog tooth-plate connections old test data have been evaluated. The results of the evaluation show the suitability of a calculation model presented and discussed in Working Group 4 of CEN TC 124. This model assumes a load-sharing between bolt and connector. The characteristic load-bearing capacity of the connector has been determined on the basis of the assumption of a complete load-sharing.

An influence of number of connector units per joint could not be found within the range covered by the test data. The same applies to the influence of the angle between load and grain direction. Hence, the design proposal is based on independency between characteristic load-bearing capacity of a Bulldog tooth-plate connection and load-grain angle or number of fasteners, respectively. This applies to connections with up to three connector units.

The results of this evaluation may serve as a basis for determining characteristic values for tooth-plate connections in EN TC 124.402. The authors ask for further available test data from other institutions to be able to extend the evaluation.

References

sity of Technology, Netherlands.

INTERNATIONAL COUNCIL FOR BUILDING RESEARCH STUDIES AND DOCUMENTATION

WORKING COMMISSION W18 - TIMBER STRUCTURES

EXTENDING YIELD THEORY TO SCREW CONNECTIONS

by

T E McLain
Virginia Polytechnic Institute and State University
USA

MEETING TWENTY - FIVE
ÅHUS
SWEDEN
AUGUST 1992
EXTENDING YIELD THEORY TO SCREW CONNECTIONS

T. E. McLain

SUMMARY

New design criteria for lag or coach screw connections to wood members are proposed. These equations are based on full consideration of all possible yield modes. The development of the equations is reviewed and a potential simplification is proposed which utilizes a fixed ratio of the yield moment in the screw thread to that in the shank. The result is three equations which may be applied to a wide range of steel and wood side plate geometries.

INTRODUCTION

Design provisions for connections with dowel-type fasteners in Eurocode 5 and codes of many countries are based on "yield theory." Johansen (1949) and later, Möller (1950), derived a set of predictive equations for the load-carrying capacity of joints with varying geometry. The accuracy of these equations for predicting a yield load in connections with bolts, nails or dowels have been confirmed by several research groups in recent years (eg. Whale and Smith 1986, Soltis et al 1986).

For laterally-loaded screw connections, however, applying yield theory may be problematic. This is because the geometry of the screw, primarily the length and characteristics of the threaded portion, may alter some of the yield patterns predicted using equations derived for prismatic fasteners. The purpose of this paper is to describe the results of a recent study made to extend the yield theory to laterally-loaded screw connections. This study was part of a major effort in the United States to incorporate European yield theory into working stress and limit states design codes.

For single shear bolt, nail or dowel connections, up to six possible yield modes may occur (Whale 1991). Loads for each possible mode are calculated and the minimum load is the characteristic load-carrying capacity. Besides component dimensions, the yield strength of the fasteners, sometimes expressed as yield bending moment, and a characteristic embedding stress or bearing strength are input to the yield equations. The yield properties of the fasteners are established by test or a minimum manufacturing specification. The embedding stress may be established as a function of fastener type and diameter, species density and the angle of the transferred shear force vector to the grain of the timber. Whale (1991) summarizes the levels of, and interrelationships between, these properties prescribed in Eurocode 5. Similar relationships have recently been established for North American species (Wilkinson 1991).
With single shear lag screw connections, some dowel yield modes are not possible; also, the fastener may yield in either the shank or the thread. Larsen and Reestrup (1969) identified three potential yield modes shown in Figure 1. Mode I (U.S. code nomenclature) represents bearing yield in the cleat or side member. Modes III and IV result from the formation of one or two yield points in the screw as shown. Mode II yielding, where the fastener rotates, causing bearing failure in both members, is found in bolted joints and is not possible in lag screw connections meeting minimum geometry specifications. Larsen and Reestrup (1969) derived predictive equations for these yield modes. This derivation is reviewed next.

YIELD EQUATIONS

The location of the yield point in the block or main member is important to the magnitude of the yield load for Modes III and IV. With SP as shown in Figure 2, define two values of SP, X₁, and X₂, that describe boundaries on the location of maximum moment and yield stress in the screw. If SP ≥ X₁ then yield occurs in the shank at the point of maximum moment. If SP ≤ X₂ then yielding occurs at the point of maximum moment which is in the threaded region. For X₂ < SP < X₁ the maximum moment will be in the shank but the yield point is in the transition between shank and thread. Consequently, for each of Modes III and IV there are three yield equations corresponding to three possible yield locations. The resulting seven behavioral equations are shown below:

MODE I

\[P_y = \frac{d \, t_1 \, f_2}{\beta} = d \, t_1 \, f_1 \] \hspace{1cm} (1)

MODE III

\[\text{For } \frac{SP}{d} \geq \frac{X_1}{d}: \quad P_y = \frac{t_1 \, d \, f_2}{(2+\beta)} \left[\sqrt{\frac{2(1+\beta)}{\beta}} + \frac{2 \, f_2 \, (2+\beta)}{3 \, f_2 \, (t_1/d)^2} \right] - 1 \] \hspace{1cm} (2)

\[\text{For } \frac{SP}{d} \leq \frac{X_2}{d}: \quad P_y = \frac{t_1 \, d \, f_2}{(2+\beta)} \left[\sqrt{\frac{2(1+\beta)}{\beta}} + \frac{2 \, R_n \, f_2 \, (2+\beta)}{3 \, f_2 \, (t_1/d)^2} \right] - 1 \] \hspace{1cm} (3)

\[\text{For } \frac{X_2}{d} < \frac{SP}{d} < \frac{X_1}{d}: \quad P_y = \frac{2 \, t_1 \, d \, f_2}{\beta} \left[\frac{(2+\beta) \, (SP/d)^2}{(t_1/d)^2} + \frac{(SP/d)^2}{(t_1/d)^2} + \frac{\beta \, R_n \, f_2}{6 \, f_2 \, (t_1/d)^2} \right] - \frac{SP}{t_1} - \frac{1}{2} \] \hspace{1cm} (4)
where:

\[
X_1 = \frac{(t/d)}{(2+\beta)} \left[\frac{2(1+\beta)}{\beta} \frac{2f_y}{3} \left(\frac{2+\beta}{f_2(t/d)^2} -1 \right) + \frac{1}{f_2} \frac{f_y f_2 (1-R_m)}{3} \right] \quad (5)
\]

\[
X_2 = \frac{(t/d)}{(2+\beta)} \left[\frac{2(1+\beta)}{\beta} \frac{2R_m f_y}{3} \frac{2+\beta}{f_2(t/d)^2} -1 \right] \quad (6)
\]

MODE IV

For \(\frac{SP}{d} \geq \frac{X_1}{d} \):

\[
P_y = d^2 \sqrt{\frac{2f_y}{3} \frac{f_2}{(1+\beta)}} \quad (7)
\]

For \(\frac{SP}{d} \leq \frac{X_2}{d} \):

\[
P_y = d^2 \sqrt{\frac{f_y f_2 (1+R_m)}{3} \frac{(1+\beta)}{(1+\beta)}} \quad (8)
\]

For \(\frac{X_2}{d} < \frac{SP}{d} < \frac{X_1}{d} \):

\[
P_y = (SP/d) \frac{f_2 d^2}{\beta} \left[\frac{f_y (1+R_m)\beta}{3} \left(\frac{(1+\beta)}{(SP/d)^2} \frac{f_2}{(1+\beta)} -1 \right) \right] \quad (9)
\]

where:

\[
X_1 = \frac{1}{f_2} \sqrt{\frac{f_y f_2}{3} \left[\frac{2}{(1+\beta)} + \sqrt{1-R_m} \right]} \quad (10)
\]

\[
X_2 = \frac{1}{f_2} \sqrt{\frac{f_y f_2}{3} \frac{(1+R_m)}{(1+\beta)}} \quad (11)
\]
VALIDATION OF EQUATIONS

Larsen and Reestrup (1969) provide strong supporting evidence for the viability of the seven equations to predict yield load. However, there is a need to validate these equations for a broader range of joint geometries and species density used by Larsen/Reestrup.

Additionally, Larsen/Reestrup defined connection yield load on the basis of a fixed value of angular rotation of the screw. This is a practical definition of yield resulting from the observation that, over the range of load-deformation curves obtained for various joint geometries, there is no single, consistently identifiable yield or maximum load point. This problem was addressed by Harding and Fowkes (1984) and Patton-Mallory (1989) with bolted connections who defined yield on a 5% d offset basis as shown in Figure 3. This definition was adopted for U. S. codes. The offset yield point is, experimentally reasonably unambiguous and generally occurs at a load level below the development of microcracking common to perpendicular-to-grain connections. Use of a predicted yield load requires a minimum fastener spacing geometry to avoid brittle failures such as splitting or a failure mode not predicted by the theory.

Validation test data, in the form of individual load-deformation traces and density of all members, were obtained from studies made by Newlin and Gahagan (1938) and McLain and Carroll (1990).

Useable data were obtained from a total of 213 tests with wood side plates and 36 tests with steel plates from the Newlin and Gahagan (1938) study (Note: data were collected in discrete increments and P_{5%} could not be identified for all samples from available records). These tests were of parallel-to-grain connections of three softwood species (white pine, southern pine, Douglas-fir) and white oak. Test screw diameters ranged from 6.4 mm to 25 mm (⅛ to 1 in.) but most joints contained 16 mm (⅝ in.) screws of varied length. All steel side plates were 12.5 mm (⅝ in.) thick. Results of the Newlin and Gahagan tests have been the basis for lag screw connection lateral strength design values in North America for the past 50 years.

Data from 50 tests of steel side plate connections using two screw sizes, 9.5 mm and 16 mm (⅜ in. and ⅝ in.) and blocks of southern yellow pine and spruce-pine-fir were also available. These parallel-to-grain tests are described in McLain and Carroll (1990).

For each test, the actual dimensions and density of each cleat and block were obtained as well as connection proportional limit, maximum load (P_{max}), and the 5% diameter offset yield load (P_{5%}).

Additional verification data were taken from Tokuda, et al. (1989 a,b) who reported tests of parallel-to and perpendicular-to-grain connections using steel side plates. Three lengths (65mm, 100mm and 150mm) each, of 9mm and 20mm screws, were used to fasten
6mm and 12mm thick steel plates to Douglas-fir and Hem-fir blocks. An average \(P_{50} \) was estimated by fitting a reasonable curve to tabulated load-deformation points. Additional data for some sets were collected directly from published load-deformation curves. Included in the analysis are 12 species-geometry combinations, six each for parallel-to and perpendicular-to-grain metal side plate connections.

Calculating Yield Loads

The dowel bearing strength or embedding stress and the fastener yield strength are input to the yield equations. These values were not available for the specific test data at hand and were estimated as described below.

Dowel bearing strength: Wilkinson (1991) conducted extensive embedding tests of various fasteners in North American species and developed the following relationships for dowel-type fasteners greater than 6.4mm (0.25 in) in prebored holes:

(parallel-to-grain)

\[
f_h = 77.2G
\]

(12)

(perpendicular-to-grain)

\[
f_h = 230 \ G^{1.45} \ d^{-0.5}
\]

(13)

where:
\(f_h \) = dowel bearing strength, MPa
\(G \) = relative density of wood at 12% moisture content
\(d \) = shank diameter, mm.

These equations differ from those of Whale, Smith, and Larsen (1987) in that they predict mean embedding stress on a 5%D offset basis and encompass a greater number of species. The offset stress varied little from maximum stress in most cases. For steel plates, \(f_h = 400 \) MPa for plates with \(t \geq 6.4 \text{mm (0.25 in.)} \) and \(f_h = 310 \) MPa for thinner plates was assumed.

Fastener yield strength: Yield strength may be found from bending or tension tests. For relatively short fasteners with large diameter, bending tests are impractical. In the U. S. a yield strength of 310 MPa (45 ksi) is traditionally assigned to screws meeting the requirements of ASTM A307 (1984). This value is approximately the average of the ultimate tensile strength of the screw and the minimum tensile yield strength.

Carroll (1988) sampled 9.5 mm (\% in.) and 16 mm (\% in.) lag screws from seven different manufacturers. Ten replicates were taken at random from shipments of 100+
screws of each size from each manufacturer. Bending yield strength, \(f_y \), on a 5% of diameter offset basis, was found by testing cantilevered lag screws are a manner similar to that of Larsen and Reestrup (1969). \(f_y \) was found to range from 372 to 551 MPa (54 to 80 ksi) with relatively little variation between manufacturers. A minimum \(f_y \) of 310 MPa (45 ksi) is not contraindicated. Additional screws with 9.5mm (\(\frac{\%}{\%} \) in.), 12mm (\(\frac{\%}{\%} \) in.), 16 mm, (\(\% \) in.) and 19mm (\(\% \) in.) diameter, five replicates each, were tested such that the point of maximum moment was in the thread. The ratios of yield moment in thread of that of the shank, \(R_m \), were 0.36, 0.45, 0.50 and 0.61, respectively. These compare favorably with Larsen/Reestrup (1969) values of 0.37 and 0.53 for 9.5mm (\(\% \) in.) and 16 mm (\(\% \) in.) screws, respectively. A regression of these data showed:

\[
\frac{M_t}{M_s} = R_m = 0.14 + 0.024d \quad \ldots \quad (14)
\]

where \(R_m \) = ratio of yield moment in thread, \(M_t \), to that of the shank, \(M_s \),
\(d \) = nominal shank diameter, mm

Dimensions: Actual dimensions of screws and members were used to calculate the yield load, \(P_y \), if they were available. Stated mean or nominal dimensions were used if actual dimensions were not available.

THEORETICAL AND EXPERIMENTAL COMPARISONS

The ratio of the experimental yield load to the calculated yield load, \(P_{50}/P_y \), was computed for each of the 212 different wood-wood connections. The results, shown in Table 1 and graphically in Figure 4, indicate a slightly conservative prediction of the experimental yield loads. This is judged acceptable given the wide range of input geometries and the assumptions necessary to make the comparisons.

However, the yield equations generally over predicted \(P_{50} \) for steel side plate connections. This was also found by Soltis and Wilkinson (1987) for steel-wood bolted connections. The reason for this discrepancy is probably the actual fixity conditions at the steel plate. Yield theory assumes that the screws fit snugly into holes drilled in all members. For thin steel plates, any oversize hole leads to connection deformation not considered by the theory. This deformation, however, will be manifested in the measured offset yield strength.

The Newlin and Gahagan data come from tests where the holes in the steel plates were oversize by less than 0.8mm on average. In contrast, are the results from McLain and Carroll where the holes were 1.6mm oversize and the screws were not snug. The lack of fixity in the latter group resulted in a Mode III action early in the loading process. At higher loads, near failure, the double bend Mode IV was readily apparent. The effect of oversized holes may be simulated by artificially reducing \(f_y \) of the metal side plates. For example, if \(f_y \) is reduced by a factor of 2 then the \(P_{50}/P_y \) ratio for the McLain and Carroll
data becomes 1.02 and the average expected mode changes from IV to III. This shows the sensitivity of the verification to a definition of yield that is partially deformation-based.

The actual dimensions used by Tokuda, et al (1989) are unknown. Given the potential error of estimating P_y and $P_{5\%}$, as well as the breadth of joint geometries, the demonstrated accuracy is acceptable. That the $P_{5\%}/P_y$ ratio for perpendicular-to-grain connections is similar to that for the parallel-to-grain joints supports a broad application of the theory.

PENETRATION DEPTH FACTOR

Ultimate lag screw connection strength may be influenced by the amount of the screw that penetrates the main member. Based on Newlin and Gahagan’s (1938) recommendations, screw penetration requirements in the U. S. have been a function of density with an optimum value ranging between 7d to 11d depending on density. A penetration factor (PF) adjusts design strength between a lower limit and optimum penetration. The stated purpose of PF is to keep the ratio of design strength to ultimate strength approximately equal over a range of penetration depths.

Newlin and Gahagan’s (1938) data do not directly support the historic U. S. penetration requirements. With the recent adoption of yield theory the penetration limits in the U. S. have been changed to an optimum penetration of 8d and minimum of 4d. This is illustrated in Figure 4 where the ratio of ultimate strength to $P_{5\%}$ strength is plotted against penetration of the screw into the block. The data are from Newlin and Gahagan (1938) and represent a wide variety of species and geometries. Superimposed is the new penetration factor. Different levels of penetration factor by species are not warranted based on these data. No evidence was found to suggest that the experimental yield load ($P_{5\%}$) was affected by penetration depth, provided that a minimum of 4d is maintained.

SIMPLIFICATION OF EQUATIONS

The full seven yield equations are unwieldy and are not practical for a design specification. Further, it is useful to simplify the equations so that the user sees design with screws as a special case of the design of single-shear bolted joints.

One approach to simplification is to assume a prismatic effective shank diameter, less than nominal d, and use only the three full-shank equations (1), (2) and (7). This was explored but the use of a single effective diameter resulted in too great of variation between the predictions of a reduced set of equations and that of the full set of seven equations. This is because, over a practical range of geometries (described below), a large percentage of the expected failures were in Mode I, where the effective diameter equals the actual diameter. Choosing a reduced effective d will cause under prediction of Mode I actions.
A more efficient alternative was chosen for codification. The Modes III and IV equations for yielding in the threaded region (Eq. 3 and 8) degenerate to those for yielding in the shank (Eq. 2 and 7) as \(R_m \) approaches unity. \(R_m \) is the ratio of the yield moment of the screw in the thread region to that in the shank region. A mathematically clean simplification fixes \(R_m \) at a level below 1.0 and uses only the Mode III and IV equations for \(SP \leq X_2 \) (Eq. 3 and 8) and Mode I (Eq. 1). Note that this is equivalent to using a fictitious diameter with Modes III and IV and the actual diameter in Mode I.

To find \(R_m \), the yield load for a specific joint geometry is first determined using the full set of seven equations. Then, the \(R_m \) necessary to achieve the same load with the reduced set of three equations is found by substitution or iterative solution. \(R_m \) values were calculated for a total of 381 wood side plate geometries and 147 steel side plate geometries that were simulated using the following conditions:

- \(G = 0.42, 0.51, 0.55 \) and 0.60 (This is the principal range of commercial structural species.)
- Cleat thickness, \(t_c \), ranged from 25mm to 140mm in 12mm increments for wood side plates; \(t_c = 6.4, 9.5 \) and 12.5mm for metal side plates.
- Screw length, \(L_s \), ranged from 102mm to 279mm in 25mm increments except that length, diameter and cleat thickness were limited to those cases where \(0 \leq SP/D \leq 7 \).
- Screw dimensions followed ANSI/ASME B18.6.1-1981. These are similar to many metric standards. The critical factor is that thread length is equal one half the nominal length plus 12mm, or 127mm, whichever is shorter.

Table 2 shows the results of these calculations. The grand average effective \(R_m \) was 0.804. However, setting \(R_m = 0.75 \) results in a 1% change in predicted loads and a better balance between the results for steel and wood side plate geometries with respect to any penalty for simplification. Using the reduced equations with \(R_m = 0.75 \) actually improved the mean prediction of experimental results at the cost of some increased variability. For example, with \(R_m = 0.75 \), the ratio of \(P_{50}/P_T \) for wood and metal side plate geometries in Table 1 changed to 1.07 and 0.82, respectively. These should be compared with the values for the full set of equations in Table 1.

One could argue that different \(R_m \) should be set for Modes III and IV and for wood and metal side plate connections. However, on a weighted average basis, the ratios for the modes are similar and the resulting loads are insensitive to relatively small changes in \(R_m \). The additional level of complexity does not seem warranted.

In summary, the full set of behavioral equations for lag screw connections can be reduced to the following for use into a design specification.
Mode I

\[P_y = \frac{d \ t \ f_2}{\beta} \]

(12)

Mode III

\[P_y = \frac{t_1 \ d \ f_2}{(2 + \beta)} \left(-1 + \sqrt{\frac{2(1 + \beta)}{\beta} + \frac{f_y (2 + \beta) \ d^2}{2 \ f_2 t_1^2}} \right) \]

(13)

Mode IV

\[P_y = d^2 \sqrt{\frac{7 f_y f_2}{12 (1 + \beta)}} \]

(14)

Alternate formulations are, of course, possible. An effective \(R_m = 0.75 \) implies an effective diameter of \(\sqrt[3]{0.75} = 0.9d \) for use only in equations (2) and (7) or for computing the yield moment of a fastener.

Use of these reduced equations must be limited to screws with a geometry similar to "standard" lag screws. Connections with fully threaded screws or screws with deep threads, for example, should not be designed with these equations without additional consideration of the effective \(R_m \) or diameter.

NOTATION

The following symbols are used in this paper:

- \(d \) = dominal shank diameter;
- \(f_1, f_2 \) = dowel bearing strength of cleat and block material, respectively;
- \(f_y \) = bending yield stress of lag screw;
- \(G \) = relative density of wood at 12% moisture content;
- \(P_{max} \) = maximum connection load;
- \(P_y \) = calculated yield load;
- \(P_{5\%} \) = experimental 5\%d offset yield load;
- \(R_m \) = ratio of the yield moment in screw thread region to that in shank region;
- \(SP \) = depth of shank penetration into block;
- \(X_1, X_2 \) = critical values of shank penetration;
- \(\beta \) = \(f_y / f_1 \);
- \(t_1 \) = cleat thickness;
REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Number of test geometries</th>
<th>Number of Useable Tests</th>
<th>Ratio, $P_{5%}/P_y$</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>Std. dev.</td>
<td>Max.</td>
<td>Min.</td>
</tr>
<tr>
<td>WOOD-WOOD CONNECTIONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Newlin & Gahagan (1938)</td>
<td>36</td>
<td>212</td>
<td>1.08</td>
<td>0.14</td>
<td>1.67</td>
<td>0.70</td>
</tr>
<tr>
<td>STEEL-WOOD CONNECTIONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Newlin & Gahagan (1938)</td>
<td>4</td>
<td>15</td>
<td>0.95</td>
<td>0.12</td>
<td>1.13</td>
<td>0.72</td>
</tr>
<tr>
<td>McLain & Carroll (1990)</td>
<td>2</td>
<td>50</td>
<td>0.66</td>
<td>0.11</td>
<td>0.94</td>
<td>0.47</td>
</tr>
<tr>
<td>Tokuda (1989a) Para.-to-grain</td>
<td>6</td>
<td>12</td>
<td>0.79</td>
<td>0.14</td>
<td>1.03</td>
<td>0.60</td>
</tr>
<tr>
<td>Tokuda (1989b) Perp.-to-grain</td>
<td>6</td>
<td>12</td>
<td>0.82</td>
<td>0.14</td>
<td>1.02</td>
<td>0.56</td>
</tr>
</tbody>
</table>

1. Samples for which a $P_{5\%}$ could be obtained.
2. Only the average of six tests could be retrieved.
Table 2. Effective R_e values for 381 wood side plate or 147 (steel side plate) joint geometries.

<table>
<thead>
<tr>
<th>Side Plates (1)</th>
<th>Cleat/Block grain direction (2)</th>
<th>G = 0.42 Mode</th>
<th>G = 0.51 Mode</th>
<th>G = 0.55 Mode</th>
<th>G = 0.60 Mode</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>III (3)</td>
<td>IV (4)</td>
<td>ALL (5)</td>
<td>III (6)</td>
<td>IV (7)</td>
</tr>
<tr>
<td>Wood Side Plates</td>
<td>P/P</td>
<td>0.80</td>
<td>0.68</td>
<td>0.75</td>
<td>0.82</td>
<td>0.72</td>
</tr>
<tr>
<td></td>
<td>P/Q</td>
<td>0.78</td>
<td>0.65</td>
<td>0.71</td>
<td>0.76</td>
<td>0.64</td>
</tr>
<tr>
<td></td>
<td>Q/P</td>
<td>0.79</td>
<td>0.64</td>
<td>0.77</td>
<td>0.83</td>
<td>0.69</td>
</tr>
<tr>
<td>Metal Side Plates</td>
<td>-/P</td>
<td>0.90</td>
<td>0.88</td>
<td>0.90</td>
<td>0.92</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td>-/Q</td>
<td>0.78</td>
<td>0.72</td>
<td>0.77</td>
<td>0.83</td>
<td>0.84</td>
</tr>
</tbody>
</table>

*P = parallel to grain, Q = perpendicular to grain

Figure 1. Potential yield modes.

Mode I

Mode III

Mode IV
Figure 2. Two member lag screw connections.

Figure 3. Five percent of diameter offset yield strength defined.
Figure 4. Ratio of maximum load to $P_{5\%}$ and $P_{5\%}$ to calculated P_y for Newlin and Cahagan wood side plate connections.
INTERNATIONAL COUNCIL FOR BUILDING RESEARCH STUDIES AND DOCUMENTATION

WORKING COMMISSION W18 - TIMBER STRUCTURES

DETERMINATION OF k_{def} FOR NAILED JOINTS

by

J W G van de Kuilen
TNO Building and Construction Research
The Netherlands

MEETING TWENTY - FIVE

ÅHUS
SWEDEN
AUGUST 1992
DETERMINATION OF k_{def} FOR NAILED JOINTS

Ir. J-W.G. van de Kuilen
TNO Building and Construction Research / Delft University of Technology

Summary

On the basis of creep tests, first started in 1962 and extended in 1983, a k_{def} factor has been derived for nailed joints. Nailed joints were loaded in tension at load levels of 30, 40, 50, 60 and 65% of short duration strength. Tests with 60 and 65% load level were started in 1962, 30,40 and 50% in 1983. The climate in the laboratory hall corresponds to service class 2 of Eurocode 5. The starting date in the season had significant effect on the creep effects and the measured values of k_{def}. Based on the theory of deformation kinetics a creep equation is proposed.

1. Introduction

In 1962 a comprehensive test program was started at the Stevin laboratory at Delft University of Technology to study load duration effects in timber joints. Nailed joints, tooth-plate and split-ring joints were incorporated in the program [1]. The load levels chosen were 60, 65, 70, 75, 80, 85 and 90% of the short duration strength. Meanwhile all specimens failed except the nailed joints at the 60 and 65% load levels.

In 1983 the original test program was extended in an EC-sponsored project with specimens of the same type but at lower load levels. The load levels were chosen at 30, 40 and 50%. The 30% load level is considered as the level of a service load [2].

In the meantime a general creep and damage model has been developed based on reaction equations of plastic deformation in the molecular structure and on the transformation of stresses to surrounding elastic material [3]. This model used to determine parameters and deformation factors.
2. The creep and damage model

The model is based on the reaction rate theory. The reaction rate theory describes the process of bond breaking and reformation in a molecular structure. The rate is dependent on temperature, moisture and stresses. The reaction rate equation, where the number of bonds is the main parameter can be rewritten in the form of a strain rate equation:

\[
\frac{\partial e}{\partial t} = \frac{\partial \sigma_i}{\partial t} \cdot \left(A_i + B_i \dot{\varepsilon}_i \right) \cdot \sinh \left(\sigma_i \dot{\varepsilon}_i \cdot \left(1 - C_i \varepsilon_i \right) \right)
\]

(1)

The strain rate equation can be considered as a parallel system of Maxwell elements with a non-linear dashpot.

For structural applications the parameter C may be neglected. The equation can be solved for either neglecting the term A or Bε. The solution of equation 1 then represents two branches of the creep line on a logarithmic time scale. Neglecting Bε describes a recoverable creep process while neglecting A describes a non-recoverable creep process.

For loading levels below about 50% the lines of the non-recoverable creep process are straight. For higher loading levels the creep lines are curved and an additional process is acting. The branched creep curve is shown in Figure 1 together with the approximations for the two branches.

3. Solution of the strain rate equation for creep

Equation 1 can be solved for governing A and governing Bε respectively, as is done in [3]. In most cases the parallel Maxwell elements may be reduced to a three element model with one Maxwell element and a parallel spring. For constant load \(\partial \sigma / \partial t \) equals 0. In most cases Cε may be neglected. This term accounts for a hardening process which is neglectable for structural timber in service conditions.
Approximations of the solutions are straight lines on a logarithmic time scale giving the following equation for the creep factor C_f:

$$C_f = \frac{\epsilon - \epsilon_0}{\epsilon_0} = C_1 \ln(1 + C_2 t)$$ \hspace{1cm} (2)

This equation is used to analyse the test results of nailed joints.

4. Creep tests

4.1 Introduction

Creep test results were gathered over a 29 year period since the first creep tests started at the Stevin Laboratory of Delft University of Technology. In 1962 creep tests in tension were started at several load levels to study the Duration Of Load (DOL) effect. At this moment the tests on 60 and 65% load level are still running, giving unique information on creep of joints. Deformation, temperature and relative humidity have been recorded over almost 30 years.

In 1983 an additional EC-sponsored DOL project started and nailed joints were loaded at 30, 40 and 50% load levels. Within this project control specimen were used to analyse the effect of climatic changes in the laboratory hall.

The results of the creep tests are analyzed using the logarithmic approximations of the creep and damage model.

4.2 Test specimens

The test specimens were made of spruce with a joint length of 180 mm and a width of 95 mm containing 60 nails with a diameter of 2.8 mm. The shape and dimensions of the test specimens are given in Figure 2. Before loading the average moisture content of the specimens was approximately 9%. The average ultimate load in a standard short duration test (SSD) of 20 specimens was 45.0 kN,
giving a load of 27.0 kN for the 60% and a load of 29.2 kN for the 65% specimens. In 1983 some additional short term tests were carried out with material from 1962 resulting in an average value of 48.9 kN. SSD-tests with new material performed in 1983 resulted in an average strength value of 44.6 kN. The average strength of all test results was 45.7 kN and the coefficient of variation of 6%. The characteristic load carrying capacity of the joints based on the calculation method given in Eurocode 5 [4] results in a characteristic strength of 33.7 kN based on a density of 387 kg/m³.

4.3 Creep test results

In Figure 3 the average creep results of all load levels are shown in a deformation – time plot. It can be seen from the old tests that the deformation can become very large without failure. In the very beginning of the creep curves it can be seen that a sudden increase in deformation occurs during a very short period. This happens at all load levels and is caused by atmospheric changes in the laboratory hall. It can also be seen that there are differences in the mechano-sorptive effects for the different load levels. At high load levels it seems that the sudden increase occurs only once and that the climatic changes of the following years do not show a similar effect. For the lower load levels (30, 40% and 50%) the climatic changes do show increases in deformation after more than one season but so far never more than three seasons except if the changes in climate are very extreme.

The effect of cyclic moisture changes is clearly seen when the creep factor Cf is plotted versus log(t) as is done in Figure 4. The first major climatic change causes the creep process to change from the first to the second process. The mechano-sorptive effect induces the creep process to change from the first process to the second process. Apparently the change in moisture content increases the number of flow units in the microstructure above
the necessary level for the second process to start. According to the theory the creep line of the highly loaded specimens should bend off first. The fact that this does not occur here, is caused by the starting dates of the tests. The high-load tests (60 and 65%) were started on 5/6 September 1962 while the lower loaded tests (30, 40 and 50%) were started on 14 March 1984, 2 February 1984 and 19 January 1984 respectively. The changes in relative humidity in the laboratory hall are shown in Figure 5 for the first four years for the new tests. It is clear that the increases in creep rate are caused by the increase in relative humidity in the spring. The relative humidity increases from winter to summer generally from about 40% to about 80% resulting in an increase in moisture content of the spruce from 10 to 16% [5]. The differences in relative humidity were 15% in 1963 compared to 30% in 1984. Sometimes the increase in relative humidity takes several weeks, but it still leads to a deformation increase. To compare the creep lines from the old and the new tests, the lines should consequently be shifted over a period of approximately 6 months.

It seems that the internal stresses and strains are released by the mechano-sorptive effect in one step at high load levels and in several consecutive steps at low load levels. This indicates a maximum plastic flow to be released by cyclic moisture changes in the first stages of the second branch of the creep curve. Apart from this they depend on the change in relative humidity. On a linear time scale the mechano-sorptive change in 1963 is smeared over a long period compared to the first change in 1984.

At the end of the lifetime of the specimen in the accelerating creep stage or at very high load levels it can be shown that cyclic moisture changes cause crack initiation and propagation. This is shown in Figure 6 for a tooth-plate connector. The mechano-sorptive changes in the last years lead to higher
deformations as can also be seen in the results of the 65% nails. They occur during the same time period in the nailed joints, but do not yet lead to failure.

The first part of the creep curve on log(t) scale is for all load levels a straight line, showing that structural changes can be neglected as was to be expected from the creep equations. Then at time t' (the delay time) the second process starts. For the lower load levels these are straight lines as well, for the higher load levels (60 and 65%) these lines are curved, strongly indicating a third acting process. At the lower load levels this process is not noticeable. It is not certain, however, that the curvature means that there is damage increase.

5. Parameter estimation

5.1 General parameter estimation for the three element model

From Figure 4 the starting date of the second branch of the creep curve can be determined for the 40, 50, 60 and 65% load level. For the 30% load level there is a continuous curved intermediate stage between the first and the second branch, caused by the starting date of the test. The test was started on 14 March, so it will be difficult to distinguish the increase in creep at the start of the summer in such a short period. It seems that in this case the actual first large moisture change occurs only in the following year.

The 65% delay time is difficult to compare, because this delay time is highly influenced by the time interval chosen to fit the second process. This means that the intersect between the two fitted curves is highly affected by the time scale used for a curve fit in the second branch.
It was found that the constants of equation (3) only change slightly when a fit is made for the second branch only or for the total creep curve. This can be explained by the fact that the
second branch contains much more data than the first. However, to determine the parameters for the two processes a fit has been made for each of the process, but only the results of second process are given here. The mechano-sorptive changes in the second branch are averaged as being changes in deformation measurements. Although the strain rate is increased during a mechano-sorptive change, the average steepness is hardly affected.

As an approximation to determine \(k_{\text{def}} \) this is acceptable since the largest mechano-sorptive changes occur in the first years of the creep process and data is already available for 8 years (30\%, 40\% and 50\%) and 29 years (60\% and 65\%).

In Table 1 the values of \(C_1 \) and \(C_2 \) for the second process are assembled. For the old 60\% and 65\% load levels the constants have also been determined for the first 8 years of the process so they can be compared with the new tests.

Table 1. Constants for 3-element model, equation 2 second process estimation

<table>
<thead>
<tr>
<th>load level</th>
<th>(C_1)</th>
<th>(C_2)</th>
<th>(\epsilon) (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 %</td>
<td>0.4708</td>
<td>4.135E-2</td>
<td>0.336</td>
</tr>
<tr>
<td>40 %</td>
<td>0.5809</td>
<td>2.674E-2</td>
<td>0.551</td>
</tr>
<tr>
<td>50 %</td>
<td>0.5408</td>
<td>3.759E-2</td>
<td>0.994</td>
</tr>
<tr>
<td>60 % (8 years)</td>
<td>0.4184</td>
<td>1.223E-2</td>
<td>2.120</td>
</tr>
<tr>
<td></td>
<td>0.4729</td>
<td>8.333E-3</td>
<td></td>
</tr>
<tr>
<td>65 % (8 years)</td>
<td>0.5709</td>
<td>8.158E-3</td>
<td>2.709</td>
</tr>
<tr>
<td></td>
<td>0.7884</td>
<td>3.638E-3</td>
<td></td>
</tr>
</tbody>
</table>

It can be seen that \(C_1 \) is more or less constant for these load levels as is to be expected from the log\((t) \) plot, where the creep curves run parallel in the second process. Complications arise because of the curvature in the second branch of the 60 and 65\% load levels, being the result of a damage process. In this case
the straight line approximation seems no longer justified, although still reasonably good predictions of the deformation can be made, as will be shown in paragraph 4.2. A threshold value seems to exist at a load level between 50 and 60%.

The average value for $C_1 = 0.53$ is determined on the basis of the 30, 40 and 50% tests because these load levels show linearity on a logarithmic time scale.
The determination of the delay time of the second process is more difficult, because this delay time highly depends on the starting date of the creep tests over the season. This is the reason why the delay times for the low load levels are equal as well as for the high load level. In general this delay time may be taken as 180 days, so the average bending off point is taken.

5.2 Extrapolation of measurements

Using the constants given in Table 1 it is possible to make predictions of deformations over longer periods. With equation (3) the prediction of the deformation after a period of 29 years can be made, based on the constants determined with 8 year measurements. The results are shown in Table 2.

Table 2. Prediction of deformation in mm after 29 years

<table>
<thead>
<tr>
<th></th>
<th>measured</th>
<th>predicted with 8 year fit</th>
<th>predicted with 29 year fit</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 %</td>
<td>6.79</td>
<td>6.34 (-6.6%)</td>
<td>6.60 (-2.8%)</td>
</tr>
<tr>
<td>65 %</td>
<td>10.77</td>
<td>9.42 (-12.6%)</td>
<td>10.52 (-2.4%)</td>
</tr>
</tbody>
</table>

Both predictions are lower than the actual value. It is obvious that this is caused by the straight line approximation of the log-time plot. The 29 year predictions, however, are very close to the actual value, showing the accuracy of the model even with the assumption of only one dominating process at high loading levels.
5.3 Failure mode

The calculation of the strength of the joints is done according to Eurocode 5. The failure modes observed in the long duration tests however show a different type of failure. The transition between the failure modes may be caused by splitting directly under the nails (the highest loaded area) or the change in joint geometry caused by the long-term deformations. The splitting may be facilitated by the fact that the holes were not predrilled.

6. Conclusions

6.1 Conclusions from the study

Creep measurements of nailed joints have been analyzed using the creep and damage model of Van der Put [3]. The creep results are analyzed as two processes. Both may be described by a simple ln (t) formula with two parameters. The first parameter represents the steepness of the creep line on a logarithmic time scale. The second parameter represents the bending point in the creep line approximation.

In the evaluation the sudden increases in deformation which occur in the first years of the tests are not considered. After longer periods this effect seems no longer noticeable. It seems clear, however, that the second process is induced by climatical changes. The changes occur during a distinct change in relative humidity. This change introduces a change in the microstructure i.e. the number of flow units or the number of load-bearing molecular bonds.

The start of the second process depends on the season in which the creep test was started. Hence, to predict the deformation of a joint over a number of years may be done with an average delay time. Based on the above mentioned creep tests, this average delay time may be taken as half a year or 180 days. The accuracy of the prediction highly depends on the time of loading. From
Figure 4 it can be seen that the relative creep of the 60% load level is 1.75 after 5000 days while for the 30% load level this is already the case after 2100 days, totally due to the moisture effect.

For engineering purposes the second branch of the creep line and the fits with the ln(t)-equation can be used. There is hardly any difference in the constants when the second equation (2) is used with the overall data, starting from t=1.

The following equation can be used for the creep factor of nailed joints in climate class II:

$$C_f = 0.53 \ln\left(\frac{t}{180}\right) = 1.20 \log\left(\frac{t}{180}\right)$$ \hspace{1cm} (3)

with:

C_f is the creep factor $= (\epsilon - \epsilon_0) / \epsilon_0$ with:

ϵ_0 is the deformation at $t = 1$ day

t is time in days.

6.2 Comparison with EC5

The deformation ϵ at $t = 0$ can be calculated with Eurocode 5 as:

$$U_{inst} = \frac{3F\left(40d^{0.8}\right)}{F_k \rho_k}$$ \hspace{1cm} (4)

in which:

d is nail diameter \hspace{1cm} = 2.8 mm

F is characteristic strength \hspace{1cm} = 41.2 kN

ρ is characteristic density \hspace{1cm} = 387 kg/m3

F is load level \hspace{1cm} = 0.3F_k$ to $0.5F_k$

giving:

$u_{inst} = 0.7 \frac{F}{F_k}$
In Table 3 the results are compared with the measured values after 3 minutes and 1 day loading:

<table>
<thead>
<tr>
<th>u_{inst} (mm)</th>
<th>u (mm)</th>
<th>3 min</th>
<th>1 day</th>
</tr>
</thead>
<tbody>
<tr>
<td>(EC 5)</td>
<td>(measured)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30%</td>
<td>0.21</td>
<td>0.280</td>
<td>0.336</td>
</tr>
<tr>
<td>40%</td>
<td>0.28</td>
<td>0.437</td>
<td>0.551</td>
</tr>
<tr>
<td>50%</td>
<td>0.35</td>
<td>0.656</td>
<td>0.994</td>
</tr>
</tbody>
</table>

In reality the instantaneous deformation is larger than the predicted value of equation (4). The value of 0.21 mm was also found as the average elastic slip in the joints tested according to the RILEM Recommendation 3TT-1 (SSD-test). Equation (3) can be modified for deformation at \(t = 0 \) (\(\epsilon = 0.21 \) mm) instead of at \(t = 1 \) day (\(\epsilon = 0.336 \) mm). Equation (3) then becomes:

\[
Cf = 0.848 \ln\left(\frac{t}{180}\right) + 0.6 = 1.95 \log\left(\frac{t}{180}\right) + 0.6
\]

Applying equation (4) together with the deformation factor \(k_{\text{def}} = 0.8 \) for permanent loading and service class II total deformation at \(t = \infty \) is 0.38 mm for a 30% load level. Comparing this with the test results and using equation (5) for the creep factor \(Cf \) after 8 years (\(\approx 2.96 \)), a total deformation of 0.83 mm results, which is more than twice the Eurocode 5 value.

The actual measured deformation after 8 years is 1.086 mm. With a deformation at \(t = 0 \) of 0.21 mm this results in a creep factor \(Cf = 4.15 \). However, this high value was caused by the starting date of the test.
With a load duration of 50 years for permanent loads, or 18,250 days, interpolation of equation (5) leads to a k_{def} factor of:

$$k_{\text{def}} = C_f = 0.8481 \ln \left(\frac{18250}{180} \right) + 0.6 \approx 4.5$$ \hspace{1cm} (6)

It is recognized that in a structure the loads will almost always be below the design loads and therefore have less affect than the loads in this creep test. Based on the measurements and the application of the deformation kinetics model it is suggested to increase the k_{def} values in Eurocode 5 for nailed joints without predrilled holes.
Literature

[1] Long duration tests on timber joints
ir. P. Vermeyden
Report 4-74-11 (in Dutch)
Delft University of Technology

Part One
Prof. ir. J Kuipers, Ing. P.B.J. Kurstjens
Report 4-86-15/HD-23
Delft University of Technology

Ph.D. Thesis
Dr.Ir. T.A.C.M. van der Put
Delft University of Technology

Christmas version 1991

[5] Timber species
P. Laming, J.F. Rijsdijk c.s.
Houtinstituut TNO (in Dutch)
Figure 1. Master creep curve
Two processes with straight line approximations
Figure 2. Test specimen

Nails: \(l = 45 \text{ mm}, d = 2.8 \text{ mm} \\
2 \times 5 \times 6 \text{ nails}
Figure 3. Average creep results of all load levels
Figure 4. Relative creep versus log(t)
Creep results longduration tests 1962-1993: Nails 60% 65%

Figure 6. 60% and 65% nails, 65% tooth-plate
INTERNATIONAL COUNCIL FOR BUILDING RESEARCH STUDIES AND DOCUMENTATION

WORKING COMMISSION W18 - TIMBER STRUCTURES

CHARACTERISTIC STRENGTH OF UK TIMBER CONNECTORS

by

A V Page
C J Mettem
TRADA Technology Limited
United Kingdom

MEETING TWENTY - FIVE
ÅHUS
SWEDEN
AUGUST 1992
CHARACTERISTIC STRENGTH OF UK TIMBER CONNECTORS

A.V. Page and C.J. Mettem

1. SUMMARY

Formulae are developed for calculating the characteristic load-carrying capacities parallel to the grain of the three principal types of timber connector used in the UK. The formulae allow for the size and shape of each connector and the density and thickness of the timber members. Minimum member thicknesses are also specified.

Results from the proposed formulae were compared with nominal characteristic values derived from the basic loads tabulated in the British timber design code, BS 5268: Part 2. The two sets of results were generally well within 10% of each other.
2. CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. SUMMARY</td>
<td>2</td>
</tr>
<tr>
<td>2. CONTENTS</td>
<td>3</td>
</tr>
<tr>
<td>3. INTRODUCTION</td>
<td>4</td>
</tr>
<tr>
<td>4. TIMBER CONNECTORS IN THE UNITED KINGDOM</td>
<td>4</td>
</tr>
<tr>
<td>5. PERMISSIBLE LOADS</td>
<td>5</td>
</tr>
<tr>
<td>6. E GEHRÍ'S FORMULAE</td>
<td>8</td>
</tr>
<tr>
<td>7. CONVERSION OF BASIC LOADS TO CHARACTERISTIC LOAD-CARRYING CAPACITIES</td>
<td>10</td>
</tr>
<tr>
<td>8. COMPARISON OF CHARACTERISTIC LOAD-CARRYING CAPACITIES</td>
<td>11</td>
</tr>
<tr>
<td>9. DISCUSSION OF RESULTS</td>
<td>17</td>
</tr>
<tr>
<td>10. CONCLUSIONS</td>
<td>20</td>
</tr>
<tr>
<td>11. REFERENCES</td>
<td>21</td>
</tr>
<tr>
<td>12. FIGURES</td>
<td>22</td>
</tr>
<tr>
<td>Diameter of connector mm</td>
<td>Diameter of bolt mm</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>38</td>
<td>10/14</td>
</tr>
<tr>
<td>50</td>
<td>12/14</td>
</tr>
<tr>
<td>63</td>
<td>12/14</td>
</tr>
<tr>
<td>75</td>
<td>12/14</td>
</tr>
</tbody>
</table>

Types C8 and C9 are similar, but square, with side lengths equal to the diameters of the round connectors. The same diameters of bolt are used.

5. **PERMISSIBLE LOADS**

Permissible loads on connected joints are obtained from data given in BS 5268 : Part 2 [3].

Connector units

In BS 5268 : Part 2, a "connector unit" is defined. The definition depends upon the type, and is given as:-

(i) one ring connector with its bolt in single shear in a timber-to-timber joint.

(ii) two plate connectors used back-to-back with the bolt in single shear in a timber-to-timber joint; or one shear plate with its bolt in single shear in a steel plate-to-timber joint.

(iii) one double-sided toothed-plate connector or two single-sided toothed-plate connectors back-to-back, with the bolt in single shear in a timber-to-timber joint; or one single-sided toothed plate connector with its bolt in single shear in a steel plate-to-timber joint.

Basic loads

BS 5268 : Part 2 tabulates "basic loads" for one connector unit. These relate to:

* long-term load duration (e.g. dead + permanent imposed loading)
* specified standard spacings, end- and edge- distances
* dry timber in "dry exposure" conditions (in which the moisture content of timber does not exceed 18% for any significant period)

The values given depend on the following parameters:

* the kind of connector unit
* the nominal size of the connector
* the strength group of the timber
* the thickness of the timber members in the connection
* the direction of the load relative to the grain

These parameters will now be considered in turn.
Table 1 Characteristic densities for BS 5268 : Part 2 joint strength class groups

<table>
<thead>
<tr>
<th>1</th>
<th>Joint strength class group</th>
<th>SC1/SC2</th>
<th>SC3/SC4</th>
<th>SC5</th>
<th>SC6 to SC9</th>
</tr>
</thead>
<tbody>
<tr>
<td>RING AND PLATE CONNECTORS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>G_{soan,12%}</td>
<td>0.34</td>
<td>0.39</td>
<td>0.48</td>
<td>0.58</td>
</tr>
<tr>
<td>3</td>
<td>ρ_k (kg/m³)</td>
<td>314</td>
<td>360</td>
<td>443</td>
<td>535</td>
</tr>
<tr>
<td>TOOTHED PLATE CONNECTORS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>G_{0.01,18%}</td>
<td>0.24</td>
<td>0.29</td>
<td>0.34</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ρ_k (kg/m³)</td>
<td>314</td>
<td>375</td>
<td>443</td>
<td></td>
</tr>
</tbody>
</table>

For toothed-plate connectors, reference [4] states that the basic loads were based on G_{0.01,18%}, the one per cent exclusion values of the specific gravity based on oven-dry weight and volume at 18% moisture content, as shown in line 4 of the table. Although these too can be converted to characteristic densities, the results do not entirely match the basic values for these connectors given in BS 5268 : Part 2, and it is believed that the values of ρ_k given in line 5 correspond to the densities which were finally used to calculate the basic loads for toothed plate connectors.

The minimum permissible thicknesses of the timber members are shown in Table 2.

Table 2 Minimum timber thicknesses for connectors, from BS 5268 : Part 2

<table>
<thead>
<tr>
<th>Connector description</th>
<th>Connector on one side of the timber only mm</th>
<th>Connectors on both sides of the timber mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>64mm ring connector</td>
<td>22</td>
<td>32</td>
</tr>
<tr>
<td>102mm ring connector</td>
<td>29</td>
<td>41</td>
</tr>
<tr>
<td>67mm plate connector</td>
<td>41</td>
<td>41</td>
</tr>
<tr>
<td>102mm plate connector</td>
<td>41</td>
<td>44</td>
</tr>
<tr>
<td>Toothed-plate connector (all sizes)</td>
<td>16</td>
<td>32</td>
</tr>
</tbody>
</table>

Basic loads are tabulated for a number of different member thicknesses in each table. In the case of toothed plate connectors, test data were obtained from only one thickness each of the middle and outer members, as shown in Table 3. The values for the other thicknesses were obtained from separate data on the strength of bolted joints. In the case of the ring and plate connectors, however, tests were conducted on a range of timber thicknesses, and the values tabulated are therefore based directly on test data. It will be observed that in Tables 4 to 7 the strength of these joints, as for toothed-plate joints, is related to the thickness of the timber members.
For ring connectors and plate connectors, it was proposed in [1] that

\[R_{c,k} = 30 d_c^{1.15} (P_k / 360)^{0.5} N \]

(3)

This is the same as (1), except that no allowance is made for the contribution of the bolt because of the relatively large tolerances on the bolt hole dimensions.

Note that formulae (1) and (3) relate to parallel-to-the-grain loading only, to EC5 service class 1, and to one connector unit.

Two comments on these proposals may be made.

Calculation of \(R_{c,d} \)

In the case of formula (1), there is a problem in converting \(R_{o,k} \) to \(R_{c,d} \), the design value of the load-carrying capacity, as mentioned in reference [1]. Normally the design value of a material property is calculated as

\[X_d = k_{mod} X_k \]

where \(Y_n = 1.3 \) for timber materials or 1.1 for steel used in joints, and for steel \(k_{mod} = 1.0 \) in all circumstances.

Since joints contain both steel and timber, there is no direct way to convert \(R_{o,k} \) to \(R_{b,d} \), so the bolt design formulae give \(R_{b,d} \) directly. For the toothed-plate component in formula (1) it is not obvious which values of \(Y_n \) and \(k_{mod} \) should be used, since failure can occur either in the wood or in the metal teeth. Without further information, it may be necessary to use the values for timber, but in some combinations of load duration and service class this could give errors of 100% or more in the toothed-plate component of formula (1) if failure actually occurs in the teeth.

Relationship between \(R_{c,k} \) and \(R_{ult} \)

In both formulae the calculated load-carrying capacity is proportional to the square root of the timber density, i.e. \(R_k = k_1 \sqrt[6.5]{\rho_k} \) where \(k_1 \) is a constant. However, in extensive tests conducted by the Building Research Establishment on toothed-plate connectors [7], it was found [8] that the load-carrying capacity and density were related in the form

\[R_{ult} = k_2 \rho^{1.325} \]

(4)

This is illustrated in Figure 2. Since the basic loads for toothed plate connectors given in BS 5268 : Part 2 are derived from this relationship, it is unlikely that they can be brought into agreement with formula (1) for more than one value of density, unless the formula is adjusted accordingly.

Similarly, it was reported by Scholten [9] that, in split-ring connections, the load-carrying capacity and the timber density were related in the form

\[R_{ult} = k_3 \rho^{1.0} \]

(4A)

This is illustrated in Figure 3. The basic loads for ring connectors given in BS 5268 : Part 2 are based on the above relationship. Chu [13] also reported tests made on joints with ring connectors in fourteen different species of timber.
8. COMPARISON OF CHARACTERISTIC LOAD-CARRYING CAPACITIES

Using a factor of 2.9, the basic loads given in BS 5268 : Part 2 for connector units loaded parallel to the grain may therefore be converted to nominal characteristic values and compared with the values calculated from formulae (1) and (3).\(^1\)

For the comparison exercise the characteristic timber densities given in Table 2 were used. For formula (1) a value of 320 N/mm\(^2\) was assumed for the mean value of the tensile and yield strength of the bolt.\(^2\) For the square toothed-plate connectors, formula (2) was used to calculate \(d_c\) in formula (1).

The results of the comparison exercise are shown in Tables 3 to 7. They apply to one connector unit in a joint consisting of three solid timber members joined together by two connectors and a bolt. In these tables:

(i) the values in the column headed "BS 5268" are basic values multiplied by a factor of 2.9.

(ii) the values in the column headed "E Gehri" are derived from formula (1) for toothed-plates and from formula (3) for the other connectors.

(iii) CI(G) is a comparison index relating the two sets of values.

(iv) the values in the final columns are calculated from formulae which are presented in Section 9 of this paper.

(v) with reference to Table 4 on toothed-plate connectors, BS 5268: Part 2: Table 74 tabulates basic loads corresponding to various member thicknesses. The member thicknesses chosen for inclusion in Table 4 are the nearest ones to the original thicknesses tested.

Table 74 in the Code gives the same values for round and square plates in the 38mm and 64mm sizes. (In the case of the 64mm plates, this is because only round plates were tested, and the same may be true for the 38mm plates also). Consequently, the values given in the Code for square plates in these sizes are probably too low, and to use them in this comparison exercise would be misleading. They have therefore been omitted from Table 4.

\(^1\) In practice this involves making the following assumptions and approximations:

(a) The nominal diameters of the round UK connectors may be entered as \(d_p\) in formulae (1) and (3); and the values of \(d_c\) for square connectors may be calculated from formula (2);

(b) The values of \(N_k\) calculated from formulae (1) and (3) relate to the load-carrying capacities for the standard (not minimum) spacing, end- and edge-distances given in BS 5268 : Part 2, since these are the distances for which basic loads are tabulated;

(c) When characteristic values thus derived are converted by EC5 procedures to design values for other load durations, the solutions thus derived will only match the solutions which would be produced by BS 5268 design if the conversion factor used is \(k_{mod}\).

This may not be correct for the bolt element in formula (1), for which \(k_{mod} = 1.0\) and \(\gamma_s = 1.1\) if there is failure in the bolt.

\(^2\) This value, which was also used by Bless et al. [6], is consistent with the material specifications for black bolts; however, tests by TRADA [12] showed that, after manufacture, the mechanical properties of bolts improve considerably, and for small cold-formed bolts can be nearly double the quoted values.
Characteristic Load-Carrying Capacity

<table>
<thead>
<tr>
<th>CI(g)</th>
<th>44</th>
<th>35</th>
<th>36</th>
<th>37</th>
<th>38</th>
<th>39</th>
<th>40</th>
<th>41</th>
<th>42</th>
<th>43</th>
<th>44</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.72</td>
<td>0.70</td>
<td>0.68</td>
<td>0.66</td>
<td>0.64</td>
<td>0.62</td>
<td>0.60</td>
<td>0.58</td>
<td>0.56</td>
<td>0.54</td>
<td>0.52</td>
<td>0.50</td>
<td>0.48</td>
</tr>
<tr>
<td>0.73</td>
<td>0.71</td>
<td>0.69</td>
<td>0.67</td>
<td>0.65</td>
<td>0.63</td>
<td>0.61</td>
<td>0.59</td>
<td>0.57</td>
<td>0.55</td>
<td>0.53</td>
<td>0.51</td>
<td>0.49</td>
</tr>
<tr>
<td>0.74</td>
<td>0.72</td>
<td>0.70</td>
<td>0.68</td>
<td>0.66</td>
<td>0.64</td>
<td>0.62</td>
<td>0.60</td>
<td>0.58</td>
<td>0.56</td>
<td>0.54</td>
<td>0.52</td>
<td>0.50</td>
</tr>
<tr>
<td>0.75</td>
<td>0.73</td>
<td>0.71</td>
<td>0.69</td>
<td>0.67</td>
<td>0.65</td>
<td>0.63</td>
<td>0.61</td>
<td>0.59</td>
<td>0.57</td>
<td>0.55</td>
<td>0.53</td>
<td>0.51</td>
</tr>
<tr>
<td>0.76</td>
<td>0.74</td>
<td>0.72</td>
<td>0.70</td>
<td>0.68</td>
<td>0.66</td>
<td>0.64</td>
<td>0.62</td>
<td>0.60</td>
<td>0.58</td>
<td>0.56</td>
<td>0.54</td>
<td>0.52</td>
</tr>
<tr>
<td>0.77</td>
<td>0.75</td>
<td>0.73</td>
<td>0.71</td>
<td>0.69</td>
<td>0.67</td>
<td>0.65</td>
<td>0.63</td>
<td>0.61</td>
<td>0.59</td>
<td>0.57</td>
<td>0.55</td>
<td>0.53</td>
</tr>
<tr>
<td>0.78</td>
<td>0.76</td>
<td>0.74</td>
<td>0.72</td>
<td>0.70</td>
<td>0.68</td>
<td>0.66</td>
<td>0.64</td>
<td>0.62</td>
<td>0.60</td>
<td>0.58</td>
<td>0.56</td>
<td>0.54</td>
</tr>
<tr>
<td>0.79</td>
<td>0.77</td>
<td>0.75</td>
<td>0.73</td>
<td>0.71</td>
<td>0.69</td>
<td>0.67</td>
<td>0.65</td>
<td>0.63</td>
<td>0.61</td>
<td>0.59</td>
<td>0.57</td>
<td>0.55</td>
</tr>
</tbody>
</table>

Notes:
- CI(g) refers to the characteristic index.
- 0.56 to 0.68, 0.67 to 0.73, and so on represent different classes of columns.

Table 4

Comparison of characteristic plane connector loads parallel to the grain for 6mm diameter shear-plate connector with Zamin diameter bolts.
<table>
<thead>
<tr>
<th>Characteristic load-carrying capacity according to BS 5268 Part 2</th>
<th>Characteristic load-carrying capacity according to B. Geert</th>
<th>C(7) comparison index</th>
<th>C(6) comparison index</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.0</td>
<td>535</td>
<td>1.0</td>
</tr>
<tr>
<td>2.0</td>
<td>0.0</td>
<td>535</td>
<td>2.0</td>
</tr>
<tr>
<td>3.0</td>
<td>0.0</td>
<td>535</td>
<td>3.0</td>
</tr>
<tr>
<td>4.0</td>
<td>0.0</td>
<td>535</td>
<td>4.0</td>
</tr>
<tr>
<td>5.0</td>
<td>0.0</td>
<td>535</td>
<td>5.0</td>
</tr>
<tr>
<td>6.0</td>
<td>0.0</td>
<td>535</td>
<td>6.0</td>
</tr>
<tr>
<td>7.0</td>
<td>0.0</td>
<td>535</td>
<td>7.0</td>
</tr>
<tr>
<td>8.0</td>
<td>0.0</td>
<td>535</td>
<td>8.0</td>
</tr>
<tr>
<td>9.0</td>
<td>0.0</td>
<td>535</td>
<td>9.0</td>
</tr>
<tr>
<td>10.0</td>
<td>0.0</td>
<td>535</td>
<td>10.0</td>
</tr>
<tr>
<td>11.0</td>
<td>0.0</td>
<td>535</td>
<td>11.0</td>
</tr>
<tr>
<td>12.0</td>
<td>0.0</td>
<td>535</td>
<td>12.0</td>
</tr>
<tr>
<td>13.0</td>
<td>0.0</td>
<td>535</td>
<td>13.0</td>
</tr>
<tr>
<td>14.0</td>
<td>0.0</td>
<td>535</td>
<td>14.0</td>
</tr>
<tr>
<td>15.0</td>
<td>0.0</td>
<td>535</td>
<td>15.0</td>
</tr>
<tr>
<td>16.0</td>
<td>0.0</td>
<td>535</td>
<td>16.0</td>
</tr>
<tr>
<td>17.0</td>
<td>0.0</td>
<td>535</td>
<td>17.0</td>
</tr>
<tr>
<td>18.0</td>
<td>0.0</td>
<td>535</td>
<td>18.0</td>
</tr>
<tr>
<td>19.0</td>
<td>0.0</td>
<td>535</td>
<td>19.0</td>
</tr>
<tr>
<td>20.0</td>
<td>0.0</td>
<td>535</td>
<td>20.0</td>
</tr>
</tbody>
</table>

Table 6: Comparison of characteristic ring connector loads parallel to the grain for 6 mm diameter split-ring connector with 12 mm diameter bolts.
9. DISCUSSION OF RESULTS

In Tables 3 to 7 a comparison index, CI(G), gives the ratio between the characteristic load-carrying capacities calculated from E. Gehrl's formulae, and the nominal characteristic values obtained from BS 5268: Part 2. The following comments may be made.

9.1 Table 3. Toothed-plate connectors

The comparison index, CI(G), shows that formula (1) produces values of $R_{c,k}$ which on average are very close to the nominal characteristic values derived from BS 5268. Also the formula accurately allows for the size of the connector. The similarity of the values of CI for the round and square connectors in the 51mm and 76mm sizes shows that formula (2) gives an accurate assessment of the effective diameter of a square toothed-plate.

Nevertheless, the values of CI(G) demonstrate that formula (1) is incorrect in its assessment of the effect of density on strength. A formula which produces results closer to those derived from BS 5268, and which therefore reflects more accurately the experimental data\(^3\) would be:

$$R_{c,k} = 15 \, d_c \left(\frac{P_c}{380} \right)^{1.5} + R_{b,k} \, N$$

9.2 Tables 4 and 5. 67mm and 102mm plate connectors

The comparison indices CI(G) in these and the two subsequent tables are based on values of $R_{c,k}$ calculated from formula (3). This means that there is no allowance for the contribution of a bolt and therefore there is no allowance for the influence of member thickness. This means that the values of $R_{c,k}$ fall increasingly short of the nominal characteristic values as the thickness of the timber members increased, particularly in the case of the 102mm diameter connector. In general the values of $R_{c,k}$ calculated from the formula are too low, and again there is an inadequate allowance for the influence of density, which the test work showed was directly proportional to the strength. The fact that the values of CI are relatively higher in Table 5 means that the formula assumes that the diameters of the connectors influence the strength more than they really do.

Formulae which produce results closer to those derived from BS 5268 and which therefore reflect more accurately the experimental data would be as follows.

For 67mm connectors on one side of a member only

$$R_{c,k} = 441 \, d_c \left(\frac{P_k}{380} \right) \, N$$

or, for connectors on both sides and on the same bolt

$$R_{c,k} = 441 \, d_c \left(\frac{P_k}{380} \right)^{0.5} \left(\frac{t_2}{67} \right)^{1.5} \, N$$

\(^3\) Note that in formula (4) the contributions of the toothed plate and the bolt are combined into one expression.
For non-circular connectors \(d_c = \left(\frac{4A_c}{\pi} \right)^{0.5} \)

where \(A_c \) = the connector area in \(\text{mm}^2 \)

The minimum permissible thickness of timber is 16mm for connectors on one side of a member only, and 32mm for connectors on two sides and on the same bolt.

"For plate connectors, the characteristic load-carrying capacity of one connector unit is:

\[
R_{c,k} = 1.16 \, d_c \, Q_k \, k_p \, N
\]

(8)

where \(d_c \) = the nominal diameter of the connector in mm

\(Q_k \) = the characteristic density of the timber in \(\text{kg/m}^3 \)

\(k_p \) = 1.0 for connectors on one side of a member only

\[
k_p = \left(\frac{t}{t_{\text{standard}}} \right)^{0.5}
\]

for connectors on two sides of a member and on the same bolt

where \(t \) = thickness of the member in mm

\(t_{\text{standard}} \) = the standard thickness of the member taken from Table 8

In no case may \(k_p \) exceed 1.0.

The minimum permissible thicknesses of the timber members are given in Table 8.

<table>
<thead>
<tr>
<th>Connector</th>
<th>Diameter of connector</th>
<th>Thickness mm</th>
<th>t_{min}</th>
<th>t_{standard}</th>
</tr>
</thead>
<tbody>
<tr>
<td>on one side only</td>
<td>67</td>
<td>41</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>41</td>
<td>44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>on both sides and on the same bolt</td>
<td>67</td>
<td>41</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>44</td>
<td>90</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

"For ring connectors, the characteristic load-carrying capacity of one connector unit is

\[
R_{c,k} = 0.21 \, d_c^{1.4} \, Q_k \, k_r \, N
\]

(7)
REFERENCES

[4] "Derivation of permissible loads for mechanical fasteners", prepared by Princes Risborough Laboratory. CSB 32/7-80/2, May 1980

[9] Scholten, J.A. Timber-connector joints : their strength and design. USDA FPL, 1944

Figure A.2: Connector of type A2
Figure A.3: Connector of type A3
Figure B.2: Connector of type B2
Figure B.3: Connector of type B3
Figure C.6: Connector of type C6
Figure C.7: Connector of type C7
Figure C.8: Connector of type C8
Figure C.9: Connector of type C9
FIG. 2. THE RELATIONSHIP BETWEEN STRENGTH IN COMPRESSION AND SPECIFIC GRAVITY FOR TOOTHED-PLATE CONNECTOR JOINTS OF WOOD AT 18 PERCENT MOISTURE CONTENT
Figure 3.—Relation between load bearing parallel to the grain and specific gravity of air-dry wood for a split-ring connector joint consisting of two 4-inch connectors and a ¾-inch bolt. The solid and open symbols for the same species indicate marked differences in specific gravity.
INTERNATIONAL COUNCIL FOR BUILDING RESEARCH STUDIES AND DOCUMENTATION

WORKING COMMISSION W18 - TIMBER STRUCTURES

ANALYSIS OF GLULAM SEMI-RIGID PORTAL FRAMES UNDER LONG-TERM LOAD

by

K Komatsu
N Kawamoto
Forestry and Forest Products Research Institute
Japan

MEETING TWENTY - FIVE
ÅHUS
SWEDEN
AUGUST 1992

Analysis of Glulam Semi-Rigid Portal Frames under Long-Term Load

by

Kohei Komatsu* and Norio Kawamoto*

ABSTRACT

Deformation of glulam portal frame whose beam-column joints were connected using such mechanical fasteners as nails or drift-pins were analysed in this study. A closed form solution for the mid-span deflection \(\delta \) of the beam member was derived by applying the minimum energy principle and the virtual work method. Axial, shear and rotational rigidity were considered for taking the effect of semi-rigid behaviour of joints into the analysis. Experiments were done by using two kinds of glulam portal frames of 5.4m span length and 1.8m height, one of which was composed of nail-on-steel plate joint and the other was composed of drift-pin joints. Two points dead loads were applied for about 200 days. Coincident between theoretical prediction and experimental measurement were much better in the nailed jointed specimen than the drift-pin jointed one, because the former had less clearance between nails and pre-drilled nail holes.

1. Introduction

Deformation of glulam portal frame built using the mechanical fasteners is strongly affected by the fasteners's mechanical properties. Usually, deformation of this kind of semi-rigid frame can be easily analysed by employing a nonlinear finite element method program. FEM solution is, however, not feasible to understand the basic characteristics of semi-rigid portal frame because it is a kind of particular solution for a particular material and geometrical combination. In order to analyze more fundamental aspect of the semi-rigid glulam portal frame, it might be necessary to derive a closed form solution in which basic parameters such as joint rigidity, material parameters, geometrical parameters involved.

For this end, we derived a closed-form solution of the deformation of a single-story glulam portal frame whose column-beam joints were composed of nails or/and drift-pins with steel gusset plates, by applying the principle of minimum energy and virtual work theory which was first proposed by Hirai in the field of the analysis of the semi-rigid glulam portal frames.

* Laboratory of Engineered Timber Joints
 Forestry and Forest Products Research Institute
 P.O. Box 16, Tsukuba Norin Kenkyu Danchi, Ibaraki 305, Japan
2. THEORY

2.1 Definition of portal frame and symbols used

Figure 1 shows a glulam portal frame as the objective of our analysis. Joints A, B, C, and D are assumed as the linear semi-rigid joint. In Fig. 1, definition of the symbols used are as follows:

\(L \) = Span of portal frame (m)

\(h_b \) = Distance between support of column and center-line of beam member (m)

\(h_c \) = Distance between support and upper rotation center of column member (m)

\((EI)_b \) = Flexural rigidity of beam member (kNm²)

\((EA)_b \) = Axial rigidity of beam member (kN)

\((GA)_b \) = Shear rigidity of beam member (kN)

\((EI)_c \) = Flexural rigidity of beam member (kNm²)

\((EA)_c \) = Axial rigidity of beam member (kN)

2.2 Joints rigidity

![Diagram of forces acting in the joints](image)

\[M_b = R_b \cdot \theta \quad \ldots \ldots 1 \]
\[N_b = D_b \cdot \Delta_{o3} \quad \ldots \ldots 2 \]
\[Q_b = S_b \cdot \Delta_{903} \quad \ldots \ldots 3 \]

Fig. 2 Definition of forces acting in the joints.
Within the joint-J of the portal frame, we assume that a linear relationship between forces \(\{ M, N, Q \} \) and displacement \(\{ \theta, \Delta_o, \Delta_y \} \) can be held as shown in equations (1), (2) and (3).

where,
\[
\begin{align*}
R_i &= n_{s,j} \left(\sum K_{o,i} y_i + \sum K_{s,c} x_i \right) : (\text{Rotational rigidity of joint-J}) \\
D_i &= n_{s,j} \sum K_{o,i} : (\text{Axial rigidity of joint-J}) \\
S_i &= n_{s,j} \sum K_{s,c} : (\text{Shear rigidity of joint-J})
\end{align*}
\]

\(n_{s,j} \) : number of shear plane where \(K_{o,i} \) and \(K_{s,c} \) are considered.
\(K_{o,i} \) : the slip modulus of \(i \)-th fastener parallel to the grain (kN/m)
\(K_{s,c} \) : the slip modulus of \(i \)-th fastener perpendicular to the grain (kN/m)
\(x_i, y_i \) : \(x-y \) coordinates of \(i \)-th fastener
\(i = 1 \sim n \) : number of single-shear fastener per joint-J

2.3 Horizontal reaction force

2.3.1 Stress distribution

Figures 3, 4 and 5 show moment, shear and axial force diagram expressed involving with the unknown horizontal reaction force \(H \).

Moment distribution

From point F to B;
\[M_y = -Hy \quad ...7) \]

From point B to loading point P;
\[M_x = P \times = -Hh_B \quad ...8) \]

Between two loading points;
\[M_x = P \times = -Hh_B \quad ...9) \]

Shear force distribution

From point F to B;
\[Q_x = dM_y / dy = -H \quad ...10) \]

From point B to loading point;
\[Q_x = dM_y / dx = P \quad ...11) \]

Between two loading points;
\[M_x = dM_y / dx = 0 \quad ...12) \]
Axial force distribution
For column members;
\[N_x = V_x = P \] \[\text{...13) } \]
For beam member;
\[N_x = Q_y = -H \] \[\text{...14) } \]

Fig. 5 Axial force diagram

2.3.2 Complementary energy

Energy due to member moment \(U_M \)

\[U_M = 2 \int_a^b \frac{h_c}{2(EI)_c} M_y^2 \, y + 2 \int_a^b \frac{h_b}{2(EI)_b} M_x^2 \, dx \]
\[= \frac{H^2 h_c^3}{3(EI)_c} + \frac{1}{(EI)_b} \left[\frac{h_b^2 L H^2}{2} - (P a h_b L - P a h_b) H + \frac{P^2 a^2 L}{2} - \frac{2I^2 a^2}{3} \right] \] \[\text{...15) } \]

Energy due to member shear force \(U_a \)

\[U_a = 2 \int_a^b \frac{h_c}{2(GA)_c} Q_x^2 \, \psi + 2 \int_a^b \frac{h_b}{2(GA)_b} Q_x^2 \, \psi \, dx \]
\[= \frac{H^2 h_c}{(GA)_c} \frac{\kappa}{(GA)_b} + \frac{P^2 a \kappa}{(GA)_b} \] \[\text{...16) } \]

Energy due to member axial force \(U_n \)

\[U_n = 2 \int_a^b \frac{h_c}{2(EA)_c} N_x^2 \, dx + \int_a^b \frac{h_b}{2(EA)_b} N_x^2 \, dx \]
\[= \frac{P^2 h_c}{(EA)_c} + \frac{H^2 L}{2(EA)_b} \] \[\text{...17) } \]

Energy due to joint moment \(U_{JM} \)

\[U_{JM} = \frac{1}{2}(M_A \Theta_A + M_B \Theta_B + M_C \Theta_C + M_D \Theta_D) \]
\[= \frac{H^2}{2} \left[h_c \left(\frac{1}{R_A} + \frac{1}{R_C} \right) + h_b \left(\frac{1}{R_B} + \frac{1}{R_D} \right) \right] \] \[\text{...18) } \]
Energy due to joint shear force $U_{3\Phi}$

$$U_{3\Phi} = \frac{1}{2} (Q_\Delta \Delta_{AB} + Q_B \Delta_{AB} + Q_C \Delta_{BC} + Q_D \Delta_{CD})$$

$$= \frac{1}{2} \left\{ \frac{1}{S_A} \left(\frac{1}{S_A} + \frac{1}{S_C} \right) + \frac{1}{S_B} \left(\frac{1}{S_B} + \frac{1}{S_D} \right) \right\} \cdots \cdots 19)$$

Energy due to joint axial force U_{3N}

$$U_{3N} = \frac{1}{2} (N_A \Delta_{AB} + N_B \Delta_{BC} + N_C \Delta_{CD} + N_D \Delta_{CD})$$

$$= \frac{1}{2} \left\{ \frac{P^2}{D_A} \left(\frac{1}{D_A} + \frac{1}{D_C} \right) + \frac{P^2}{D_B} \left(\frac{1}{D_B} + \frac{1}{D_D} \right) \right\} \cdots \cdots 2)$$

The unknown vertical reaction force H can be determined so as to minimize the total complementary energy stored in the portal frame. Namely,

$$\frac{\partial}{\partial H} \sum U = 0 \cdots \cdots 21)$$

where,

$$\sum U = U_M + U_B + U_N + U_{3M} + U_{3\Phi} + U_{3N} \cdots \cdots 22)$$

Substituting equations 15) to 20) into equation 22) then executing equation 21), we obtained equation 23) for the determination of H.

$$H = \frac{Pah_b(L-a)}{2h_c^2k/3 + h_c^2L + 2h_c^2\omega \kappa + q_bL + \lambda} \cdots \cdots 23)$$

where,

$$k = (EI)_b/(EI)_c, \quad \omega = (EI)_b/(GA)_c$$

$$\lambda = (EI)_a \cdot \phi, \quad q_b = (EI)_a/(EA)_b \cdots \cdots 24)$$

and

$$\phi = h_c^2 \left(\frac{1}{R_A} \frac{1}{R_C} \right) + h_c^2 \left(\frac{1}{R_B} \frac{1}{R_D} \right) + \left(\frac{1}{S_A} \frac{1}{S_C} \right) + \left(\frac{1}{D_B} \frac{1}{D_D} \right) \cdots \cdots 25)$$
2.4 MID-SPAN DEFLECTION

The deflection of mid-span point E, i.e. \(\delta_E \), can be derived by applying so-called virtual work method as shown in equation 26).

\[
\delta_E = \sum \int \frac{MM}{EI} \, ds + \sum \frac{M_s \bar{M}_s}{R_s} \quad \text{(moment)}
\]
\[
+ \sum \int \frac{Q \bar{Q}}{GA} \, \kappa \, ds + \sum \frac{Q_s \bar{Q}_s}{S_s} \quad \text{(shear force)}
\]
\[
+ \sum \int \frac{NN}{EA} \, ds + \sum \frac{N_s \bar{N}_s}{D_s} \quad \text{(axial force)}
\]

......26

In the equation 26), \(\bar{M}, \bar{Q}, \bar{N} \) and \(M_s, Q_s, N_s \) are the moment, shear force and axial force when a unit load is applied on the mid-span point E. Figures 6-a, 6-b, and 6-c show moment, shear force and axial force diagram when the unit load is applied on the point E. Corresponding reaction force \(\bar{H} \) is easily obtained by substituting \(a=L/2 \) and \(P=1/2 \) into equation 23) as follows;

\[
\bar{H} = \frac{\left(\frac{h_EL^2}{8} \right)}{(2hc^2 k/3 + h_B^2 L + 2h_B \omega \kappa + q_B L + \lambda)}
\]

......27

2.4.1 Calculation of \(\delta_E \)

Deflection due to moment

\[
\delta_{E,M} = 2 \int_0^h \frac{M_y \bar{M}_y}{(EI)_c} \, dy + 2 \left\{ \int_0^a \frac{M_x \bar{M}_x}{(EI)_c} \, dx + \int_0^{L/2} \frac{M_x \bar{M}_x}{(EI)_c} \, dx \right\}
\]
\[
+ \frac{Hh_c \bar{H}_c}{R_A} + \frac{Hh_b \bar{H}_b}{R_B} + \frac{Hh_c \bar{H}_c}{R_C} + \frac{Hh_b \bar{H}_b}{R_D}
\]
\[
= \frac{2Hh_c \bar{H}_c^3}{3(EL)_c} + \frac{2}{(EL)_b} \left\{ \frac{PaL^2}{16} - \frac{Pa^3}{12} - \frac{Pa \bar{H}_b}{2} (L-a) - \frac{h_B L^2}{16} + \frac{Hh_b \bar{H}_b}{2} L \right\} + \bar{H}(R)
\]

......28)

\[
f(R) = h_c^2 \left(\frac{1}{R_A} + \frac{1}{R_C} \right) + h_B^2 \left(\frac{1}{R_B} + \frac{1}{R_D} \right)
\]

......29)

For simplicity, next expression is used.

\[
\delta_{E,M}(EI)_b = 2h_c h_c^2 k/3 + \bar{H}(EI)_b f(R) + Pa(L^2/8 - a^2/6) - Pa \bar{H}_b (L-a)
\]
\[
- Hh_b L^2/8 + \bar{H} h_b \bar{H}_b L
\]

......30)
Deflection due to shear force

\[
\delta_{\kappa \in c} = 2 \int_0^{hc} \frac{Q_x Q_y}{(GA)_{c}} \kappa \, dy + 2 \int_0^{h} \frac{Q_x Q_y}{(GA)_{b}} \kappa \, dx + \frac{Q_x Q_y}{S_A} + \frac{Q_x Q_y}{S_B} + \frac{Q_x Q_y}{S_C} + \frac{Q_x Q_y}{S_D}
\]

\[
= \frac{2 \kappa H h c}{(GA)_c} + \frac{P a \kappa}{(GA)_b} + H H \left(\frac{1}{S_A} + \frac{1}{S_C} \right) + \frac{P}{2} \left(\frac{1}{S_B} + \frac{1}{S_D} \right) \quad \text{(31)}
\]

For simplicity, next expression is used.

\[
\delta_{\kappa \in c} (EI)_b = 2 H h c \omega_c \kappa + P a \kappa \omega_a + H H (EI)_b f(S) + (P/2)(EI)_b (1/S_B + 1/S_D)
\]

\[
\text{where,} \\
\omega_c = (EI)_b/(GA)_c, \quad \omega_a = (EI)_b/(GA)_b \quad \text{(32)}
\]

Deflection due to axial force

\[
\delta_{\kappa \in n} = 2 \int_0^{hc} \frac{N_x N_y}{(EA)_c} \, dy + 2 \int_0^{h} \frac{N_x N_y}{(EA)_b} \, dx + \frac{N_x N_y}{D_A} + \frac{N_x N_y}{D_B} + \frac{N_x N_y}{D_C} + \frac{N_x N_y}{D_D}
\]

\[
= \frac{P h c}{(EA)_c} + H H \frac{L}{(EA)_b} + H H \left(\frac{1}{D_A} + \frac{1}{D_D} \right) + \frac{P}{2} \left(\frac{1}{D_A} + \frac{1}{D_D} \right) \quad \text{(34)}
\]

For simplicity, next expression is used.

\[
\delta_{\kappa \in n} (EI)_b = H h q_b L + P h c q_c + H H (EI)_b f(D) + (P/2)(EI)_b (1/D_A + 1/D_D)
\]

\[
\text{where,} \\
f(D) = 1/D_A + 1/D_D, \quad q_c = (EI)_b/(EA)_c, \quad q_b = (EI)_b/(EA)_b \quad \text{(35)}
\]

Total deflection \(\delta_{\kappa \text{total}} \)

Total deflection is the summation of each deflection component, i.e.;

\[
\delta_{\kappa \text{total}} = \delta_{\kappa \in m} + \delta_{\kappa \in q} + \delta_{\kappa \in n} \quad \text{(37)}
\]

Substituting equations 30, 32, and 35 into 37) and considering equations 23) and 27) for \(H \) and \(\bar{H} \), we obtained the final equation for \(\delta_{\kappa \text{total}} \) as follows;

\[
\delta_{\kappa \text{total}} = \frac{P(a L^2/8 - a^3/6)}{(EI)_b} + \frac{P a \kappa}{(GA)_b} + \frac{P h c}{(EA)_b} + \frac{P}{2} \left(\frac{1}{S_B} + \frac{1}{S_D} + \frac{1}{D_A} + \frac{1}{D_D} \right)
\]

\[
- \frac{P h b^2 (a L^2 - a^3 L^2)}{8(EI)_b \left(2 h c^3 k/3 + h c^2 L + 2 h c \omega_c \kappa + q_b L + \lambda \right)} \quad \text{(38)}
\]
3. EXPERIMENT

3.1 Test specimen

Full-scale glulam portal frame of 5.4m in span \((L) \) and 1.8m in height \((h_w) \) were made using Ezo-Todo glulam (Abies and Spruce mixed-species glulam) as shown in Figures 6 or/and 7. Cross section of the glulam members were 150mm in width and 500mm in height and its average modulus of elasticity was 9.2 GPa.

![Figure 6-a](image)

Fig. 6-a Glulam portal frame composed of nail-on-plate joints.

![Figure 6-b](image)

Fig. 6-b Details of the joints in the specimen-1
Figure 6-a shows the specimen-1 built using nailed joint with steel side plates. Nails of 3.3mm in diameter were used and steel plates of 9mm in thickness were used. Diameter of pre-drilled nail hole was about 3.4mm. Figure 6-b) shows the details of the joints A, B, C and D in the specimen-1.

Figure 7-a shows the specimen-2 built using drift pinned joint with steel insert plate. Drift-pins of 18mm in diameter were used. Same steel plates as specimen-1 were used. Figure 7-b shows the details of the joints A, B, C and D in the specimen-2.

Fig. 7-a Glulam portal frame composed of drift-pins with steel insert plate(s).

Drift-pin d=18mm 2rows 9mm 2-steel plates 9mm steel plate Drift-pin d=18mm 2rows

Fig. 7-b Details of the joints in the specimen-2
3.2 Joint Details

Configuration of each joint were all different intentionally as shown in figures 6- b and 7- b for knowing the contribution of semi-rigidity from each joint on the total deflection of the glulam portal frame.

Two points vertical loads were applied using I-section steel members. At first P1 = 3.04kN was applied per loading point. Next, P2 = 4.02kN was added. Finally P3 = 2.97kN was added. Consequently, a total load P = P1 + P2 + P3 = 10.03kN (1022.5kgf) was applied per loading point. This load level was roughly equivalent to the force by which most critical fastener reached its long-term allowable force.

3.3 Estimation of Joint Rigidity

For the calculation of creep deflection of timber, wood based materials or/and built-up timber components, such empirical formula as shown in the equation 39) has been often used up to date.

\[
\delta_t = \delta_0 + At^n \\
\text{or } \delta_t / \delta_0 = 1 + \left(\frac{A}{\delta_0} \right) t^n \quad \ldots \ldots 39)
\]

where, \(\delta_0 \) is the instantaneous deflection at \(t = 0 \), and \(t \) is time.
\(A \) and \(N \) are constant to be determined experimentally.

According to Arima\(^2\), who summarized previous data for the creep deflection of sixteen kinds of nailed built-up truss or nail-plated timber truss, it is recognized that \(A / \delta_0 \) and \(N \) take almost constant value for 16 kinds of timber trusses as shown in figure 8. The mean value of 0.19 for \(A / \delta_0 \) and 0.25 for \(N \) were obtained. If it can be assumed that the same creep relationship as equation 39) is held good also for the nailed steel or the drift-pinned steel timber joints, the following creep equations for the joint rigidity might be assumed.

\[
R_0 (t) = R_{00} / (1 + 0.19 \cdot t^{0.25}) \quad \ldots \ldots 40)
\]
\[
S_0 (t) = S_{00} / (1 + 0.19 \cdot t^{0.25}) \quad \ldots \ldots 41)
\]
\[
D_0 (t) = D_{00} / (1 + 0.19 \cdot t^{0.25}) \quad \ldots \ldots 42)
\]

(unit of \(t \) is "day")

![Fig.8 A/\delta_0 vs. N](image-url)
In equations 40, 41, and 42, $R_1(t)$, $S_3(t)$, and $D_2(t)$ are the time dependent rotational rigidity, shear rigidity and axial rigidity of the semi-rigid joints, respectively. While, R_{10}, S_{30}, and D_{20} are the instantaneous rigidity at $t=0$. The instantaneous joint rigidity can be calculated using the slip modulus K_{st} or K_{styo} as well as the x,y coordinates of each fasteners as shown in equations 41), 5) and 6).

4. RESULTS AND DISCUSSION

4.1 Load-Slip Curves of Fasteners

![Figure 9 Load(P) - Slip(S) curve of nail-on-plate timber joint](image)

![Figure 10 Load(P) - Slip(S) curve of drift-pin joint with insert steel-plate.](image)
Figures 9, and 10 show load(P)-slip(S) curves of nail-on-plate timber joint, drift-pin timber joint with single insert steel-plate, respectively. These $P-S$ curves were obtained theoretically by employing the non-linear FEM\(^2\).

Table 1 shows some parameters used in the non-linear FEM analysis and also the slip modulus defined as K_0 or $K_{\infty} = P_{0.25}/0.25\text{mm}$, where $P_{0.25}$ is estimated load at joint slip of 0.25mm.

Table 1 Parameters used in the FEM analysis\(^4\) and slip modulus estimated.

- Modulus of elasticity of timber : $E_0 = 9.2 \times 10^5 \text{ kN/m}^2$
- Embedment parameters : $k_{s-o} = 98.07 E_0 / (0.0316 + 0.109 d)$, d: diameter in "m"
- Correlation among parameters : $k_{s-v0} = k_{s-o}/3$, $k_{u-o} = 0$, $k_{u-v0} = k_{s-o}/8.8$
 \[\sigma_{o-o} = 3.3 \times 10^{-5} E_0 \text{ (in kN/m}^2\text{)}, \quad \sigma_{o-v0} = \sigma_{o-o}/3 \]

- Assumption for embedment stress σ and embedment e of timber:
 \[\sigma = (\sigma_{o-o} + k_{u-o} \cdot e)(1 - \exp(-k_{s-o} \cdot e / \sigma_{o-o})) \text{ for parallel to the grain.} \]
 \[\sigma = (\sigma_{o-v0} + k_{u-v0} \cdot e)(1 - \exp(-k_{s-v0} \cdot e / \sigma_{o-v0})) \text{ for perpendicular to the grain.} \]
- Assumption for steel rod bending : perfect elasto-plastic
- Conversion factor from the gravity system unit to the SI unit : $1 \text{kgf} = 9.807 \text{N}

-------- Computed results --------
- Slip modulus of drift-pin ($d=18\text{mm}$) : $K_0 = 31382 \text{kN/m}$, $K_{\infty} = 12553 \text{kN/m}$.
- Slip modulus of nail ($d=3.3\text{mm}$) : $K_0 = 2628 \text{kN/m}$, $K_{\infty} = 1569 \text{kN/m}$.

4.2 Joint Rigidity

Tables 2 and 3 show the instantaneous joint rigidity R_{J0}, S_{J0}, and D_{J0} estimated using the slip modulus in table 1 and fastener’s coordinate values through equations 4), 5) and 6).

Table 2 Estimation of the instantaneous joint rigidity for the specimen-1 (nail-on-plate joint: refer to figure 6-b)

<table>
<thead>
<tr>
<th>Joint</th>
<th>Nail raw</th>
<th>Nail per plane</th>
<th>R_{J0} (kNm/rad)</th>
<th>S_{J0} (kN/m)</th>
<th>D_{J0} (kN/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
<td>104</td>
<td>25472</td>
<td>313800</td>
<td>525600</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>150</td>
<td>39088</td>
<td>470700</td>
<td>788400</td>
</tr>
<tr>
<td>C</td>
<td>4</td>
<td>192</td>
<td>40619</td>
<td>577392</td>
<td>967104</td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>230</td>
<td>52434</td>
<td>721740</td>
<td>1208880</td>
</tr>
</tbody>
</table>
Table 3 Estimation of the instantaneous joint rigidity for the specimen-2
(drift-pin joint: Refer to figure 7-b)

<table>
<thead>
<tr>
<th>Joint</th>
<th>Insert plate</th>
<th>Number of pins</th>
<th>R_{20} (kN/m/rad)</th>
<th>S_{20} (kN/m)</th>
<th>D_{y0} (kN/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>double</td>
<td>12</td>
<td>26506</td>
<td>301272</td>
<td>753168</td>
</tr>
<tr>
<td>B</td>
<td>double</td>
<td>20</td>
<td>34876</td>
<td>502120</td>
<td>1255280</td>
</tr>
<tr>
<td>C</td>
<td>single</td>
<td>12</td>
<td>13253</td>
<td>150636</td>
<td>376584</td>
</tr>
<tr>
<td>D</td>
<td>single</td>
<td>20</td>
<td>17438</td>
<td>251060</td>
<td>627640</td>
</tr>
</tbody>
</table>

4.3 Contribution from each rigidity to the total deflection

Table 4 shows how each rigidity contributes to the total deflection δ_E shown in the equation 38).

Table 4 Contribution from each rigidity to the total deflection δ_E

<table>
<thead>
<tr>
<th>i</th>
<th>Condition assumed $(EI) \neq \infty$</th>
<th>Specimen-1 (Nailed joint) (mm) (i/7.)</th>
<th>Specimen-2 (Drift-pin joint) (mm) (i/7.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Rigid frame, only $(GA) = \infty$</td>
<td>1.44 (0.52)</td>
<td>1.44 (0.47)</td>
</tr>
<tr>
<td>2.</td>
<td>Rigid frame, only $(EA) = \infty$</td>
<td>2.28 (0.82)</td>
<td>2.28 (0.74)</td>
</tr>
<tr>
<td>3.</td>
<td>Rigid frame, both $(GA), (EA) = \infty$</td>
<td>2.32 (0.83)</td>
<td>2.32 (0.75)</td>
</tr>
<tr>
<td>4.</td>
<td>Semi-rigid, only $R_s \neq \infty$</td>
<td>2.74 (0.99)</td>
<td>3.03 (0.98)</td>
</tr>
<tr>
<td>5.</td>
<td>Semi-rigid, only $S_s \neq \infty$</td>
<td>2.35 (0.85)</td>
<td>2.37 (0.77)</td>
</tr>
<tr>
<td>6.</td>
<td>Semi-rigid, only $D_s \neq \infty$</td>
<td>2.34 (0.84)</td>
<td>2.3 (0.76)</td>
</tr>
<tr>
<td>7.</td>
<td>Semi-rigid, all $R_s, S_s, D_s \neq \infty$</td>
<td>2.78 (1.00)</td>
<td>3.09 (1.00)</td>
</tr>
<tr>
<td>8.</td>
<td>Observed deflection $(t=0)$</td>
<td>2.91 (1.05)</td>
<td>3.68 (1.18)</td>
</tr>
</tbody>
</table>

(EI) = Flexural rigidity of member, (EA) = Axial rigidity of member
(GA) = Shear rigidity of member, R_s = Rotational rigidity of joint
S_s = Axial rigidity of joint, D_s = Shear rigidity of joint

It is obvious from table 4 that the effect of shear rigidity (GA) of glulam member on the total deflection δ_E is quite large (see column 1. in table 4). This might be caused because the span (L)-depth (h) ratio L/h of glulam member was relatively small, thus the percentage of member shear deformation was not negligible. Moreover, the effect of the rotational rigidity of joint R_s on the total deflection is dominant, while the joint's shear rigidity and axial rigidity have a
little contribution to the total deflection. Thus, it is a reasonable simplifying for practical design purpose to neglect the joint’s shear rigidity and axial rigidity in the deflection calculation of semi-rigid glulam portal frame. Contrary to this, it might not be a reasonable simplifying, however, to neglect the member’s shear rigidity for the calculation of semi-rigid glulam portal frame in some cases.

4.4 Comparisons between observed creep deflections and computed ones

Figure 11 shows comparisons between the creep deflection observed at the point-E and those computed using equation 38). In the calculation of the deflection, following creep equation for glulam members were also assumed according to the result of Arima27.

\[E(t) = E_0 / (1 + 0.19 \cdot t^{0.25}) \] \text{......43) } \]

where, \(E(t) \) is the time-dependent modulus of elasticity of glulam member, and \(E_0 \) is the instantaneous modulus of elasticity of glulam.

![Graph showing comparisons between observed and computed creep deflections.](image_url)

Fig.11 Comparisons between observed and computed creep deflections.
Relatively good coincidence between observed deflections and those computed was observed in the case of specimen-1, nail-on-plate joints. While, in the case of the specimen-2, drift-pin joints with insert steel-plate, the creep deflections observed were far larger than those of computed using equation 38). This might be partly because there were about 1mm initial clearance between pre-drilled holes and diameter of drift-pins, so deflection quickly increased when dead loads were applied.

Anyway, in order to predict the creep deflection of the semi-rigid glulam portal frame more precisely, further basic investigations on the time-dependent embedment characteristics of timber will be necessary.

5. CONCLUSION

The deflection of the semi-rigid single story glulam portal frame could be obtained in a closed form with considering every joint rigidity as well as every member rigidity. Effect of member shear rigidity and joint rotational rigidity were dominant. Creep deflection at mid-span of beam member could be reasonably predicted by assuming power low creep equation for both joint rigidity and member rigidity. In order to predict the creep deflection of the semi-rigid glulam portal frame more precisely, further basic investigations on the time-dependent embedment characteristics of timber will be necessary.

Acknowledgement

The authors wish to thank Mr. Shigeto Fukutome of Kagoshima Technical Research Center, Kagoshima for his contribution to the experimental jobs.

REFERENCES

INTERNATIONAL COUNCIL FOR BUILDING RESEARCH STUDIES AND DOCUMENTATION

WORKING COMMISSION W18 - TIMBER STRUCTURES

DVM ANALYSIS OF WOOD
LIFETIME, RESIDUAL STRENGTH AND QUALITY

by

L F Nielsen
Technical University of Denmark
Denmark

MEETING TWENTY - FIVE
ÅHUS
SWEDEN
AUGUST 1992
DVM-analysis of wood
Lifetime, residual strength, and quality

Laug Fuglsang Nielsen
Building Materials Laboratory
Technical University of Denmark
DK-2800 Lyngby, Denmark

ABSTRACT

Wood is a material with significant viscoelastic mechanical properties. One manifestation of this is that wood loaded by a constant load can exhibit time dependent deformation which is of the same order of magnitude as the initial elastic deformation in a relatively short time (months). Wood is also a material which contains cracks and other defects (e.g. knots) which may cause a considerable strength reduction. This reduction is time dependent just like the deformation. One speaks about short-time strength which is the load wood can maintain for about 1 minute - and long-time strength which is the load which can be maintained for 10 years before failure takes place. The 10-year strength is about 60% of the short-time strength.

To consider wood as a viscoelastic material is an old idea. There is also nothing new in considering wood as a cracked material to which elastic fracture mechanics can be applied to determine strength. However, the mentioned models cannot individually explain a number of phenomena which are very important features characterizing the mechanical behavior of wood. For instance, that lifetime is influenced by wood quality (clear, structural), that short-time strength is influenced by time under load, and that lifetime is influenced by strength distribution.

A penetrating explanation of such significant materials properties was first made possible when an integrated materials concept for the behavior of wood was presented by the author: Wood is a damaged viscoelastic material (DVM) whose mechanical behavior can only be described in sufficient details by coupling the theories of viscoelasticity and fracture mechanics. One cannot (as it was done previously) consider wood either as a cracked elastic material or as a homogeneous viscoelastic material without losing the possibility of describing important features of mechanical behavior. One important advantage of the DVM theory relative to other theories dealing with damage (or crack) propagation in viscoelastic media is that it is valid also at high loads. This feature is needed to explain the influence on lifetime of material quality. Formally the DVM-theory appears as a so-called theory of damage accumulation where damages range from large cracks to very small defects not visible to the naked eye.

Essential parts of the DVM-theory are summarized in the lecture. Experimental justifications are presented together with some results obtained by the theory in areas of great importance in wood design. Examples are, Lifetime and residual strength of wood versus wood quality, Lifetime distribution versus strength distribution, and Lifetime of wood versus ambient humidity.
INTERNATIONAL COUNCIL FOR BUILDING RESEARCH STUDIES AND DOCUMENTATION

WORKING COMMISSION W18 - TIMBER STRUCTURES

THE STRENGTH OF NORWEGIAN GLUED LAMINATED BEAMS

by

K Søli
E Aasheim
The Norwegian Institute of Wood Technology
Norway
R H Falk
Forest Products Laboratory, Madison
USA

MEETING TWENTY - FIVE
ÅHUS
SWEDEN
AUGUST 1992
THE STRENGTH OF NORWEGIAN GLUED LAMINATED BEAMS

Kjell Solli, Erik Aasheim, Robert H. Falk

This paper focuses on the characterization and the performance of glued laminated (glulam) timber beams manufactured from machine stress graded Norwegian spruce in comparison to developing CEN standards. Material property testing indicated that the supplied laminating timber can be represented by two CEN strength classes, C37-14E and C30-12E, with about 50% yield in each class. Beams constructed from these grades exhibited strength and stiffness meeting the requirements of CEN combinations LH35, LH40 and LC38.

INTRODUCTION

This paper reports on research performed in Norway by Robert H. Falk in close cooperation with The Norwegian Institute of Wood Technology.

The study was performed during the period from September 1990 until September 1991, and was linked to the draft CEN standards applicable in 1990, as shown in the appendix of this paper.

The research was sponsored by Royal Norwegian Council for Scientific and Industrial Research, Norwegian Glulam Producers Association and The Norwegian Institute of Wood Technology.

OBJECTIVES

The basic objective of this research is to characterize the performance of glulam beams manufactured from machine stress graded Norwegian spruce relative to the developing CEN standards. This study involves the strength and stiffness testing of Norwegian spruce timber for the establishment of lamination grades meeting CEN standards, testing of finger joints and testing of full size beams in bending.

Specific objectives are to:

1. Characterize the mechanical properties of lamination timber and determine the yield of laminating grades meeting CEN standards.

2. Evaluate the performance of full size glulam beams constructed from the established lamination grades.
3. Quantify the relationship between the bending and tensile strength of
the finger joints and lamination material and the required
performance of these elements on the tension side of the beam.

This paper will focus on objective 2. A complete report from the research are
being finalized and will be published this year.

MATERIAL DESCRIPTION

The Norway spruce (Picea abies) lamination timber utilized in this study was
visually graded by the manufacturer to meet the requirements of the Norwegian
glulam industry visual grades LT20 and LT30. 5602 laminations, nominally
40 mm x 95 mm in cross section, were provided in random lengths. The lengths
varied from 2.20 m to 5.65 m, with an average length of about 4.30 m.

Each lamination was run through a Computermatic MK-IV machine stress
grader. Specialized data acquisition equipment developed for this study was
used to record deflection (bit) values at 150 mm intervals along each lamination.

MATERIAL TESTING

Using the machine stress grader data, the parent population of laminations was
ranked according to MOE_{mac} and specimens were selected from throughout this
ranking for material property testing. These material property tests provided
the information necessary to establish lamination grades meeting CEN require-
ments.

The lamination property tests performed were: (1) bending stiffness (including
flatwise and edgewise bending), (2) bending strength (edgewise), (3) tension
strength and (4) average density. Laminations to be tested were selected in such
a way that the stiffness distribution of each material property test group
matched as closely as possible the stiffness distribution (MOE_{mac}) of the parent
population of laminations. All tests were performed on specimens 38 mm x
90 mm in cross section. Specimen length varied depending on the specific test
performed and the requirements of the test standard ISO 8375. All MOE test
data were corrected to 12 % moisture content in accordance with CEN
standards.

LAMINATING GRADES

To determine the laminating grades representative of the parent population of
supplied laminations, the results of the machine stress grading, bending stiffness
and strength testing, and tension tests were statistically analyzed. Laminating
grades meeting the requirements of EN TC 124.203 including C37-14E, C30-12E,
C24-11E and C21-10E, were targeted.
The results of this procedure indicated that 48% fall into the C37-14E grade and 50% into the C30-12E grade. The balance of the laminations fall into the C24-11E grade.

Table 1 summarizes the distribution estimates of the lamination bending strength. Note that the bending strength data have been adjusted to the reference depth of 200 mm.

<table>
<thead>
<tr>
<th>GRADE</th>
<th>PERCENTILE ESTIMATES *)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MPa</td>
</tr>
<tr>
<td></td>
<td>50th</td>
</tr>
<tr>
<td>C30-12E</td>
<td>Nonparametric</td>
</tr>
<tr>
<td></td>
<td>44,2</td>
</tr>
<tr>
<td></td>
<td>Distributional</td>
</tr>
<tr>
<td></td>
<td>44,5</td>
</tr>
<tr>
<td>C37-14E</td>
<td>Nonparametric</td>
</tr>
<tr>
<td></td>
<td>55,9</td>
</tr>
<tr>
<td></td>
<td>Distributional</td>
</tr>
<tr>
<td></td>
<td>56,3</td>
</tr>
</tbody>
</table>

*) Adjusted to reference depth of 200 mm

Table 2 summarizes the distribution estimates of the bending stiffness.

<table>
<thead>
<tr>
<th>GRADE</th>
<th>PERCENTILE ESTIMATES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MPa</td>
</tr>
<tr>
<td></td>
<td>50th</td>
</tr>
<tr>
<td>C30-12E</td>
<td>Nonparametric</td>
</tr>
<tr>
<td></td>
<td>12802</td>
</tr>
<tr>
<td></td>
<td>Distributional</td>
</tr>
<tr>
<td></td>
<td>12505</td>
</tr>
<tr>
<td>C37-14E</td>
<td>Nonparametric</td>
</tr>
<tr>
<td></td>
<td>15102</td>
</tr>
<tr>
<td></td>
<td>Distributional</td>
</tr>
<tr>
<td></td>
<td>15180</td>
</tr>
</tbody>
</table>
BEAM PRODUCTION

The balance of the laminations not utilized in the material property and finger joint tests were sorted into the established C30-12E and C37-14E grades and three different beam combinations were produced, two homogeneous (LH35 and LH40) and one combined (LC38*). Since the combined combination utilized C37-14E/C30-12E and not C37-14E/C24-11E as specified in the CEN standard, this layup is referred to as LC38*.

All beams were constructed of nine laminations 33 mm in thickness and resulted in test beams 300 mm in depth and 90 mm in width. Figure 1 indicates the beam combinations. A total of 312 beams were manufactured; 104 LH35, 112 LH40, and 96 LC38*. The beams were manufactured by a commercial laminator in 24 m length using phenol-resorcinol resin. Four 6 m test beams were cut from each full length beam.

![Beam combinations manufactured and tested](image)

Figure 1

Beam combinations manufactured and tested

BEAM TESTING

The beams were tested according to ISO 8375 over a 5.40 m span with 1.80 m between the load heads. The MOE was measured in the shear free zone between the load heads over a 1.50 m span using an electronic transducer. Moisture content readings were taken on each glulam beam and the MOE was adjusted to standard conditions (12% MC).

The location of all finger joints in each beam were noted before testing as well as the identifying number of each lamination.
BEAM TEST RESULTS

In general, the 312 glulam beams tested in this study failed as expected, that is, in tension in the outer lamination.

Table 3 summarizes the distribution estimates of the beam bending strength. Note that there was no depth effect adjustment applied to the data. The distribution estimates for bending stiffness is shown in Table 4.

Table 3
Summary of distribution estimates of beam bending strength.

<table>
<thead>
<tr>
<th>BEAM GROUP</th>
<th>PERCENTILE ESTIMATES MPa</th>
<th>50th</th>
<th>5th</th>
<th>COV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LH35</td>
<td>Nonparametric</td>
<td>44.3</td>
<td>32.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Distributional</td>
<td>44.1</td>
<td>34.3</td>
<td>12.6</td>
</tr>
<tr>
<td>LH40</td>
<td>Nonparametric</td>
<td>52.5</td>
<td>39.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Distributional</td>
<td>52.3</td>
<td>39.4</td>
<td>14.6</td>
</tr>
<tr>
<td>LC38*</td>
<td>Nonparametric</td>
<td>47.7</td>
<td>37.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Distributional</td>
<td>48.6</td>
<td>39.2</td>
<td>13.4</td>
</tr>
</tbody>
</table>

Table 4
Summary of distribution estimates of beam MOE

<table>
<thead>
<tr>
<th>BEAM GROUP</th>
<th>PERCENTILE ESTIMATES MPa</th>
<th>50th</th>
<th>5th</th>
<th>COV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LH35</td>
<td>Nonparametric</td>
<td>13073</td>
<td>11305</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Distributional</td>
<td>13000</td>
<td>11242</td>
<td>7.5</td>
</tr>
<tr>
<td>LH40</td>
<td>Nonparametric</td>
<td>15395</td>
<td>13421</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Distributional</td>
<td>15362</td>
<td>13409</td>
<td>7.2</td>
</tr>
<tr>
<td>LC38*</td>
<td>Nonparametric</td>
<td>14618</td>
<td>12928</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Distributional</td>
<td>14596</td>
<td>13049</td>
<td>6</td>
</tr>
</tbody>
</table>
It is seen that all the beam combinations meet or exceed the CEN stiffness requirements. The LH40 beam combination has a slightly higher stiffness than the LC38* combination due to the uniform use of the higher stiffness C37-14E lamination grade.

For the LC38* combination the CEN standards are exceeded also in bending. The 5th percentile estimates of beam strength are seen to be within two percent of the CEN requirements for the LH35 and LH40 beam combinations.

Note that the LC38* combination had a characteristic bending strength equal to the LH40 combination though the LC38* combination uses 55% less high grade laminations. This indicates the material efficiencies realized through the use of the combined glulam layup.

CONCLUSION

In general, the results of this study show that high yields of two machine stress rated Norwegian spruce laminating grades meeting the requirements of the draft CEN standards, C37-14E and C30-12E, can be generated from the supplied laminating timber. Furthermore, glulam beams manufactured from these grades can meet or exceed the strength and stiffness requirements of CEN beam combinations LH35, LH40 and LC38.

CONCLUDING REMARKS

The data from this project are still being analyzed. The data are used as input to the "Karlsruhe Model" and to the American "PROLAM-model", and the results from these simulations will be reported at a later stage.

REFERENCES

Appendix: Extract from EN TC 124.203 (1990) and EN TC 124.207 (1990)
APPENDIX

Extract from EN TC 124.203 and EN TC 124.207

Table A.1
Strength classes.

<table>
<thead>
<tr>
<th>Strength classes</th>
<th>C13-7E</th>
<th>C15-8E</th>
<th>C15-11E</th>
<th>C18-9E</th>
<th>C21-13E</th>
<th>C24-11E</th>
<th>C30-12E</th>
<th>C36-14E</th>
<th>C48-20E</th>
<th>C60-22E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strength properties in MPa</td>
<td></td>
</tr>
<tr>
<td>BENDING</td>
<td>$f_{m,k}$</td>
<td>13</td>
<td>15</td>
<td>15</td>
<td>18</td>
<td>21</td>
<td>21</td>
<td>24</td>
<td>30</td>
<td>37</td>
</tr>
<tr>
<td>TENSION PARALLEL</td>
<td>$f_{t,o,k}$</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td>13</td>
<td>14</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>TENSION PERPENDICULAR</td>
<td>$f_{t,90,k}$</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>COMPRESSION PARALLEL</td>
<td>$f_{c,o,k}$</td>
<td>16</td>
<td>17</td>
<td>17</td>
<td>19</td>
<td>20</td>
<td>20</td>
<td>21</td>
<td>24</td>
<td>25</td>
</tr>
<tr>
<td>COMPRESSION PERPENDICULAR</td>
<td>$f_{c,90,k}$</td>
<td>4.8</td>
<td>4.8</td>
<td>5.2</td>
<td>5.2</td>
<td>5.4</td>
<td>5.7</td>
<td>5.7</td>
<td>6.3</td>
<td>6.7</td>
</tr>
<tr>
<td>SHEAR</td>
<td>$f_{v,k}$</td>
<td>1.6</td>
<td>1.7</td>
<td>1.7</td>
<td>1.8</td>
<td>2.1</td>
<td>2.1</td>
<td>2.4</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Stiffness properties in MPa</td>
<td></td>
</tr>
<tr>
<td>MOE MEAN PARALLEL</td>
<td>$E_{o,mean}$</td>
<td>7000</td>
<td>8000</td>
<td>11000</td>
<td>9000</td>
<td>10000</td>
<td>13000</td>
<td>11000</td>
<td>12000</td>
<td>15000</td>
</tr>
<tr>
<td>MOE MINIMUM PARALLEL</td>
<td>$E_{o,min}$</td>
<td>4900</td>
<td>5500</td>
<td>7400</td>
<td>6500</td>
<td>7000</td>
<td>8700</td>
<td>7500</td>
<td>8500</td>
<td>10300</td>
</tr>
<tr>
<td>MOE MEAN PERPENDICULAR</td>
<td>$E_{90,mean}$</td>
<td>230</td>
<td>270</td>
<td>370</td>
<td>300</td>
<td>330</td>
<td>430</td>
<td>370</td>
<td>400</td>
<td>450</td>
</tr>
<tr>
<td>MOE MEAN PERPENDICULAR</td>
<td>$E_{90,mean}$</td>
<td>470</td>
<td>530</td>
<td>730</td>
<td>600</td>
<td>670</td>
<td>860</td>
<td>730</td>
<td>800</td>
<td>1000</td>
</tr>
<tr>
<td>SHEAR MODULUS MEAN</td>
<td>G_{mean}</td>
<td>440</td>
<td>500</td>
<td>690</td>
<td>560</td>
<td>630</td>
<td>800</td>
<td>690</td>
<td>750</td>
<td>900</td>
</tr>
<tr>
<td>Density in kg/m3</td>
<td></td>
</tr>
<tr>
<td>DENSITY</td>
<td>p_{k}</td>
<td>290</td>
<td>300</td>
<td>450</td>
<td>320</td>
<td>350</td>
<td>480</td>
<td>380</td>
<td>410</td>
<td>520</td>
</tr>
</tbody>
</table>

Table A.2
Classification of glulam.

<table>
<thead>
<tr>
<th>Strength classes for homogeneous glulam</th>
<th>LH25</th>
<th>LH28</th>
<th>LH30</th>
<th>LH35</th>
<th>LH40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required lamination strength class</td>
<td>C18-9E</td>
<td>C21-10E</td>
<td>C24-11E</td>
<td>C30-12E</td>
<td>C37-14E</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Strength classes for combined glulam</th>
<th>LC24</th>
<th>LC26</th>
<th>LC28</th>
<th>LC33</th>
<th>LC38</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required strength class of: Outer laminations</td>
<td>C18-9E</td>
<td>C21-10E</td>
<td>C24-11E</td>
<td>C30-12E</td>
<td>C37-14E</td>
</tr>
<tr>
<td>Inner laminations</td>
<td>C13-7E</td>
<td>C15-8E</td>
<td>C18-9E</td>
<td>C21-10E</td>
<td>C24-11E</td>
</tr>
</tbody>
</table>
Table A.3
Characteristic strength of homogeneous glulam.

<table>
<thead>
<tr>
<th>Strength class</th>
<th>LH25</th>
<th>LH30</th>
<th>LH35</th>
<th>LH40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bending</td>
<td>25</td>
<td>28</td>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td>Tension - par.</td>
<td>20</td>
<td>23</td>
<td>25</td>
<td>28</td>
</tr>
<tr>
<td>- perp.</td>
<td>0.3</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Compression</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>29</td>
</tr>
<tr>
<td>- par.</td>
<td>5.7</td>
<td>5.9</td>
<td>6.3</td>
<td>6.9</td>
</tr>
<tr>
<td>- perp.</td>
<td>2.7</td>
<td>2.9</td>
<td>3.1</td>
<td>3.5</td>
</tr>
<tr>
<td>Modulus of Elasticity par.</td>
<td>10000</td>
<td>11000</td>
<td>11500</td>
<td>12500</td>
</tr>
<tr>
<td>+ bending</td>
<td>320</td>
<td>350</td>
<td>380</td>
<td>410</td>
</tr>
</tbody>
</table>

Table A.4
Characteristic strength of combined glulam.

<table>
<thead>
<tr>
<th>Strength class</th>
<th>LC24</th>
<th>LC26</th>
<th>LC28</th>
<th>LC33</th>
<th>LC38</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bending</td>
<td>24</td>
<td>26</td>
<td>28</td>
<td>33</td>
<td>38</td>
</tr>
<tr>
<td>Tension - par.</td>
<td>17</td>
<td>19</td>
<td>21</td>
<td>24</td>
<td>26</td>
</tr>
<tr>
<td>- perp.</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Compression</td>
<td>22</td>
<td>23</td>
<td>25</td>
<td>27</td>
<td>30</td>
</tr>
<tr>
<td>- par.</td>
<td>5.7</td>
<td>5.9</td>
<td>6.3</td>
<td>6.9</td>
<td>7.4</td>
</tr>
<tr>
<td>- perp.</td>
<td>2.5</td>
<td>2.6</td>
<td>2.7</td>
<td>2.9</td>
<td>3.1</td>
</tr>
<tr>
<td>Modulus of Elasticity par.</td>
<td>9500</td>
<td>10500</td>
<td>11000</td>
<td>12000</td>
<td>13000</td>
</tr>
<tr>
<td>+ axial</td>
<td>8500</td>
<td>9500</td>
<td>10500</td>
<td>11500</td>
<td>12000</td>
</tr>
<tr>
<td>Density</td>
<td>250</td>
<td>300</td>
<td>320</td>
<td>350</td>
<td>380</td>
</tr>
</tbody>
</table>
INTERNATIONAL COUNCIL FOR BUILDING RESEARCH STUDIES AND DOCUMENTATION

WORKING COMMISSION W18 - TIMBER STRUCTURES

THE INFLUENCE OF THE ELASTICITY MODULUS ON THE SIMULATED BENDING STRENGTH
OF HYPERSTATIC TIMBER BEAMS

by

T D Gerard Canisius
Building Research Establishment
United Kingdom

MEETING TWENTY - FIVE
ÅHUS
SWEDEN
AUGUST 1992
The Influence of the Elasticity Modulus on the Simulated Bending Strength of Hyperstatic Timber Beams

T.D. Gerard Canisius

Building Research Establishment,

Bucknall's Lane, Garston, Watford, WD2 7JR, U.K.

Abstract: In the design of a timber beam, its strength is assumed to be constant along the length and to be equal to the characteristic strength. This gives rise to an increase in the safety level of the member. In order to find this increase in safety, it is necessary to find the strengths of beams under different loading conditions. In the case of statically determinate beams, the structural analysis is not affected by the variations in the elasticity modulus. The importance of considering the lengthwise variation of the elasticity modulus in calculating the strengths of hyperstatic beams is investigated in this paper. The multivariate approach of Taylor and Bender is used in generating beam properties. Finite elements are used for stress analysis. Subject to the assumptions made, it is shown that in simulating the beam strengths, the correlated elasticity modulus needs to be considered in both the generation of properties and the analysis of problems if the desired accuracy is high.

1Paper presented at the CIB-W18 Meeting 24 at Ahus, Sweden, 24-27 August, 1992
1 Introduction

In the standard limit state design of a bending member, its strength is assumed to be uniform and equal to the characteristic strength. Therefore it is designed for the maximum applicable bending moment. In other words, the maximum bending moment is implicitly considered to act throughout the whole length of a beam of non-uniform strength with a minimum strength equal to the characteristic strength. This design procedure can result in higher safety levels for certain beams under certain types of loading. This is so because the maximum moment may act only in a small length of the beam, making the probability of failure much lower. For example, a cantilevered beam with a uniformly distributed load will have a higher safety level than a similar simply supported beam with the same maximum moment given rise to by a similar load.

A research programme is now being carried out to determine the feasibility of applying a 'Moment Configuration Factor' to the design formula to reduce this unnecessary increase in safety and the consequent loss of economy. This factor is defined as the ratio between the strength of a beam under a given load and support conditions and its strength under a constant bending moment acting throughout the length. The latter simulates the usual design assumption described above. Of course, where the design is based on test results of a component such as a trussed rafter, a moment configuration factor cannot be justified. This paper presents results from a preliminary
investigation carried out as a part of this research programme.

The above mentioned increase in the safety level has already been analytically studied by several researchers [1,2,3]. Riberholt and Madsen[1,2] developed a method for the conversion of European strength data to the strength of (failure causing) defects which were assumed to be Poisson distributed spatially. This distribution of the strengths of defects and the distribution of the occurrences of defects were used in the simulation of beams. This method involved, among others, the assumption of independence between strengths of defects and also between their occurrences. Czmoch et al. [3] showed that this method provides more conservative results than when correlations were assumed to exist. Some experimental results with respect to this difference in strengths due to different load and support configurations have been reported by Madsen and Buchanan[4].

Although it does not consider the lengthwise variability in the elasticity modulus of timber, the above simulation method has been applied also to the analysis of continuous beams. This neglected the accompanying possible changes in the bending moment diagrams of hyperstatic beams. Therefore, based on a different strength simulation model, the importance of considering the variability of the elasticity modulus and its correlation to the bending strength is investigated in this paper.

In this investigation, the spatial correlations and cross-correlation of strength and stiffness properties are considered approximately using the method pro-
posed by Taylor and Bender [5,6,7]. This involves the simultaneous sampling of variables from a multivariate normal distribution and their transformation to the distributions of interest. The strength and stiffness are assumed to follow first order Markov processes spatially.

A beam finite element model is used in the structural analysis. The strengths and stiffnesses of the property elements, as determined by the random number generator, are allocated to the finite elements.

2 The Simulation of Beam Properties

In the method of Taylor and Bender [7] the correlated stiffness and strength properties are assumed to be random and stationary. The material and statistical properties, which are based on a test element length \(L_t \), are assumed to be available.

2.1 The Spatial and Cross-Correlations

Taylor and Bender considered the elasticity moduli to be serially correlated according to a second order Markov process. (A recent paper [8] considers a third order process). This follows on the work of Kline et al. [9]. However, in this preliminary study, the stiffness correlation is considered to be a first order Markov process. This allows the determination of all the spatial autocorrelation coefficients with only the lag-1 coefficient, \(\rho_1 \), which is assumed to be known. This is felt to be reasonable for the present study as, according to
Czmoch [10], the correlation functions for the modulus determined by different researchers do not agree (at short distances). The higher lag correlation coefficients, for example \(\rho_k \) for lag-\(k \), can be obtained from Eq. 1.

\[
\rho_k = \rho_l^k \quad (k > 0)
\]

(1)

In [7], the determination of cross-correlation coefficients between the strength and the stiffness had been carried out in two ways. First, for beams of length equal to the test beam length, the correlation had been determined from data. Secondly, for longer beams, the coefficients had been determined with Eq. 2.

\[
\rho_{k_{e-1}} = \rho_{k_e} \rho_{0_{e-1}}
\]

(2)

where \(\rho_{0_{e-1}} \) and \(\rho_{k_{e-1}} \) are, respectively, the lag-0 and lag-\(k \) cross-correlations between the strength and stiffness and \(\rho_{k_e} \) is the lag-\(k \) autocorrelation coefficient for stiffness. The use of this equation, while preserving the zero-lag coefficient from tests, had not preserved the higher order cross-correlations. Therefore, as such an approximation seems acceptable, the use of a first order process for stiffness in the present study may be further justified.

2.2 The Method of Simulation

The marginal cumulative distribution functions of the strength and stiffness, denoted by \(F_s \) and \(F_c \) respectively, are assumed to be available from test data. If a beam to be simulated needs \(n \) number of property elements of length \(L_e \), then, with the stiffness and strength of each property element being
required, the number of unknown properties is $2n$. In the present description
it is assumed that the first n variables refer to the stiffness properties and
the remainder refers to the strength properties. Let the joint probability
distribution function for these $2n$ variables be F_i.

The expected value vector $\{\bar{A}\}$ and the diagonal of the correlation ma-
trix $[C]$ of F_i are considered to be available from test data. As suggested
above, the non-diagonal members of the correlation matrix are found from
the Markov behaviour together with the necessary initial values which are as-
sumed available. Also $\rho_{0\nu-\nu}$, the lag-0 cross-correlation between the strength
and stiffness, is needed. All these coefficients contribute to the correlation
matrix $[C]$.

Using the normalised expected value vector $\{\bar{\hat{A}}\}$ and the normalised cor-
relation matrix $[\bar{C}]$ random values are sampled from a multivariable normal
distribution. In the present simulations the multivariate random number
generator available with the NAG Fortran Library[11] is used. These stan-
dardised normal values are then transformed into equivalent values in the
respective marginal distributions F_ν and F_ν. The conversion is carried out
so as to provide the same cumulative distribution function value as in the
standardised marginal normal distribution.

Simulation Errors It has been demonstrated that this method preserves
the original correlation matrices well [7], except in the case of highly skewed
distributions [12]. As an approximate check on the accuracy of the present
simulation, the differences between the original and the simulated correlation matrices were monitored under two criteria. The first is the 'distance' E_1 defined by

$$E_1 = \frac{\Sigma_{i=1}^{2n} \Sigma_{j=1}^{2n} (\mu_2^{ij} - c^{ij})^2}{\Sigma_{i=1}^{2n} \Sigma_{j=1}^{2n} (c^{ij})^2}$$ \hspace{1cm} (3)$$

where, μ_2^{ij} is the (i,j)th element of the simulated correlation matrix and c^{ij} is the corresponding element in the original matrix. This provides a measure of the overall error in the correlation matrix, giving lesser importance to the smaller higher lag elements. The second criterion is the ratio E_2 defined by

$$E_2 = \text{Max.} \left| \frac{\mu_2^{ij} - c^{ij}}{c^{ij}} \right| \hspace{1cm} (c^{ij} \neq 0; \ i = 1, 2n; \ j = 1, 2n)$$ \hspace{1cm} (4)$$

This provides the maximum relative error between corresponding elements.

3 The Finite Element Model and the Simulation of Beams

A beam finite element programme was written for the purpose of structural analysis. It consisted of a simple cubic beam element. As its details are widely available in the literature they are not repeated here. The interested reader can refer, for example, Zienkiewicz[13]. Only linear elastic analyses were carried out.

Each of the finite elements was assumed to have constant material and strength properties. The properties were generated from the multivariate distribution. The finite element properties corresponded to those of the property
element that contained it (Fig. 1). The lengths of the finite elements and
the property elements were, generally, different. If a finite element had parts
of it in two adjoining property elements, a weighted mean value of the prop-
erties was used. This was determined according to the amounts of the finite
element corresponding to each property element.

4 Definition of the ‘Strength’ of a Beam

Following Czmoch et al. [3], for the purpose of this study, the strength of a
beam was defined as follows. Consider a hyperstatic beam acted upon by
a given load. The position and the size of its maximum bending moment
will depend on the variation of the elasticity modulus along its length. The
maximum bending moment (or stress) that can be applied at this position,
without inducing failure at any point along the beam, is considered as the
strength of the beam. Here it needs to be mentioned that, due to the av-
eraging out of the elasticity moduli, the position of the maximum bending
moment is, generally, not much different from that of a beam with uniform
properties.

5 Material Properties

The material properties were assumed to be random and stationary. These
properties were, generally, arbitrarily chosen for the purpose of this study.
In order to obtain a reasonable idea of the range of results that may be had,
some of the properties were varied within a wide range of values.

5.1 **Strength**

The strength distributions used in the simulations were approximately derived from data available at the BRE. Two strength distributions, to be called S1 and S2, and available in terms of the Weibull parameters of the probability density functions, were selected. The strengths, which are in terms of the maximum bending stresses, are given in Table 1. In the table, \(\mu^*, \sigma^* \) and \(\lambda^* \) are, respectively, the location, scale and shape parameters of the distributions. In addition \(\mu'_1, \mu_2 \) and \(f_{0.05} \) are, respectively, the mean, variance and fifth percentile of each distribution. As both strength distributions provided similar types of results, only the S1 data are presented in this paper.

The above strengths had been obtained under the CEN method of testing which aims at obtaining the distribution of the minimum strengths of the beams. What the present simulation needs is the marginal distribution of strength of property elements. It is to obtain a similar distribution, although in terms of the strengths of defects, that Riberholt and Madsen proposed their model[1,2]. It assumed zero autocorrelations between the strengths of defects (where failure was expected to occur) along the beam. Using the same assumption of independence, here between the different property elements, the strength model was converted to a marginal distribution. This conversion was facilitated by the fact that the available strengths have Weibull distributions. In the case of such a distribution, if the values are independent, then
the minima of different independent samples of the same size will also have a Weibull distribution. This new distribution is available in mathematically closed form[14]. If the original distribution has parameters as defined above, then the minima of samples of size \(n \) have a Weibull distribution with the same location and shape parameters and a new scale parameter of \(\sigma^*/n^{1/\lambda} \). Therefore, if the distribution of minima is available, then the original distribution can be obtained from the inverse process.

In carrying out the above inverse process, the number of elements (sampling size) was obtained by assuming a property element length of 600mm. This is the length of elements tested in tension by Taylor and Bender. Then, assuming a test beam length of 4m, \(n \) was determined as 7. The obtained marginal distributions are provided in Table 1.

The above conversion is only an approximate one as it contains many assumptions. The intention was only to obtain a somewhat realistic distribution for the purpose of this study. Using this new distribution, the minimum strengths under different correlation coefficients were simulated to study the effect of the assumption of zero coefficients. For the cases considered, the difference between correlated and uncorrelated strengths had a maximum of 9.58% for strength S1. If only the realistic correlations were considered, then the maximum error was around 8%. In the case of S2, these were 11.4% and 9.54%, respectively. The percentages were calculated based on the smaller strengths given by the uncorrelated simulations.
<table>
<thead>
<tr>
<th></th>
<th>Strength Set S1</th>
<th>Strength Set S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ^s N/mm2</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>σ^s N/mm2</td>
<td>40</td>
<td>76.5</td>
</tr>
<tr>
<td>λ^s</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>μ'_1 N/mm2</td>
<td></td>
<td>78.33</td>
</tr>
<tr>
<td>μ_2 N2/mm4</td>
<td></td>
<td>616.7</td>
</tr>
<tr>
<td>$f_{0.05}$ N/mm2</td>
<td>24.86</td>
<td>38.43</td>
</tr>
</tbody>
</table>

Table 1: Strength Distributions

5.2 Young's Modulus

The Young’s moduli of the beams were assumed to be distributed according to a 3-parameter Weibull model. This is a permissible distribution as suggested in [15] and also provided in [7]. The location, scale and shape parameters of this distribution will be denoted, respectively, by μ^e, σ^e and λ^e. To study the effect on the beam strengths, the last two of these parameters were varied during the simulations.

From among the distributions used in the simulations, $\sigma^e=7000$N/mm2 with $\lambda^e=3.2$ and $\sigma^e=6000$N/mm2 with $\lambda^e=2.7$ were found to provide standard deviations close to those reported in [16]. Of course, the mean can be adjusted with the location parameter μ^e, without changing the standard deviation. A value of 7000N/mm2 was used with the first case to obtain a mean value close to those provided in [16].
5.3 Correlation Coefficients

The first order Markov correlation coefficients and also the zero-lag cross-correlation between the strength and the stiffness were varied during this study. In the following, the cross-correlation between the strength and stiffness will be denoted by 'c'. The first order Markov process correlations for strength and stiffness are denoted, respectively, by \(\rho_s \) and \(\rho_e \).

6 Types of Simulation

Generally, four types of Monte Carlo simulations were carried out with each set of properties. The first, denoted by \(E_s-C_y \) in the tables, considered the auto-correlations and cross-correlations as given in them. The second, denoted by \(E_n-C_y \), generated the properties as in the first case, but the structures were analysed assuming a uniform value of the elasticity modulus \(E \). That is, it generated properties exactly, but analysed the problems in a simple manner. The comparison of these two can provide information on the importance of considering the variation of \(E \) values along the beam in the analysis. The third type, denoted by \(E_n-C_n \), assumed the strengths and the elasticity moduli to be independent of each other by using a cross-correlation coefficient of zero. This also used a constant value of \(E \) in the analysis. In other words, only the strength is simulated here, and hence it is similar to the Riberholt-Madsen model. The fourth, denoted by \(E_y-C_n \), simulated both properties, but assumed them to be statistically independent. In this case
the variation in the elasticity moduli was considered in the analysis. The comparison of this and the first provides information on the effect of the correlation between the two properties under variable E.

The Number of Simulations The results were obtained with a strict convergence of at least 1% in both the fifth percentile and the mean. This was generally achieved with 4000 simulations. The minimum and the maximum numbers of simulations used were 2000 and 4000, respectively.

7 **Results**

The present study was carried out for the purpose of studying the fifth percentile values of strengths to be used in the determination of Moment Configuration Factors. Therefore, in the following, all the comments are made with respect to them. The means and the standard deviations are provided as additional information. All strength results have been given in terms of the maximum bending stress in N/mm² although, for brevity, this is not mentioned always. The percentage differences in the fifth percentile results have been calculated with the respective Eᵧ-Cᵧ result considered as the base.

7.1 **Errors on Simulation**

Any numerical method, especially one with approximations, is bound to have errors on simulation. Therefore it is important to have an idea of the sizes of errors that may occur. These were approximately monitored with the
methods described earlier.

Table 2 presents the errors in the correlation matrix that occurred during the generation of properties under different correlation coefficients. It indicates that both error measures E_1 and E_2 increase, generally, when the autocorrelation coefficients become smaller and when the length of the beam increases. These were seen to be reduced, generally, with the increase of the number of simulations. The increase in error with the increase in length should be because of the larger number of variables to be simulated and the smallness of the higher-lag correlation coefficients.

Another error that was seen to be present was with respect to the marginal variances of the properties. As the number of simulations was increased, these, which varied along the length, tended towards uniformity but the convergence was to values slightly higher than the variances of the original marginal distributions.

7.2 Beams under Uniform Bending Moments

This is the basic case on which the Moment Configuration Factors will be based. This is a statically determinate problem. Therefore, the results are not affected by the parameters of the elasticity modulus distribution. Only the correlation coefficients and the strength distribution affect the results. However, the effect of the cross-correlation coefficient c and the autocorrelation of modulus ρ_e should be negligible.
<table>
<thead>
<tr>
<th>Beam Length</th>
<th>2m</th>
<th>4m</th>
<th>6m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E_1</td>
<td>E_2</td>
<td>E_1</td>
</tr>
<tr>
<td>c</td>
<td>ρ_e</td>
<td>ρ_e</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>0.7</td>
<td>0.85</td>
<td>0.009</td>
</tr>
<tr>
<td>0.8</td>
<td>0.3</td>
<td>0.5</td>
<td>0.024</td>
</tr>
<tr>
<td>0.7</td>
<td>0.7</td>
<td>0.45</td>
<td>0.027</td>
</tr>
<tr>
<td>0.5</td>
<td>0.7</td>
<td>0.85</td>
<td>0.014</td>
</tr>
<tr>
<td>0.5</td>
<td>0.7</td>
<td>0.4</td>
<td>0.031</td>
</tr>
<tr>
<td>0.5</td>
<td>0.7</td>
<td>0.45</td>
<td>0.029</td>
</tr>
<tr>
<td>0.5</td>
<td>0.3</td>
<td>0.5</td>
<td>0.029</td>
</tr>
</tbody>
</table>

Table 2: Errors in the Correlation Matrices: 4000 Simulations

<table>
<thead>
<tr>
<th>Beam Length</th>
<th>Strength S1</th>
<th>Strength S2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2m</td>
<td>4m</td>
</tr>
<tr>
<td>$\mu_1' \text{ N/mm}^2$</td>
<td>53.4</td>
<td>45.8</td>
</tr>
<tr>
<td>$\sqrt{\mu_2} \text{ N/mm}^2$</td>
<td>16.2</td>
<td>13.1</td>
</tr>
<tr>
<td>$f_{0.05} \text{ N/mm}^2$</td>
<td>27.4</td>
<td>24.9</td>
</tr>
</tbody>
</table>

Table 3: Uncorrelated Strengths of Beams under Uniform Moment
<table>
<thead>
<tr>
<th>c</th>
<th>0.8</th>
<th>0.5</th>
<th>0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu'_1)</td>
<td>61.8</td>
<td>61.6</td>
<td>61.5</td>
</tr>
<tr>
<td>(\sqrt{\mu'_2})</td>
<td>20.9</td>
<td>21.0</td>
<td>21.0</td>
</tr>
<tr>
<td>(f_{0.05})</td>
<td>29.7</td>
<td>29.5</td>
<td>29.0</td>
</tr>
<tr>
<td>% Diff.</td>
<td>-</td>
<td>-0.44</td>
<td>-2.29</td>
</tr>
<tr>
<td>Beam Length = 2m</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(\mu'_1 \)	53.8	54.0	54.3
\(\sqrt{\mu'_2} \)	18.3	18.2	18.3
\(f_{0.05} \)	25.9	26.4	26.1
% Diff.	-	2.04	0.69
Beam Length = 4m			

\(\mu'_1 \)	49.3	49.4	49.4
\(\sqrt{\mu'_2} \)	16.6	16.9	16.8
\(f_{0.05} \)	24.0	23.9	24.8
% Diff.	-	-0.75	2.95
Beam Length = 6m			

Table 4: Uniform Bending Moment: Strength S1. \(\rho_s=0.7 \rho_e=0.85 \). \(c = 0.8, 0.5 \) and 0.0.

Strength under Statistical Independence The strengths of the beams when the strengths (and stiffnesses) of the property elements are independent of each other are presented in Table 3. To avoid numerical difficulties, both autocorrelation coefficients, \(\rho_s \) and \(\rho_e \), were assumed to be 0.001 instead of zero. These results, generally, provide lower bounds of strengths which increase when correlations are present. The exceptions, where these are larger, are with respect to columns 2 and 4 for 4m and 6m beams in Table 6. These slight differences may be present because it is a case with small correlation coefficients which was shown to have higher errors.
<table>
<thead>
<tr>
<th>c</th>
<th>0.7</th>
<th>0.5</th>
<th>0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_1'</td>
<td>Beam Length = 2m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61.7</td>
<td>61.6</td>
<td>61.5</td>
<td></td>
</tr>
<tr>
<td>$\sqrt{\mu_2}$</td>
<td>20.8</td>
<td>20.9</td>
<td>21.0</td>
</tr>
<tr>
<td>$f_{0.05}$</td>
<td>29.8</td>
<td>29.9</td>
<td>29.0</td>
</tr>
<tr>
<td>% Diff.</td>
<td>-</td>
<td>0.37</td>
<td>-2.62</td>
</tr>
<tr>
<td>μ_1'</td>
<td>Beam Length = 4m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53.9</td>
<td>53.9</td>
<td>54.3</td>
<td></td>
</tr>
<tr>
<td>$\sqrt{\mu_2}$</td>
<td>18.1</td>
<td>18.1</td>
<td>18.3</td>
</tr>
<tr>
<td>$f_{0.05}$</td>
<td>25.4</td>
<td>25.9</td>
<td>26.1</td>
</tr>
<tr>
<td>% Diff.</td>
<td>-</td>
<td>2.17</td>
<td>2.92</td>
</tr>
<tr>
<td>μ_1'</td>
<td>Beam Length = 6m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49.2</td>
<td>49.3</td>
<td>49.4</td>
<td></td>
</tr>
<tr>
<td>$\sqrt{\mu_2}$</td>
<td>16.7</td>
<td>16.8</td>
<td>16.8</td>
</tr>
<tr>
<td>$f_{0.05}$</td>
<td>24.2</td>
<td>23.9</td>
<td>24.9</td>
</tr>
<tr>
<td>% Diff.</td>
<td>-</td>
<td>-1.28</td>
<td>2.40</td>
</tr>
</tbody>
</table>

Table 5: Uniform Bending Moment: Strength S1. $\rho_s=0.7$, $\rho_e=0.45$. c= 0.7, 0.5 and 0.0.

Effect of the Cross-Correlation Coefficient The results presented in Tables 4 to 6 are for three sets of ρ_s and ρ_e values. The first, given in Table 4, is with a high $\rho_e (=0.85)$ and a high $\rho_s (=0.7)$. The second, given in Table 5, has a high $\rho_s (=0.7)$ and a low $\rho_e (=0.45)$ while the third set in Table 6 has low values for both $\rho_s (=0.3)$ and $\rho_e (=0.5)$.

In all the cases provided, when the c is changed from either 0.8 (Tables 4,5) or 0.7 (Table 5) to 0.0 the changes that occur in strength are small with the maximum difference being -3.55% for the 2m beam in Table 6. Most of these differences, as to be expected, are negligible and are generally within the error allowed by the convergence criterion.
<table>
<thead>
<tr>
<th>c</th>
<th>0.8</th>
<th>0.5</th>
<th>0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Beam Length = 2m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\mu'_1)</td>
<td>55.4</td>
<td>55.3</td>
<td>55.4</td>
</tr>
<tr>
<td>(\sqrt{\mu_2})</td>
<td>17.5</td>
<td>17.7</td>
<td>17.6</td>
</tr>
<tr>
<td>(f_{0.05})</td>
<td>28.4</td>
<td>28.1</td>
<td>27.4</td>
</tr>
<tr>
<td>% Diff.</td>
<td>-</td>
<td>-1.06</td>
<td>-3.55</td>
</tr>
<tr>
<td></td>
<td>Beam Length = 4m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\mu'_1)</td>
<td>47.2</td>
<td>47.3</td>
<td>47.6</td>
</tr>
<tr>
<td>(\sqrt{\mu_2})</td>
<td>14.4</td>
<td>14.3</td>
<td>14.5</td>
</tr>
<tr>
<td>(f_{0.05})</td>
<td>24.8</td>
<td>25.2</td>
<td>24.7</td>
</tr>
<tr>
<td>% Diff.</td>
<td>-</td>
<td>1.53</td>
<td>-0.36</td>
</tr>
<tr>
<td></td>
<td>Beam Length = 6m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\mu'_1)</td>
<td>43.0</td>
<td>43.1</td>
<td>43.2</td>
</tr>
<tr>
<td>(\sqrt{\mu_2})</td>
<td>12.8</td>
<td>13.1</td>
<td>13.2</td>
</tr>
<tr>
<td>(f_{0.05})</td>
<td>22.5</td>
<td>23.2</td>
<td>22.8</td>
</tr>
<tr>
<td>% Diff.</td>
<td>-</td>
<td>3.29</td>
<td>1.51</td>
</tr>
</tbody>
</table>

Table 6: Uniform Bending Moment: Strength S1. \(\rho_s=0.3\), \(\rho_c=0.5\). \(c=0.8\), 0.5 and 0.0.
<table>
<thead>
<tr>
<th>(c)</th>
<th>0.5</th>
<th>0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho_e)</td>
<td>0.85</td>
<td>0.4</td>
</tr>
<tr>
<td>(\mu'_1)</td>
<td>(\mu'_2)</td>
<td>(\sqrt{\mu'})</td>
</tr>
<tr>
<td>61.6</td>
<td>61.6</td>
<td>61.5</td>
</tr>
<tr>
<td>21.0</td>
<td>20.8</td>
<td>21.0</td>
</tr>
<tr>
<td>29.5</td>
<td>29.9</td>
<td>29.0</td>
</tr>
<tr>
<td>(\mu'_1)</td>
<td>(\mu'_2)</td>
<td>(\sqrt{\mu'})</td>
</tr>
<tr>
<td>54.0</td>
<td>54.0</td>
<td>54.3</td>
</tr>
<tr>
<td>18.2</td>
<td>18.1</td>
<td>18.3</td>
</tr>
<tr>
<td>26.4</td>
<td>26.3</td>
<td>26.1</td>
</tr>
<tr>
<td>(\mu'_1)</td>
<td>(\mu'_2)</td>
<td>(\sqrt{\mu'})</td>
</tr>
<tr>
<td>49.4</td>
<td>49.3</td>
<td>49.4</td>
</tr>
<tr>
<td>16.9</td>
<td>16.7</td>
<td>16.8</td>
</tr>
<tr>
<td>23.9</td>
<td>24.8</td>
<td>24.8</td>
</tr>
</tbody>
</table>

Table 7: Uniform Bending Moment: Strength S1. \(\rho_e=0.7 \), \(c=0.5 \) and 0.0. \(\rho_e=0.85 \) and 0.4. All \(E_y-C_y \) analyses.

Effect of the Change in the Spatial Correlation Coefficient for Modulus The effect of the change of the spatial correlation factor \(\rho_e \) for modulus can be studied from Table 7. As to be expected, the differences in the strengths due to the change of \(\rho_e \) from a large value (0.85) to a smaller value (0.4) are very small. The maximum difference is 4.01% for the 6m beam with \(c=0.5 \). There is no difference for \(c=0 \) as then \(\rho_e \) does not affect the generation of properties.
7.3 The Analysis of a Clamped Beam Under a Concentrated Load

As a simple example of a hyperstatic beam, a clamped beam with a central concentrated load was analysed for its strength. Beam lengths of 2, 4 and 6 metres were considered. Several elasticity modulus distributions were used in the simulations. The location parameter μ^e was kept constant at 7000N/mm².

Changes with Shape Parameter λ^e Presented in Table 8 are results for the 6m long beam under three values of the shape parameter λ^e. The values of σ^e are 2000N/mm² and 7000N/mm². The cross-correlation coefficient c is 0.8 (and 0.0 under C_n analysis). In all the four types of analyses there have occurred only slight changes in the simulated strengths when λ^e was varied. For a given σ^e, the differences between different types of analysis are greater for smaller values of λ^e. As to be expected, the respective E_n analyses provide the same results for all λ^e values.

Changes with the Scale Parameter σ^e The results provided in Table 8 indicate that the non-consideration of E (in E_n analyses) and/or c (in C_n analyses) has given rise to large differences between the E_y-C_y analysis and the other types of analysis. For example, -15.0% for λ^e=2.0 is the largest difference for σ^e of 7000N/mm². As shown by the results for σ^e of 2000N/mm², these differences between different analyses are smaller when the dispersion
<table>
<thead>
<tr>
<th>$\sigma^e=2000$ N/mm²</th>
<th>$\sigma^e=7000$ N/mm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E_y - C_y$</td>
<td>$E_n - C_y$</td>
</tr>
<tr>
<td>$\lambda^e = 2.0$</td>
<td></td>
</tr>
<tr>
<td>μ'_1</td>
<td>59.4</td>
</tr>
<tr>
<td>$\sqrt{\mu^2}$</td>
<td>18.8</td>
</tr>
<tr>
<td>$f_{0.05}$</td>
<td>29.9</td>
</tr>
<tr>
<td>% Diff.</td>
<td>-</td>
</tr>
<tr>
<td>$\lambda^e = 2.7$</td>
<td></td>
</tr>
<tr>
<td>μ'_1</td>
<td>58.7</td>
</tr>
<tr>
<td>$\sqrt{\mu^2}$</td>
<td>18.5</td>
</tr>
<tr>
<td>$f_{0.05}$</td>
<td>29.3</td>
</tr>
<tr>
<td>% Diff.</td>
<td>-</td>
</tr>
<tr>
<td>$\lambda^e = 3.2$</td>
<td></td>
</tr>
<tr>
<td>μ'_1</td>
<td>58.4</td>
</tr>
<tr>
<td>$\sqrt{\mu^2}$</td>
<td>18.3</td>
</tr>
<tr>
<td>$f_{0.05}$</td>
<td>29.6</td>
</tr>
<tr>
<td>% Diff.</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 8: Clamped 6m Long Beam: Strength S1: $\rho_y=0.7$, $c=0.8$ (and 0.0) $\rho_c=0.85$. $\sigma^e = 2000$N/mm² and 7000N/mm². $\lambda^e=2.0$, 2.7 and 3.2. $\mu^e=7000$N/mm².
	$\rho_e = 0.7$		$\rho_e = 0.5$		$\rho_e = 0.7$		$\rho_e = 0.5$		$\rho_e = 0.7$		$\rho_e = 0.5$	
	E_y-C_y	E_u-C_y	E_u-C_u	E_y-C_u	E_y-C_y	E_u-C_y	E_u-C_u	E_y-C_u	E_y-C_y	E_u-C_y	E_u-C_u	E_y-C_u
Beam Length = 2m												
μ_1'	63.6	59.4	59.2	62.0	64.8	59.3	59.2	62.4	64.8	59.3	59.2	62.4
$\sqrt{\mu_2}$	19.6	19.0	18.9	19.8	19.7	19.0	18.9	20.0	19.7	19.0	18.9	20.0
$f_{0.05}$	33.4	30.2	29.0	30.5	34.3	29.6	29.0	30.8	34.3	29.6	29.0	30.8
% Diff.	-	-9.47	-13.0	-8.58	-	-13.6	-15.3	-10.2	-	-13.6	-15.3	-10.2
Beam Length = 4m												
μ_1'	61.35	56.1	56.3	59.6	62.0	56.0	56.3	59.9	62.0	56.0	56.3	59.9
$\sqrt{\mu_2}$	17.82	17.2	17.2	18.3	17.9	17.2	17.2	18.4	17.9	17.2	17.2	18.4
$f_{0.05}$	32.39	28.8	29.1	30.9	33.4	29.0	29.1	31.1	33.4	29.0	29.1	31.1
% Diff.	-	-11.0	-10.1	-4.69	-	-13.2	-12.8	-6.98	-	-13.2	-12.8	-6.98
Beam Length = 6m												
μ_1'	58.4	53.1	53.0	56.2	58.7	53.2	53.0	56.4	58.7	53.2	53.0	56.4
$\sqrt{\mu_2}$	16.7	16.2	16.3	17.5	16.9	16.2	16.3	17.5	16.9	16.2	16.3	17.5
$f_{0.05}$	31.7	27.8	27.1	28.6	31.5	27.5	27.1	28.6	31.5	27.5	27.1	28.6

Table 9: Clamped Beam with Concentrated Load: Strength 1, c=0.7 (and 0.0), $s=0.4$ $e=0.7$ and 0.5. $\lambda^c=3.2$, $\sigma^c=7000$N/mm2, $\mu^c=7000$N/mm2.

of E is lower.

Effect of the change of Correlation Coefficients As seen from the results of Table 8, the change of c from 0.8 in C_y analysis to 0.0 in the corresponding C_u analysis has resulted in larger differences for the high dispersion modulus case than for the low dispersion one.

As the above are with high ρ_e and c values, further results have been provided in Table 9 with a low ρ_e value of 0.4 and two values of ρ_e (0.7
<table>
<thead>
<tr>
<th>Problem</th>
<th>(f_{0.05})</th>
<th>% Diff.</th>
<th>(E_y - C_y)</th>
<th>(E_n - C_y)</th>
<th>(E_n - C_n)</th>
<th>(E_y - C_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>36.4</td>
<td>-2.09</td>
<td>35.4</td>
<td>35.4</td>
<td>35.4</td>
<td>35.4</td>
</tr>
<tr>
<td>b.</td>
<td>36.6</td>
<td>-2.52</td>
<td>35.8</td>
<td>35.5</td>
<td>35.8</td>
<td>35.5</td>
</tr>
<tr>
<td>c.</td>
<td>31.6</td>
<td>-4.34</td>
<td>30.5</td>
<td>30.9</td>
<td>30.5</td>
<td>30.9</td>
</tr>
<tr>
<td>d.</td>
<td>31.9</td>
<td>-4.60</td>
<td>30.7</td>
<td>31.1</td>
<td>30.7</td>
<td>31.1</td>
</tr>
</tbody>
</table>

Table 10: Fifth Percentile Strengths of 6m long Continuous Beams: Set 1 (of Fig. 2). \(\lambda^* = 3.2, \sigma^e = 7000\text{N/mm}^2, \mu^* = 7000\text{N/mm}^2, c = 0.8, \rho_s = 0.7, \rho_e = 0.85. \) and 0.5) together with \(c \) values of 0.7 (and 0.0). These again show larger variations of strength between different types of analysis, and the differences are larger with the lower value of \(\rho_e \) for 2m and 4m beams. The largest difference is -15.3% between the \(E_y - C_y \) and \(E_n - C_n \) analyses of the 2m beam with \(\rho_e = 0.5 \).

7.4 Strength of Continuous Beams

Table 10 presents fifth percentile strengths obtained under different types of analysis of the continuous beams shown in Fig. 2. This is the same beam under the same set of loads, but with different support conditions. As can be seen, the differences between different types of analyses are all small.

Further results, with respect to two of the above structures, but with different loads are given in Table 11. These structures and loads are shown
Table 11: Fifth Percentile Strengths of 6m long Continuous Beams: Set 2 (of Fig. 3). $\lambda_e=3.2$, $\sigma_e=7000\text{N/mm}^2$, $\mu_e=7000\text{N/mm}^2$, $c=0.8$, $\rho_s=0.7$, $\rho_e=0.85$.

in Fig. 3. As indicated by the results, the same structure under different loads has different differences between the different types of analyses.

These results indicate that the effects of different types of analyses depend not only on the hyperstatic structure but also on the applied loads, i.e. on the bending moment diagram.

8 Conclusion

Details of Monte Carlo simulations carried out on several beams to determine their bending strengths were presented in this paper. The beam properties were generated using the multivariate approach of Taylor and Bender. First
order Markov processes were assumed for the strengths and the elasticity moduli of the property elements along the beam length. The hyperstatic structures were analysed with a beam finite element programme.

Some of the beam property parameters were varied during the analyses to see their effect on the determined strengths. Also four types of analyses were carried out on the beams. These types depended on whether the lengthwise variation of the elasticity modulus was considered in the analysis or not and on whether the cross-correlation between the strength and stiffness, \(c \), was considered in the generation of beam properties or not.

The results indicate that the non-consideration of the cross-correlation between the strength and stiffness in property generation and/or the non-consideration of the elasticity modulus in structural analysis can give rise to large differences between the simulated strengths of hyperstatic beams. For example, for the clamped beam under a central concentrated load, the provided results show a maximum difference of 15.3\% when the cross-correlation is not considered and the beam is assumed to be of uniform stiffness. This difference is with respect to an analysis that considered the non-uniformity of \(E \) and its cross-correlation with the strength. Analyses of some continuous beams showed that the differences between different types of analysis depend on both the structure and the applied loads.

Subject to the assumptions made, it can be concluded that the non-consideration of the cross-correlation coefficient and the lengthwise variation
of the elasticity modulus in the generation of beam element properties and the analysis of hyperstatic structures can result in errors as large as almost 15% in their simulated bending strengths. As the effect is negligible when the bending moment is constant along the length of a beam, a similar error can occur in the Moment Configuration Factor for a hyperstatic structure.

9 Acknowledgment

The author wishes to express his sincere gratitude to Mr. A. R. Fewell, who suggested the idea of Moment Configuration Factors, for his guidance and encouragement during this study.

References

Figure Captions

Fig. 1: The Allocation of Generated Properties to the Beam Finite Elements

Fig. 2: Continuous Beams: Set 1

Fig. 3: Continuous Beams: Set 2
Simulated Property Elements

Beam Length

Finite Elements

A,B = 1 D,E = 2 G = 3 I,J = 4
C = f(1,2) F = f(2,3) H = f(3,4) K = f(4,5)

Finite Element Property Allocation

Fig. 1
Continuous Beams: Set 1

Fig. 2
Continuous Beams: Set2

Fig. 3
MULTIPLE-FASTENER DOWEL-TYPE JOINTS,
A SELECTED REVIEW OF RESEARCH AND CODES

by

C J Mettem
A V Page
TRADA Technology Limited
United Kingdom

MEETING TWENTY - FIVE
ÄHUS
SWEDEN
AUGUST 1992
MULTIPLE-FASTENER DOWEL-TYPE JOINTS,
A SELECTED REVIEW OF RESEARCH AND CODES
C.J. Mettem and A.V. Page
TRADA Technology Limited

Introduction

It is frequently observed that the load-carrying capacity of a multiple-fastener joint is less than the sum of the individual fastener capacities. For dowel-type fasteners, such as plain round metal dowels, bolts, and nails, a number of timber codes now take some account of this effect.

As already noted in CIB W18 papers by Blass (1) in 1990, and previously Steck in 1988 (2), there are great differences between the modification factors for the number of fasteners, in several international and national timber codes. This still seems to be the case in 1992.

A paper accompanying this brief review, also to be presented at the current meeting, reports recent tests supported by a linear elastic finite element analysis. The work was conducted on both single and multiple bolted joints in European whitewood glued laminated timber (glulam) (3).

Strain gauged steel side plates were used, following an established technique adopted by previous researchers. By this means the load taken by each individual bolt in the multiple-bolted joints could be measured. However, the ratio of fastener length to central timber thickness was kept very low, so that pure embedment testing was achieved. This was new. Parallel and perpendicular to grain loading arrangements were included.

A substantial lack of "evenness" in load carrying capacity was demonstrated, both by test and by theory. This applied especially in the perpendicular to grain case, where the study suggested that modification factors as conservative as 0.4 should be considered for multiple-fastener joints including as few as four bolts. If this is correct, then it is evident that the current draft of EC5 is unsafe in this respect.

Background

The multiple-fastener load reduction effect is also known to exist in materials other than timber. For example Volkersen analysed rivet stress distributions in aircraft structures, using as an analogy theories originally developed for adhesive stresses (4). Care is of course necessary when drawing analogies between one subject of engineering science and another. However, the extensive research on uneven stress distributions in glued joints, which can be formed using a lap, in single or double shear, is in this case pertinent. This has been reviewed in previous TRADA research (5).

In the stress analysis of glued joints, it is found that the unevenness of the stress distribution along the joint becomes more pronounced, as the discrepancy increases between the stiffness of the adhesive and that of the adherend (6). Conversely, research on multiple-fastener joints in timber has not always revealed a major unevenness. For example, Blass reported that in multiple-nailed double-shear joints loaded parallel to the grain, the maximum load of a multiple fastener joint can be estimated as the sum of the values for individual nails, provided joint failure is by nail yielding.
However, this difference is not necessarily inconsistent. The nailed joints which Blass investigated, in which the stiffnesses of the nails and the timber are comparable, are analogous to glued joints made with an adhesive which has a stiffness comparable to that of the timber, the very joints in which the stress distribution is most even.

Yasumura et al, on the other hand, conducted a series of tests on multiple numbers of bolts and multiple rows of the same, connecting glulam members to steel side plates, the latter forming double shear planes (7). They found that for certain parallel to grain configurations, with a reasonably practical number of bolts and rows, the average load per bolt in the multiple configuration was only about half the value for the specimen having a single bolt.

Design Situations

Since the constituent parts of mechanically fastened timber joints often have very different stiffnesses, the above considerations suggest that practical situations do exist where the load distribution amongst the individual fasteners is markedly uneven. One such situation is where relatively thick metal plates, usually mild steel, are used in conjunction with bolts or plain round dowels, to form connexions in glulam. This is a common form of construction.

When a line of fasteners perpendicular to the grain is loaded in that direction, the unevenness in the distribution of load is generally even more pronounced, because the stiffness of timber perpendicular to the grain is only about one sixteenth of its stiffness parallel to the grain. This means that the actual strength of the joint is considerably less than the strength predicted from tests on single bolts loaded perpendicular to the grain, reduced by a factor for the number of bolts in a line based on tests parallel to the grain. The reality of this effect was measured and confirmed in tests conducted by TRADA. Furthermore, the situation is quite common in practice, as shown in the accompanying diagrams, Figure 1.

Eurocode 5 and BS 5268

Draft Eurocode No. 5 'Design of Timber Structures', Part 1, April 1992, contains a principle under Section 6, JOINTS, that:

\[P(2) \] It shall be taken into account that the load-carrying capacity of a multiple-fastener joint will frequently be less than the sum of the individual fastener capacities.

However, the modifications for the effect, given in the application rules, are remarkably modest. As is by now well-known, EC5 recommends to the designer that the lateral load-carrying capacity of dowel-type fasteners should be calculated from a set of formulae based on a theory initiated by Johansen (8). Under the relevant clause for steel-to-timber joints, a sub-set of these formulae is given, together with small explanatory diagrams. These give load carrying capacities per fastener per shear plane.

Under Section 6.5, BOLTED JOINTS, EC5 advises that for more than six bolts in line with the load direction, the load carrying capacity for the extra bolts should be reduced by one third. Taking as an example nine bolts in line, this equates to a "modification factor", as BS 5268 would call it, of only 0.69. The British code itself would apply a modification factor of 0.76 for this case. Dowelled joints are, by an "extension" clause, treated by EC5 in the same manner as bolted joints in this respect.

Neither EC5 nor the British code identify as a special case the situation where the timber is loaded perpendicular to the grain, or where there is a component of load in this direction.
North America

In North American codes, the larger and stiffer types of standard fastener, such as bolts, lag screws, split rings and shear plates, are treated differently to smaller and less stiff types such as gluhim rivets and nails. For the latter, the Canadian code, for example, CSA-086.1-M89 (9) has no modification factor for the number of fasteners in the group. For the larger types on the other hand, the overall reductions for the group effect often produce more conservative rules in practical design cases than the rules of draft EC5 and BS 5268. Recent proposals for North American codes also give different modification factors for loading parallel and perpendicular to the grain.

CSA-086 gives a modification factor J_g which varies according to the number of fasteners in a row. For connectors and lag screws, this is presented in tabular form, the value being selected according to an "area ratio" which takes account of the cross-sections of the main and side members. For steel side plates, this factor can range from 0.42 to 1.00.

Bolt design, according to the Canadian code, involves the use of two pertinent modification factors. These are J_{g2} which has the same purpose as above but which is computed by means of a formula, and J_{g3} which is a factor for the number of rows, ranging from 1.0 for one row to 0.6 for three rows. A general clause tends to preclude the use of wide steel splice plates altogether, thus avoiding the situation of numerous rows of bolts. It is understood that the tests leading to the "number of bolts" formula were made at Carlton University, on behalf of Agriculture Canada. The J_{g3} factor was derived from the work reported to CIB by Yasumura et al.

In the USA, the approach used in the National Design Specification 1986 (10) is at present similar to that described for Canada, with the "Group Action Factor", C_g, at present depending upon the number of fasteners in a row, and upon the main member to side member area ratio. This procedure is used for all the "large" types of fastener, including bolts.

In the past, research in the USA has shown the need for quite substantial reduction factors for group action, although results have not always been consistent. Doyle, for example, (11) examined joints made with four bolts in two rows, in Douglas fir glulam, using steel side plates. For parallel to grain loading, he derived reduction factors from approximately 0.6 to 0.9.

Kunesh and Johnson (12) investigated similar multiple-bolt joints and obtained factors ranging from approximately 0.5 to 0.95.

Wilkinson (13) conducted extensive tests on a range of numbers of bolts. He also developed an analytical method by modifying the earlier work of Cramer (14). Wilkinson's experimental method was to use strain gauged steel side plates as a means of measuring the load carried by each bolt. However, his main timber members were of a thickness such as would be used in real construction, rather than thinner timbers where the 1/d ratio would be low, producing a pure embedment effect. Furthermore, he reported "fabrication effects" in the manufacture of the specimens, such that these had a greater influence on the distribution of load amongst the bolts than the properties of the members and the fasteners themselves.

Amongst Wilkinson's conclusions were the observation that the load distribution for any particular row of bolts is unique. Any one of the bolts may be the major load carrier. Also, any bolt hole may be misdrilled, causing that bolt to carry almost no load for a major portion of the joint loading.
Proposals for a 'Load and Resistance Factor Design' code in the USA include in the draft a more sophisticated multiple fastener modification factor. Again, this is to apply to all "large" fasteners, namely bolts, lag screws, dowels, shear plates and split rings. It is understood that the theory has been worked by Zahn, following linear elastic analytical predictions given previously by Lantos (15) and Cramer.

Both row factors and factors for fasteners within a row are included in a single formula in the LRFD draft. This also takes into account the axial stiffness (EA) of the main and side members, as well as the load/slip constants for the fastener concerned.

Whilst leading to a formidable formula to be computed by the designer, this all-embracing approach would take account of effects such as the large differences in stiffness of the constituents of a joint involving a member loaded perpendicular to the grain. At the same time, no major difference in approach has been adopted. Thus, for example, fracture mechanics considerations and the transverse tensile properties of the timber are not taken into account.

Further Research?

It was not the intention that this review should be long or comprehensive. It is understood that the topic of multiple-fastener joints is also being re-considered in other countries, such as New Zealand. It is apparent, however, that the statement given at previous C1B-W18 meetings that there are considerable differences between the modification factors for number of fasteners amongst various codes is true. Whether this indicates that research on the subject should continue indefinitely is another matter.

The topic seems in danger of becoming a timber researchers' "chestnut". It is capable of being treated with an almost infinite amount of analysis and testing. Consider, for example, the following influences and aspects which it might be considered necessary to examine, listed in no special order of significance:

- Brittle fracture modes of failure
- Mode changes with time in service, due for example to creep deformations and increased embedment
- Re-loading situations
- Moisture movement effects, especially where timber is restrained by steel
- Fabrication effects such as hole alignment and mis-fit; tightness of fasteners in holes
- For perpendicular to grain loading, the substantial influence of crack propagation and weakness in the timber
- Load-slip behaviour beyond the elastic range

Code Implications

Code writers cannot await indefinitely the results of further research, and must make judgements on the basis of present knowledge. It can also be argued that unless there has been evidence of failure or unsatisfactory service, then there is not a pressing need to alter codes or to make design procedures more complicated. However, there have been instances of failure in multiple fastener joints using the 'large' types of device discussed here.
It is difficult to pinpoint the primary causes of such failures, since "real" joints in built structures experience a variety of the effects described in the "research menu" given above. For example, fissures induced by moisture content changes, in combination with perpendicular to grain loading, seem to be a particularly serious hazard.

It is perhaps especially disconcerting, therefore, that the European codes mentioned in this review take such a sanguine view of the perpendicular to grain loading case for multiple fasteners, not singling it out for especially cautious treatment.

It also seems odd that the latest draft of EC5 still treats all dowel-type fasteners in the same manner with respect to multiple-fastener modification effects, whereas other codes, including those used in North America, find no modification necessary for nails, but recommend substantial modifications for the "large" types of fastener such as bolts, lag screws, split rings and shear plates.

Multiple-fastener dowel-type joints using bolts or plain metal round dowels in conjunction with steel plates need careful detailing and EC5 and BS 5268 at present carry insufficient warning as to the hazards of their use. It is also likely that more conservative application rules should be given, to fulfill the principle that the load-carrying capacity will be less than the sum of the individual fastener capacities.

Perhaps those responsible for the final re-drafting of EC5, prior to the issue of the EN version, might wish to consider revising the reduction factor recommended in Clause 6.5.1.2(3) for the number of fasteners in a line, even if the researchers' thirst for further knowledge has still not been fully slaked.
References

Figure 1

Multiple-fastener dowel-type joints with steel plates

a) Loading parallel to grain.

b), c) Loading perpendicular to grain.

g), h) Complex loading.
LOAD DISTRIBUTIONS IN MULTIPLE-FASTENER BOLTED JOINTS
IN EUROPEAN WHITWOOD GLULAM, WITH STEEL SIDE PLATES

by

C J Mettern
A V Page
TRADA Technology Limited
United Kingdom

MEETING TWENTY - FIVE
ÅHUS
SWEDEN
AUGUST 1992
LOAD DISTRIBUTIONS IN MULTIPLE-FASTENER BOLTED JOINTS

IN EUROPEAN WHITewood GLULAM, WITH STEEL SIDE PLATES

C.J. Mettem and A.V. Page
TRADA Technology Limited

Introduction

Draft Eurocode No. 5 requires as a principle that account should be taken of the fact that the load-carrying capacity of a multiple-fastener joint will frequently be less than the sum of the individual fastener capacities. The use of relatively thick metal plates, usually of mild steel, in conjunction with bolts or plain round dowels, is common in forming connections in timber engineering construction, particularly with glued laminated timber (glulam). Designs normally involve double shear planes, and the plates may be positioned as side plates, or as central inserts, or 'flitches'.

An accompanying paper presents a brief review of the current research and code status in relation to the topic of multiple-fastener modification factors for such joints. This paper describes recent tests, supported by a linear elastic orthotropic finite element analysis. The work has been conducted on both single and multiple bolted joints. An especially designed test apparatus, which could accept thin central members of European whitewood glulam was used, to ensure failure in a pure embedment mode. Strain-gauged mild steel side plates were used on this test jig, following an established technique developed by previous researchers [1].

The results of the evaluation are compared with work previously reported by others to CIB W18A [2]. They are also discussed briefly in relation to current design recommendations.

Tests

The object of the tests was to investigate experimentally how the load on a multiple-fastener bolted joint, using steel side plates and a glulam central member, would be distributed between the individual bolts. The apparatus and procedures were designed in such a way that failure was in a pure embedment mode, in the case of both the single and the multiple fastener joints. The thickness t_2 of the central glulam specimens was 2.75 times the diameter of the fastener, whilst the thickness t_1 of each of the steel side plates was 0.88 times the diameter, Figure 1.

A special multiple embedment testing jig was designed and made for the tests. It was constructed of mild steel plate, and contained strain gauges to measure the load applied to each bolt. The dimensions of each side plate of the jig are shown in Figure 2.

It will be noted that between each pair of bolt holes in the side plates, the width of the steel was waisted. This waisted portion was designed to be narrow enough to change in length by a significant and measurable amount of strain, when force was applied to the jig. At the same time the side steel assemblies were sufficiently rigid in comparison with the timber to avoid elastic influences of the plates. Metal foil electrical resistance strain gauges were mounted in pairs on each of the edges of the waisted portions of the plates. The four individual gauges at each hole position were connected in series and set up in a single bridge configuration, using strain gauge bridge and amplifier units.
Figure 3 shows a schematic diagram of a multiple hole tension specimen mounted in the jig. For the compression tests, the toothed plate assembly was omitted, and the load was applied through the ends of the specimen. For the single fastener specimens, it was required to measure the embedment stiffness, for use in the finite element analysis. To this end, an LVDT was mounted on the jig to measure the movement of a point on the timber close to the bolt, relative to the bolt itself. Plate 1 shows the jig mounted in a Zwick 1478 100 kN test machine, for the compression perpendicular to grain tests.

Figure 4 shows a steel side plate with numbers indicated against the strain gauge positions and against the individual bolts. This is a key to interpreting the results, since 'bolt 1' is the fastener nearest to what would be described in design as the 'loaded' end of the glulam.

The force applied to each individual bolt was derived from a combination of the strain gauge readings and the total force recorded by the test machine. A microcomputer incorporating an analogue to digital conversion system was used in conjunction with the data recording for this purpose. Plate 2 shows the general arrangement of the equipment.

In each specimen, the strain gauge signals were calibrated against the load indications of the test machine by applying load through the jig to a single bolt at each hole position in turn. By means of a simple matrix operation using software in the PC, the strain gauge outputs and the total machine load were then able to be manipulated to measure the individual bolt loads, when multiple-fastener arrangements were tested.

Standard, commercially available European whitewood glulam was obtained for the tests. The material was manufactured in Denmark, and was specified as complying with LB grade of BS 4169:1988. The material was initially at approximately 15% moisture content, and the specimens were conditioned at 20°C and 65% relative humidity. They were maintained at the equilibrium moisture content attained under these conditions by being wrapped whenever removed from the conditioned environment.

Figures 5 to 10 show the dimensions of the specimens used for the single-bolt and four-bolt tests. Parallel to grain tests were conducted in both tension and compression. Perpendicular to grain tests were performed in compression only. Table 1 shows the spacings used for the specimens in terms of bolt diameter. The bolt spacings and distances used in the tests conformed with the recommendations of EC5, April 1992 draft, except in the case of the edge distance in compression perpendicular to the grain. Here, there was a change in the EC5 drafts, but the distance conformed with the BS 5268 rule.

<table>
<thead>
<tr>
<th>Mode</th>
<th>No. of bolts</th>
<th>Parallel to grain a_1</th>
<th>Perpendicular to grain a_2</th>
<th>End distance a_3</th>
<th>Edge distance a_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compression parallel</td>
<td>Single bolt</td>
<td>–</td>
<td>–</td>
<td>7d</td>
<td>4d</td>
</tr>
<tr>
<td></td>
<td>Four bolts</td>
<td>5d</td>
<td></td>
<td>7d</td>
<td>4d</td>
</tr>
<tr>
<td>Tension parallel</td>
<td>Single bolt</td>
<td>–</td>
<td>–</td>
<td>7d</td>
<td>4d</td>
</tr>
<tr>
<td></td>
<td>Four bolts</td>
<td>5d</td>
<td></td>
<td>7d</td>
<td>4d</td>
</tr>
<tr>
<td>Compression perpendicular</td>
<td>Single bolt</td>
<td>–</td>
<td>–</td>
<td>4d</td>
<td>2.1d</td>
</tr>
<tr>
<td></td>
<td>Four bolts</td>
<td>–</td>
<td>5d</td>
<td>4d</td>
<td>2.1d</td>
</tr>
</tbody>
</table>
The testing procedure included drilling the bolt holes in the glulam immediately before the test on each specimen, since it was desired to eliminate as far as possible fabrication effects, mis-fit and shrinkage or swelling between holes. To this end, a template was used on each embedment specimen, and a vertical drill press was used, which helped to ensure perpendicular drilling. The holes were drilled using a new 12.2mm diameter twist drill.

Bolt holes were positioned to avoid glue lines in the laminated material. The specimens were assembled using M12 Grade 8.8 steel bolts. The portion of the bolt in contact with both the steel side plates and the glulam was the plain shank rather than the threaded portion. Washers and nuts were included in the assembly, with the latter being tightened by hand.

In the case of the single bolt specimens, loading was carried through to failure, after the elastic stiffness had been measured. For this stage of the test, the test machine cross-head speed was controlled such that failure took place within 10 to 15 minutes. Cubes of material approximately 30mm square were taken from each specimen for density recording and to measure moisture content by oven drying.

Results

Table 2 lists the results of the single-bolt embedment tests.

The mean values and coefficients of variation are taken from four tests in each mode. Load versus embedment traces were typical at low load levels of those obtained from such tests. When maximum load was achieved, failure was by perfect plastic embedment in the case of both tension and compression parallel to the grain. Plate 3 shows a typical specimen. Compression perpendicular to grain specimens ultimately failed by a combination of plastic embedment and splitting parallel to the grain.

In the case of the four-bolt embedment tests, loading was not continued until failure, since the intention was only to measure load distribution within the elastic range. Preliminary tests indicated that the parallel to grain tests could be conducted in the loading range 0-20kN, and the perpendicular to grain tests in the range 0-5kN.

Table 3 lists the results of the four-bolt embedment tests. The mean values for proportion of load carried by each bolt are averages obtained from four tests of each type.

Table 2 Results of the single-bolt embedment tests
(mean values and coefficients of variation of 4 tests)

<table>
<thead>
<tr>
<th>Mode</th>
<th>Mean embedding resistance kN</th>
<th>Coefficient of variation %</th>
<th>Embedment stiffness kN/mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compression parallel</td>
<td>13.5</td>
<td>7.4</td>
<td>40</td>
</tr>
<tr>
<td>Tension parallel</td>
<td>12.2</td>
<td>8.2</td>
<td>19</td>
</tr>
<tr>
<td>Compression perpendicular</td>
<td>8.2</td>
<td>6.0</td>
<td>50</td>
</tr>
</tbody>
</table>
Table 3 Results of the four-bolt embedment tests
(Proportion of load carried by each bolt, mean of 4 tests)

<table>
<thead>
<tr>
<th>Mode</th>
<th>Proportion of load</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bolt 1</td>
</tr>
<tr>
<td>Compression parallel</td>
<td>0.29</td>
</tr>
<tr>
<td>Tension parallel</td>
<td>0.27</td>
</tr>
<tr>
<td>Compression perpendicular</td>
<td>0.50</td>
</tr>
</tbody>
</table>

EC5 Comparison

For the single-bolt embedment test listed in Table 2, it was possible to make a direct comparison with the embedding strengths that would be predicted by the relevant design equations in EC5, April 1992 draft. The code indicates thus:

The following characteristic embedding strength value should be used, at an angle \(\alpha \) to the grain:

\[
f_{h,s,k} = \frac{f_{h,c,k}}{k_{90}\sin^2\alpha + \cos^2\alpha}
\] \hspace{1cm} (6.5.1.2a)

\[
f_{h,c,k} = 0.082 (1-0.01d) \rho_k \text{ N/mm}^2
\] \hspace{1cm} (6.5.1.2b)

\[
k_{90} = 1.35 + 0.015d \text{ for softwoods}
\] \hspace{1cm} (6.5.1.2c)

\[
k_{90} = 0.90 + 0.015d \text{ for hardwoods}
\] \hspace{1cm} (6.5.1.2d)

with \(\rho_k \text{ in kg/m}^3 \) and \(d \text{ in mm} \).

From 93 moisture content and density test cubes, a mean density of 466 kg/m\(^2\) was measured in the test material, with a coefficient of variation of 9.9%. The mean, rather than the characteristic density should give the better comparison with mean test results.

Applying equations 6.5.1.2a to c for the parallel to grain case, an EC5 embedding stress of 33.63N/mm\(^2\) and hence a strength of 13.3kN, was obtained. This compared well with the mean value of 13.5kN for compression parallel to grain, listed in Table 2.
Equations a to c for the perpendicular to grain case produced a stress of 21.98N/mm² and a strength of 8.7kN, again quite close to the experimental value of 8.2kN in Table 2.

This comparison was taken as indicating that in the single fastener case, valid embedment tests were being conducted of a type that would lead to the embedment failure mode used as a basis for EC5. Hence, by extrapolation the multiple fastener test procedure was also taken to be a special but valid kind of embedment test.

Finite element analysis

A full finite element model of the multiple-fastener problem is notoriously difficult to set up, even in metal structures which can be treated isotropically. The contact area between the fastener and the parent material is often indeterminate, and the assumptions made in this respect can influence the results substantially. Instead of such an approach, it was decided to treat the bolt in the hole in rather a simplified manner, but to introduce an additional spring element into the analysis at each bolt hole, to model the embedment stiffness of the fasteners. The parameters for this embedment stiffness were to be taken from the individual bolt tests.

The intention of the analysis was to predict the distribution of the bolt loads amongst the fasteners within the elastic range only. No attempt was to be made to obtain a closely detailed stress analysis around each fastener, nor was it required to model aspects beyond the elastic range, which could involve iterative, non-linear load-slip modelling, or the selection of failure criteria, for example. The finite element program ANSYS was used. Quadrilateral orthotropic elements and spring elements were employed.

Figure 11, (a) to (c), shows the steps in obtaining a corrected finite element model, which would allow for the embedment stiffness. In Figure 11(a), an idealized single-bolt test arrangement is shown. The displacement δ_{exp} indicated in this diagram was measured by test, using the linear portion of the embedment curve. As described in the test section of this paper, the holes were drilled immediately before testing to be as exact a fit as possible. Other displacement assumptions could if required be included in a similar model.

Figure 11(b) shows a simplified version of the finite element model, with the bolt attached to the timber surrounding it. The displacement δ_{x_2} of a node adjacent to the centre of the bolt was extracted from the analysis, giving a theoretical embedment stiffness which would apply to a fully attached bolt. Under this assumption, the area of timber beneath the bolt would be in tension, whereas in practice it would not be so fully stressed.

Figure 11(c) shows the additional spring element connected between the centre of the bolt and 'ground'. The stiffness of this element was chosen such that the displacement of the node opposite the bolt centre was equal to the experimental displacement δ_{exp}. Hence, the spring stiffness of the corrected model was:

$$k_c = \frac{1}{\left(1/k_{\text{exp}} - 1/k_{x_2}\right)}$$

Models of multi-bolt specimens were created using the same principle. Figure 12 shows such a four-bolt model. The share of load carried by each bolt could be obtained from the behaviour of each spring in the model, after the surrounding timber and applied load had been simulated correctly.
Plate 4 shows the finite element model for the case of compression parallel to the grain, for a single-bolt specimen. Only half the specimen width was necessary in the model. Contours of direct stress in the grain direction can be seen in this photograph.

The finite element embedment stiffness for the parallel to grain case was evaluated as 430 kN/mm. The test embedment stiffness indicated in Table 2 was used. The resulting 'correction stiffness' was 44 kN/mm.

Plate 5 shows the finite element model for the multiple-hole tension specimen loaded parallel to the grain, whilst Plate 6 shows the single-hole compression perpendicular case.

Table 4 Results of the four-bolt finite element analyses
(Proportion of load carried by each bolt in the elastic range)

<table>
<thead>
<tr>
<th>Mode</th>
<th>Proportion of load</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bolt 1</td>
</tr>
<tr>
<td>Compression parallel</td>
<td>0.36</td>
</tr>
<tr>
<td>Tension parallel</td>
<td>0.31</td>
</tr>
<tr>
<td>Compression perpendicular</td>
<td>0.61</td>
</tr>
</tbody>
</table>

Table 4 summarises the results of the four-bolt finite element analyses, giving the proportion of load carried by each bolt, within the elastic range.

Discussion

In order to compare the results with other work and to obtain a broader view of their implications, it was necessary to calculate what would effectively be known in code terms as a 'reduction factor'. This was because other researchers have not reported results in terms of proportion of load per fastener. For this purpose, it seemed reasonable to assume that a design rule might be based upon the requirement to limit the total load on a multiple fastener joint to a value such that the individual fastener carrying the greatest proportion of the load would only be loaded to a value permitted in a joint with a single fastener of the same type. Whilst it was recognised that this might not be the only possible assumption, it seemed a straightforward approach.

From this, it followed that the 'reduction factor' amounted to the proportion of load that would be carried by each fastener if the 'load sharing' were perfect, eg 0.25 in the case of four bolts, divided by the proportion of load actually carried by the most heavily loaded bolt in the test series or finite element analysis under consideration. This somewhat surprisingly simple factor can quickly be deduced by a few easy calculations.

Table 5 shows the reduction factor computed in this manner for both the test results and for the finite element analysis, with respect to each mode of loading.
Table 5 Reduction factors for each mode of loading, by test and from analysis.

<table>
<thead>
<tr>
<th>Mode</th>
<th>By test</th>
<th>From analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compression parallel</td>
<td>0.66</td>
<td>0.69</td>
</tr>
<tr>
<td>Tension parallel</td>
<td>0.89</td>
<td>0.81</td>
</tr>
<tr>
<td>Compression perpendicular</td>
<td>0.50</td>
<td>0.41</td>
</tr>
</tbody>
</table>

Two salient features of this simple presentation are immediately apparent. Firstly, both the tests and the analyses suggest that the load sharing amongst the fasteners is more even in the case of tension parallel to the grain than in the case of compression parallel to the grain. Secondly, the reduction factor for compression perpendicular to the grain is substantial and should apparently be even more severe according to the finite element analysis than was determined by test.

In the case of tension parallel to the grain, it was possible to compare the results with those previously reported to CIB W18 by Yasumura et al. In the presentation of this extensive series of Japanese tests on glulam, the relation between the number of bolts and the decreasing ratio of the ultimate load per bolt (described in this paper as 'reduction factor') was given by means of a simple fitted equation using least square techniques.

For a bolt spacing of 4d, the nearest to the 5d used in the tests reported in this paper, and for a ratio of L/d = 4 (the thinnest central member type included), Yasumura gave:

\[
D = N^{-0.3744}
\]

where \(D\) = 'Decrease ratio'
and \(N\) = Number of bolts

For four bolts, this would indicate a decrease ratio of 0.59, which was more severe than the values indicated in Table 5. At the wider bolt spacing of 7d, the effect was slightly less severe according to the Japanese test, four bolts in tension parallel to the grain having a decrease ratio of 0.68.

The more severe reductions found by Yasumura may possibly be due in part to the fact that his tests were more practical, large-scale tests on the types of bolted joints found in full-sized glulam structures, whereas in the tests reported here, special efforts were made to produce 'near-perfect' test joints in order to obtain the best possible comparison with analysis.

Wilkinson also tested 'real' joints in Douglas fir, with steel plates. For five bolts in line with a spacing of 8d loaded parallel to the grain, he obtained reduction factors as defined in this paper typically as low as 0.4. He concluded that variability and fabrication effect were having a large influence on this uneven load distribution.
In the case of the multiple-fastener joints loaded perpendicular to the grain, no reports of tests by others were available against which to compare the results given in this paper. It should be noted, however, that it is considered that the agreement between test and analysis is quite good considering the variations that are possible in such experiments. Both test and theory suggest that the present European and British code procedures for reducing values in multiple-fastener joints loaded in this manner are seriously non-conservative.

Conclusions

Tests and analytical investigations have been made on load distributions in multiple-fastener bolted joints, using European whitewood glulam, with steel side plates. The proportions of load carried by each bolt have been determined. These have been found to be very uneven, especially in the perpendicular to grain case.

For each of the three modes of loading which were investigated, namely compression parallel to the grain, tension parallel to the grain, and compression perpendicular to the grain, reduction factors have been determined, by test and from analysis. These reduction factors were related to the type of calculation which is based on summing the load carrying capacity of a multiple-fastener joint by taking the number of fasteners multiplied by the individual fastener capacity.

In compression parallel to the grain, the reduction factor determined by test was only about four per cent different from the corresponding value shown by analysis. In the tension case, agreement was within ten per cent. In compression perpendicular to the grain, agreement was less close, with a difference of twenty two per cent between test and theory. However, this is still considered quite reasonable, in view of the substantial influences tending to cause variability in such specimens.

The experimental measurements were conducted using a special test apparatus, which was designed to ensure that failure took place in a pure embedment mode. Other precautions were also taken in manufacturing the specimens. Single-fastener tests were conducted which were then compared with EC5 (draft) design procedures. These comparisons showed that the plastic embedment assumption was valid.

Both the tests and the analysis suggested that the load sharing amongst the fasteners was more even in the case of tension parallel to the grain, than in the case of compression parallel to the grain. The reduction factor for compression perpendicular to the grain was substantial, and should apparently be even more severe according to the finite element analysis than was determined by test. The test evidence suggested that a reduction factor of 0.50 should apply to four bolts in such a situation.

The reduction factors determined for the various four-bolt parallel to grain configurations in this research were in the range 0.66 to 0.89. A brief comparison with two other sets of tests was made in this paper, and in an accompanying paper, a selected review of research and codes was given. All the supporting evidence suggests that BS 5268:Part 2 and EC5 (April 1992 Draft) make insufficient allowance for this phenomenon. On the other hand the Canadian Code CSA-086.1-M89, would apply a factor for groups of fastenings, J_{gr} of 0.50 for four bolts in a row, and for the ratios of l/d and s/d used in these tests.

References

Figure 1. Definitions of t_1 and t_2

Figure 2. Dimensions of side plates of jig

Figure 3. Schematic diagram of rig for tensile test

Figure 4. Designation of bolts
Figure 5. Compression, one bolt.

Figure 6. Compression, four bolts.

Figure 7. Tension, one bolt.

Figure 8. Tension, four bolts.

Figure 9. Compression perpendicular, one bolt.

Figure 10. Compression perpendicular, four bolts.
Figure 11. Finite element models of single hole embedment test showing (a) experimental measurement, (b) basic finite element model and (c) corrected finite element model.

Figure 12. Finite element model of multiple hole test.
Plate 1. Details of apparatus for compression tests of multiple hole specimens

Plate 2. Layout of equipment for tests
Plate 3. Plastic embedment in single hole compression test specimen

Plate 4. Finite element display for single hole specimen loaded in compression parallel to the grain
Plate 5. Finite element display for multiple hole specimen loaded in tension parallel to the grain

Plate 6. Finite element display for single hole specimen loaded in compression parallel to the grain
DETERMINATION OF CHARACTERISTIC BENDING VALUES OF GLUED LAMINATED TIMBER
EN-APPROACH AND REALITY

by

E Gehri
Federal Institute of Technology, Zurich
Switzerland

MEETING TWENTY - FIVE
ÅHUS
SWEDEN
AUGUST 1992
1. Introduction

The loading models for bending of glulam ([1] pg. 3-3.1) are defined in EN TC 124.207. This model is based on a proposal of Riberholt/Ehlbeck/Fewell [1]. The characteristic bending moment of the beam is derived as:

\[f_{m,k,g} = \frac{(2.7 - 0.04 \cdot f_{t,o,k,l}) \cdot f_{t,o,k,l}}{K_{lam}} \]

for a beam with a reference depth of \(h = 300 \text{ mm} \) [2]. Moreover, in annex A of [2] it is established that:

"The mechanical properties of glued laminated timber are derived by multiplying the laminate properties by a \(K_{lam} \) factor which make allowance for:

a - the test methods used for single laminations, which may be less constrained than when laminations are bonded together in a single member;

b - differences due to the dispersion of laminate low strength and low stiffness areas throughout the volume of a glued laminated member;

c - differences between the coefficients of variation of single laminates and laminated members.

The above statements are valid only for wood laminations without end joints. If end joints are present the bending strength for the splice must fulfill the following conditions according to reference [2]:

\[f_{m,k,j} \geq f_{m,k,g} \]

The latter condition was adopted on the basis of a proposition of Riberholt [3]. The more comprehensive and better founded investigations of Ehlbeck/Colling [4] lead to more severe conditions concerning the splice strength. For the reference depth of \(h = 300 \text{ mm} \), the required condition is:

\[f_{m,k,j} \geq 1.15 \cdot f_{m,k,g} \]

The coefficient 1.15 is, in my opinion, a value that is too low. Based on the work of Colling/Ehlbeck/Görlicher [5] a coefficient of 1.4 may be justified as will be explained later.

In the EN TC 124.407 version of 22.04.1991, the reference depth of \(h = 300 \) is changed to \(h = 600 \text{ mm} \). At the same time it is determined that "the values for bending strength apply for a depth of 600 mm or less. For deeper beams the bending strength shall be multiplied by \((600/h)^{0.4}\). Despite different reference depths the same characteristic bending strength is prescribed. In addition the condition with relation to the laminate splice is maintained - despite a reference height that is doubled. The claim here is: "The bending strength of end joints in the lamination is greater than the characteristic bending strength of the beam with depth of 600 mm".

This statement of 22.04.1991 is in contradiction with present knowledge of the effect of volume or "size factor". Several research projects, among which that of Ehlbeck/Colling [4], demonstrate the influence of beam dimensions (length and depth). Within the framework of the European Standards a certain consensus has been established, based on the simplifying assumption that:

\[\text{Bending strength} = \text{Function of } (h)^{-0.2} \]

The study-group of Ehlbeck/Fewell/Larsen/Riberholt/Sunley worked out a new proposal which takes the above objections in consideration. This foresees 6 instead of 5 strength classes.

This proposal was amended on 7.10.1991 by Larsen and was published as CEN/TC124/WG2 N 155. This draft is based on a reference depth of 600 mm. The change from 300 mm to 600 mm takes the size effect into consideration using the factor:

\[\left(\frac{300}{600} \right)^{0.2} = 0.87 \]
The characteristic bending strength of the beam, based on the tensile strength of the wood laminations, is therefore derived as:

$$f_{m,k,g} = (2.35 - 0.035 \cdot f_{t,o,k,l}) \cdot f_{t,o,k,l}$$

The limiting condition with the lamination end joint strength should have been:

$$f_{m,k,j} \geq 1.15 \cdot f_{m,k,g}$$

In the "amended" version by Larsen this condition was further mitigated to:

$$f_{m,k,j} \geq 1.1 \cdot f_{m,k,g}$$

The latest version of EN TC 124.207 is also amended by Larsen and dated 18.3.1992, i.e. this edition was prepared after the EC5-Meeting in Trento. This version proceeds from a new definition of the characteristic bending strength. This maintains that "the characteristic strength properties of table 1 correspond to the 0.85-values of the characteristic properties derived from test in accordance with prEN 408". In so doing the new definition is valid only for bending and tension!

The importance of this new definition is that the assumed bending strength to be used in calculations is increased by about 20% over what has been applied previously!

In addition the requirements for end joints were again reduced in comparison with the new, increased characteristic strength used in the calculation. In the new version (for a reference depth of 600 mm) the only requirement is that:

$$f_{m,k,j} \geq f_{m,k,g}$$

I am well aware of the difficulties which glulam producers encounter in trying to fabricate a high quality product. The proposed procedure, however, is in the wrong sense. The real safety factor is actually decreased, which is intolerable.

As shall be demonstrated below, the tension strength of the laminations and the end joints are much too optimistically defined in relation to the value established earlier.

2. Procedure to determine the characteristic bending strength

The failure of a beam in bending is determined by:

- the tensile strength of the wood laminations $f_{t,o,k,l}$
- the tensile strength of the end joints $f_{t,k,j}$

The strength model should therefore be based directly on these values.

$$f_{m,k,g} = \text{the smaller of} \quad \begin{cases} F(f_{t,o,k,l}) \\ G(f_{t,k,j}) \end{cases}$$

Difficulties arise here since the values of $F(f_{t,o,k,l})$ and $G(f_{t,k,j})$ may hardly be determined directly. For wood laminations a classification exists that is based on the bending properties. For end joints the quality assurance is the result of a bending test.

The strength model for bending of wood laminations of Riberholt/Ehlbeck/Fewell is based directly on the tensile strength $f_{t,o,k,l}$. In the model for end joints the tensile strength $f_{t,k,j}$ is replaced by a requirement concerning the bending strength. One should object that the latter requirement should be clearer to the user since bending tests are usually used for routine quality control. The characteristic bending strength of the end joints is therefore known.
The chosen method produces several problems, however:

- Specialists, and that includes the standard committee of the CEN, are not yet in agreement on the tension/bending ratio for end joints.

- The ratio tension/bending is not a constant parameter. Not only the size of the end joint, but also the absolute strength of the timber influence this ratio; and to a lesser extent the moisture content.

- The end joint bending strength should really be established in terms of the lamination thickness; the tensile strength is really a function of the cross section, A [for example A^{0.2}]. According to the EN the only factor here is the lamination width, introduced in the form b^{0.2}, in which b = 150 mm is the adopted reference value.

- Higher end joint strengths yield larger tensile/bending strength ratios; in principle values of even more than 1.0 are conceivable. In bending tests a compression failure may be produced.

- The correlation of the tension/bending ratio where end joints are concerned is very poor. This is demonstrated by the extensive research of Ehlebeck/Colling [6].

In order to get around these problems it is logical to include $f_{k,j}$ directly in the strength model. At least these tests can be simply and efficiently accomplished in the laboratory, as our own experience has proved.

The often repeated discussion of the support conditions in tension tests (Fig. 1) is avoided in as much as the sample ends are fully clamped.

Figure 1: Test set-up for tension tests

(a) according to tests made by Colling/Ehlebeck/Görlacher [5], width 100 mm
(b) according to tests made by Gehri, "restrained" and conditions, width 150 mm

In a comparison of the absolute values attention should be paid to the different widths of the test specimens. The conversion to the reference width of $b = 150$ should be done with the function $(b/150)^{0.2}$. The test results in tension according to [5] are therefore to be multiplied by 0.92 and in this way the tension/bending ratio for $b = 150$ is reduced by the same amount.

3. Determination of the characteristic bending strength from the wood strength

According to EN TC 124.407 the strength class of glulam (with the exception of the end joint influence) is determined directly from the strength class of the incorporated wood laminations.
Example: A beam with homogenous construction of C18 wood laminations presents a bending strength of 21 N/mm².

\[f_{m,k} \geq 18 \text{ N/mm}^2 \]

for moisture content 10 % to 18 %

\[f_{l,o,k} = 0.6 f_{m,k} \]

independent of lamination thickness

= strength class C18

\[f_{m,k,g} \geq 21 \text{ N/mm}^2 \]

The classification does not depend on the relevant tensile strength, but rather from the bending strength of the strength class in question. This is dependent on a beam with 150 mm depth for various widths b. Furthermore the classification criterium used is not the bending strength but the elastic modulus in bending.

The linking of bending strength of glulam having a depth of 600 mm with the tensile strength of the laminations results from several steps of simplified relations, which appear to be substantially inexact, discrepancies which could be cumulative. It is therefore necessary to confirm the values derived from this type of strength model with results obtained from tests. A subsequent calibration operation may lead to corrections.

4. Examination of end joint requirements using 300 mm deep beams

Earlier strength models were based on a beam with reference depth of h = 300 mm, so it is therefore understandable that many earlier tests were carried out using this beam dimension.

The examination described below was carried out on the basis of a series of tests executed in a course for wood specialist in 1967 at the ETH Zurich [7].

As can be seen the bending of 120/300 beams were the most important feature. The properties of the wood and the end joints corresponded to the Swiss wood construction standard; SIA 164 in force at that time, as well as the more comprehensive quality standards of the Swiss Study Group for Glulam.

The strength class FA was produced. The characteristic bending strength (for h = 300 mm) was to be:

\[f_{m,k,g} = 2.25 \cdot 14 = 31.5 \text{ N/mm}^2 \]

admissible bending according SIA 164

The outer laminations corresponded to the strength class L1 (visual selection). No strength tests were performed on the laminations. In this case it did not imply an error since all the failures were in the end joints.

Out of each of the outer laminations 24 end joint samples were systematically cut, in such a way that 12 of each were to be tested in tension or bending. The tension tests could not be performed for lack of equipment. The results of the 12 bending tests gave a satisfactory impression. The requirement \[f_{m,j} \geq 39 \text{ N/mm}^2 \], which is analogous to the german standards for high quality end joints, was fulfilled. The characteristic bending strength (ascertained by 12 tests with n = ∞) came to 41.3 N/mm².
On the basis of the mathematical model of EN TC 127.407 (Version 1991-10-07, which was available before the EC-5 meeting in Trento) the following conditions were to be fulfilled:

\[
\text{for } h = 600 \text{ mm} \quad f_{m,k,j} \geq 1.1 f_{m,k,g}
\]

Converted to a beam depth \(h = 300 \text{ mm} \), this gives:

\[
f_{m,k,j} \geq 1.1 \left(\frac{300}{600}\right)^{0.2} f_{m,k,g}^{300 \text{ mm}}
\]

\[
\geq 0.96 f_{m,k,g}^{300 \text{ mm}}
\]

With \(f_{m,k,j} = 41.3 \text{ N/mm}^2 \) the calculation gives the characteristic bending strength with \(h = 300 \text{ mm} \) (assuming wood failure is excluded) as:

\[
f_{m,k,g}^{300 \text{ mm}} = 1.04 \cdot 41.3 = 43.2 \text{ N/mm}^2
\]

Nevertheless, the actual characteristic bending strength, determined for 12 beams, was only 30.8 N/mm², that is to say that the EN calculation model gives a value that is about 40 % too high!

5. Examination of the requirement concerning the strength of the laminations

Pellerin and Strickler [8] measured the bending strength on beams with a depth of 610 mm. Reliable information was available concerning the minimum tensile strength (from tension proof-loading test results). The characteristic tensile strength may be fixed at about 30 N/mm².

The tests on 12 beams (combined glulam) gave \(f_{m,k,g} = 35 \text{ N/mm}^2 \).

Proceeding from the EN regulations for calculation (version 1991-10-07) and taking into account that a combined glulam is in question, these regulation require a characteristic tensile strength of 24 N/mm².

Conclusion: The EN regulation concerning the tensile strength of wood laminations sets requirements that are too low. These must be increased about 25 %.

6. Examination of the requirement concerning wood laminations and end joints

In previous test series that were used for examination, no complete series of data was available from which a check of both requirements was possible. In the course of a demonstration in March 1992 at the ETH Zurich 8 beams were tested with emphasis on observation of the most comprehensive series of data possible.

The number of beams tested may seem few. Taking into consideration that the EN regulations, (version 1991-10-07) as described in sections 4 and 5, lead to flagrant differences, only a few tests should suffice in these conditions - if the test could be specifically executed to answer the question.

In accordance with the results of sections 4 and 5 it must be concluded that the EN regulations (version 1991-10-07) lead to a large overestimate of the bending strength:

- for wood strength \(f_{l,o,k,l} \) 25 %
- for end joint strength \(f_{m,k,j} \) 40 %

With such large deviations a small number of specific tests suffice to either to demonstrate this or make these bending strengths questionable.

The beams tested featured a cross section of 150/500. Retaining the 600 mm reference depth of the EN was not possible for technical reasons during testing. Consideration of the size factor of \((h)^{0.2} \) produced a small correction of 4 %. The width of 150 mm was chosen so that no correction needed to be introduced for the tension tests of the laminations (reference width = 150 mm).
Beams without end joints in the tension zone

Samples were systematically taken from high quality timber with elastic modulus of 16'200 N/mm² which was intended for the tension zones, and were tested in tension. The summary of all the values is shown in the above figure as well as the results of the 4 beam tests.

![Graph showing results of tension tests](image)

Figure 2: Results of tension tests on 2.7 m laminations with width = 150 mm; Results of 4 bending tests on 500 mm deep beams

Conclusion:

- The characteristic tensile strength of tension laminations was around 32 N/mm². This value is clearly higher than 25 N/mm², which is acceptable according to EN regulations (otherwise higher values of $f_{t,0,k}$ give lower bending strength according to the design regulations).

 The wood used for laminations represented a good quality which can usually be obtained in the Swiss market. It is therefore not comprehensible why the use of better (usually available) properties cannot be respected by the EN regulations.

- The ultimate bending strength attained by the 4 beams was considerably over 50 N/mm². This attests to the high potential quality of the lamination wood. Laminations which require no special measures during construction (except the usual initial selection of the laminations) reached bending strengths that are substantially over the strength classes previously provided for in the EN regulation.

 Insufficient bending strengths, as determined by tests, are almost exclusively to be attributed to failure of the end joints, if the wood laminations are properly preselected.

Beams with end joints in the tension zone

Each of the three lower tension laminations contained one end joint in the highly stressed middle area. The end joints were staggered.

Test samples from the end joints were systematically taken (analogous to the material for the beam without end joints) and half of each were tested in tension or bending.
The results of these tests are summarized below; as well as the results of the bending tests. Here, 5 values are indicated since in the series "Beams without end joints" an end joint failure occurred in the outer beam zone.

![Graph showing test results](image)

Figure 3: Results of tension (ZKZ) and bending (BKZ) tests on end joints with laminations width of 150 mm; Results of 5 bending tests on 500 mm deep beams (BSH 500 K) with failure in the end joints

Conclusions:

- The result is disillusioning. Almost all values might happen. Aside from the large scatter one can recognize that the lowest values (of only 5 values) are only 1.15 ... 1.3 times higher than the characteristic tensile strength.

 The lowest values amount to little more than the half of the bending strength of beams without end joints!

- The measured tensile strengths (determined on whole laminations with a cross section 33/150 mm) are low, the characteristic tensile strength was near 22 N/mm², and could indicate an insufficient quality of the end joint.

 Nevertheless this value does not fall much lower than the data in Colling/Ehlbeck/Görlacher [5], which determined a characteristic "restrained" tensile strength of 23.4 N/mm². If one considers the smaller lamination width of 100 mm, the above value is reduced to 21.5 N/mm², that means it is of similar quality.

- Surprising results were produced by the bending tests executed on similar sample material. The characteristic value of over 47 N/mm² manifested an extraordinarily good quality, compared to existing requirements!

- The lower tension/bending ratio is clearly shown for the end joints:
 - in comparison with the average 0.53
 - in comparison with the characteristic value 0.47

This is a clear indication that the values of the tension/bending ratios measured by Ehlbeck/Colling [6] concerning the characteristic strengths are not extremely low.
Ehlebeck/Colling/Görlacher [5] departed from a tension/bending ratio of 0.65 and, through different "corrections" raised this value to 0.73!

This procedure is doubtful, as shown below.

<table>
<thead>
<tr>
<th>Assumed basic value of the ratio</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{f_{t,k,j}}{f_{m,k,j}}) = 0.65</td>
<td>As tests show the upper value has been introduced</td>
</tr>
</tbody>
</table>

Correction as the result of simple support condition in tests
+ 8% 0.70 An assumption that is not based on tests

Correction for "type of loading; difference between uniform distributed and two single loads"
+ 4% 0.73 This correction has no justification concerning resistance; the characteristic bending strength is based on a loading with two loads.

If we assume an initial tension/bending ratio of 0.63, and if a narrower sample width of 100 mm is used, one has 0.92 * 0.63 = 0.58. If the correction for pinned/fixed reactions is accepted we have 1.08 * 0.58 = 0.63 again.

7. Recommendations

Proceeding from the conclusions of sections 4 to 6, the requirements in EN TC124.207 must be changed. It is recommended that:

a – Requirements concerning end joint strength (for beam depth \(h = 600 \text{ mm} \))

Based on tensile strength
\[f_{t,k,j} \geq 0.85 \cdot f_{m,k,g} \]

Based on bending strength (only for information)
\[f_{m,k,j} \geq 1.4 \cdot f_{m,k,g} \]

From this the tension/bending ratio for beams with end joints is derived as:
\[\frac{f_{t,k,j}}{f_{m,k,j}} = 0.61 \]

b – Requirements concerning wood strength (for beam depth \(h = 600 \text{ mm} \)) based on tensile strength,

\[f_{m,k,g} = 12 + f_{t,o,k,l} \text{ N/mm}^2 \]
References

INTERNATIONAL COUNCIL FOR BUILDING RESEARCH STUDIES AND DOCUMENTATION

WORKING COMMISSION W18 - TIMBER STRUCTURES

BENDING STRENGTH AND STIFFNESS OF "IZOPANEL" PLATES

by

Z Mielczarek
M Lange
Technical University of Szczecin
Poland

MEETING TWENTY - FIVE
ÂHUS
SWEDEN
AUGUST 1992
BENDING STRENGTH AND STIFFNESS OF "IZOPANEL" PLATES

Zbigniew Mielczarek, Małgorzata Lange
Technical University of Szczecin, Poland

1. Introduction

In the Institute of Wood Technology in Poznań there have been elaborated the concept and technology of "Izopanel" type panels, glued of wood, hard and porous fibreboards. The load-bearing structure of the panels is formed by framework of wood, lining and vertical strips of hard fibreboards arranged in cross-section plane horizontally and vertically. The void spaces of this framework have been filled with porous fibreboards. It has been assumed that by gluing the fibreboard of hard and porous types together and elaborating an appropriate concept of product structure with vertical location of a part of fibreboards forming type of framework will enable obtainment of composite material of a quality higher than its components both for its strength and insulation properties. The purpose of the investigation carried out by Department of Building Engineering of Technical University of Szczecin was to determine the strength, stiffness and rheological properties of these panels while they are bent perpendicularly to their surface.

2. "Izopanel" characteristics

The panels of "Izopanel" type are characterized by the following features significant for their application in building industry:
- small apparent density of approximately 0.4 kN/m³,
- relatively good insulative power in thermal and acoustic aspects.
(according to calculations 13.5 cm thick panel has overall-heat transfer coefficient of $k = 0.55 \text{ W/m}^2\text{k}$),
- increased fire resistance in relation to the components materials as glued together with non-flammable glue the resulting form has a compact section area with less accessibility for fire and oxygen,
- insignificant swelling,
- good dimensional stability,
- sufficient bioresistance with the application of fungi-resistant and additionally bituminized porous panels,
- good properties as regards holding of screws and nails which offers a possibility of good fastening of connection pieces,
- lack of harmful effects for human body as opposed to chipboard emitting free formaldehyde.

3. Experimental Research

3.1 Examination under short-time load

The examination covered three groups of panels differing from one another by the dimensions of cross-section area (Fig 1). In the first phase of the examination the relations between load size and deflections were determined in order to define their stiffness. The panels were examined in horizontal position with loading in the form of two focussed forces (distributed continuously at panel breadth) applied symmetrically.

![Diagram of "Izopanel" panels.](image-url)
at a distance of 100 cm from each support. The load acted in perpendicular plane to panel surface, and its size changed at every 1/5 Qd where Qd - permissible load as defined by PN-81/B-03150. The following panels were examined:

Group I - Five panels of 70 x 600 x 2500 including:
- 3 Melmo glued panels (nos 1, 2, 3)
- 1 carbanide glued panel (no 16)
- 1 Wikol glued panel (no 11)

Group II - Five panels of 70 x 900 x 2500 including:
- 3 off Melmo glued panels (nos 5, 6, 7)
- 1 off carbanide glued panel (no 18)
- 1 off Wikol glued panel (no 13)

Group III - Two panels of 42 x 600 x 2500 including:
- 1 off carbanide glued panel (no 14)
- 1 off Wikol glued panel (no 9)

The first panel was tested in three loading - unloading cycles, the remaining panels in one cycle. The results of the panel deflection measurements in group I are as shown in table 1

<table>
<thead>
<tr>
<th>Load Qd</th>
<th>Plate 1</th>
<th>Plate 2</th>
<th>Plate 3</th>
<th>Plate 11</th>
<th>Plate 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycle 1</td>
<td>4,25</td>
<td>4,26</td>
<td>4,54</td>
<td>3,78</td>
<td>4,25</td>
</tr>
<tr>
<td>Cycle II</td>
<td>4,30</td>
<td>8,09</td>
<td>8,06</td>
<td>7,94</td>
<td>8,60</td>
</tr>
<tr>
<td>Cycle III</td>
<td>4,32</td>
<td>8,71</td>
<td>18,82</td>
<td>13,84</td>
<td>12,85</td>
</tr>
<tr>
<td>Mean value</td>
<td>4,29</td>
<td>13,48</td>
<td>18,48</td>
<td>17,11</td>
<td>17,74</td>
</tr>
</tbody>
</table>

Table 1
and the results of the measurements carried out for group II and III are given in table 2.

Table 2

<table>
<thead>
<tr>
<th>Load Q</th>
<th>Deflection f (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Plate 5</td>
</tr>
<tr>
<td>0,2</td>
<td>4,46</td>
</tr>
<tr>
<td>0,4</td>
<td>8,76</td>
</tr>
<tr>
<td>0,6</td>
<td>13,68</td>
</tr>
<tr>
<td>0,8</td>
<td>18,95</td>
</tr>
<tr>
<td>1,0</td>
<td>21,51</td>
</tr>
<tr>
<td>0,8</td>
<td>19,72</td>
</tr>
<tr>
<td>0,6</td>
<td>15,02</td>
</tr>
<tr>
<td>0,4</td>
<td>10,53</td>
</tr>
<tr>
<td>0,2</td>
<td>6,66</td>
</tr>
</tbody>
</table>

Because the structure of Izopanel type panels differs from the ordinary panels it was decided to determine by experiments the distribution of normal stresses at the breadthtof panels subjected to bending perpendicularly to their surface. The readings were taken by use of tensometric sensors arranged at three panels (one from each group). The diagram of sensor distribution is as shown in Fig 2. and the results of the measurements provide illustration for graphs presented in Fig 3.

![Fig 2. Distribution of tensometric sensors.](image-url)
Fig 3. Distribution of normal stresses at the panel breadths.

The graphs show that the distribution of normal stresses at the breadths of the bent Izopanels approximates the even one and does not include any characteristical stress reduction with the growing distance from the wooden longitudinal frames. This means that the longitudinal frames and lining of hard fibreboards clearly operate in conjunction with the wooden perimeter frames while transmitting the loads.

The strength to bending under load in perpendicular direction to the surface was tested for the following panels:—
- no 1 of 70 x 600 x 2500 mm glued with Melmo glue
- no 2 of 70 x 600 x 2500 mm glued with Melmo glue
- no 5 of 70 x 900 x 2500 mm glued with Melmo glue
- no 6 of 70 x 900 x 2500 mm glued with Melmo glue
- no 9 of 42 x 600 x 2500 mm glued with Wikol glue

The testing was carried out in a destructive mode with the destructive forces registered. Knowing these values and the dimensions of cross-section the safety factor has been established "s" as the ratio of the destructive moment to the permissible moment. The following values of this factor were obtained: $s = 3.32$ (panel 0 1); 2.73 (no 2); 2.94 (no 5); 2.70 (no 6); 2.26 (no 9).

-5-
3.2 Testing under Long-Term Load

Three panels were tested 1 off from each group. The panels were tested horizontally with load in the form of focused forces (distributed at the panel breadth continuously) applied symmetrically 100 cm away from each support (Fig 4).

Fig 4. Diagram of panel loading for long-term testing.

The load was acting in the perpendicular plane to panel surface and its size was assumed at the level of 0.7 Q_d where Q_d is the permissible panel load as defined by the Polish standards PN-81/B-03150. The testing consisted in measuring the deflections at the centre of the span right after and during the loading, i.e. 420 days. The deflections were measured using dial gauges arranged in points 5 and 6 (Fig 4).

In Fig 5 graphs are presented to illustrate the relations between loading duration and deflection size.

Fig 5. Graphs of the relations of loading duration and panel deflection size.
The results of the measurements in the averaged form of deflection sizes are as shown in table 3.

Table 3

<table>
<thead>
<tr>
<th>Loading time (days)</th>
<th>Panel average deflection, f (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Panel no 1</td>
</tr>
<tr>
<td>before loading</td>
<td>0,00</td>
</tr>
<tr>
<td>immediately after</td>
<td>15,60</td>
</tr>
<tr>
<td>1</td>
<td>16,19</td>
</tr>
<tr>
<td>5</td>
<td>16,79</td>
</tr>
<tr>
<td>10</td>
<td>17,48</td>
</tr>
<tr>
<td>15</td>
<td>18,20</td>
</tr>
<tr>
<td>20</td>
<td>18,25</td>
</tr>
<tr>
<td>25</td>
<td>21,79</td>
</tr>
<tr>
<td>30</td>
<td>21,72</td>
</tr>
<tr>
<td>35</td>
<td>21,62</td>
</tr>
<tr>
<td>40</td>
<td>21,55</td>
</tr>
<tr>
<td>45</td>
<td>21,62</td>
</tr>
<tr>
<td>50</td>
<td>21,98</td>
</tr>
<tr>
<td>60</td>
<td>22,79</td>
</tr>
<tr>
<td>75</td>
<td>23,31</td>
</tr>
<tr>
<td>90</td>
<td>23,58</td>
</tr>
<tr>
<td>105</td>
<td>24,16</td>
</tr>
<tr>
<td>120</td>
<td>24,58</td>
</tr>
<tr>
<td>150</td>
<td>25,53</td>
</tr>
<tr>
<td>180</td>
<td>26,40</td>
</tr>
<tr>
<td>210</td>
<td>26,61</td>
</tr>
<tr>
<td>240</td>
<td>26,89</td>
</tr>
<tr>
<td>270</td>
<td>27,16</td>
</tr>
<tr>
<td>300</td>
<td>27,30</td>
</tr>
<tr>
<td>330</td>
<td>27,50</td>
</tr>
<tr>
<td>360</td>
<td>31,20</td>
</tr>
<tr>
<td>390</td>
<td>30,65</td>
</tr>
<tr>
<td>420</td>
<td>30,59</td>
</tr>
</tbody>
</table>

4. Conclusions

On the basis of the testing carried out under short-term loading the following conclusions can be drawn:-

1. Panel bending strength for bending perpendicular to their surface turned out to be sufficient; the safety factor as the ratio of the destructive force to the permissible load as established from the formulas given in Polish standard PN-81/B-03150 has been found within 2.26 and 3.32.
2. The panel stiffness to bending in perpendicular to their surface differed but slightly from the theoretical stiffness determined by the aforesaid Polish standard when the modulus of elasticity of fibreboard of hard type is assumed according to the studies of W Nożyński (5) as being of $E = 4615 \, \text{MPa}$.

3. Normal stresses are distributed at the panel breadth in the way approximating the even mode of distribution thus differently than in ordinary framework panels.

4. The testing under long-term load proves that after over one year of use the panel deformation is not stabilized. Therefore, these panels are not suitable for be used as bent elements and at least in no case can be used for such high level of permanent load which in the given case was 0.7 permissible load.

However, it should be noted that the testing has been carried out at panels previously subjected to short-term loading. Some of these tests were also conducted within the load range beyond the material elastic operation which might result also in the negative changes in panel structure.
References

3. Z. Mielczarek, M. Lange; Strength of Plates "Izopanel" Types under Eccentrical Compression. XXXV Konf Naukowa KILITPAN i KNPZiTB, vol 3, Krynica 1983

INTERNATIONAL COUNCIL FOR BUILDING RESEARCH STUDIES AND DOCUMENTATION

WORKING COMMISSION W18 - TIMBER STRUCTURES

MOMENT ANCHORAGE CAPACITY OF NAIL PLATES IN SHEAR TESTS

by

A. Keväinmäki
Helsinki University of Technology

J. Kangas
Technical Research Centre of Finland (VTT)
Finland

MEETING TWENTY-FIVE

ÅHUS
SWEDEN
AUGUST 1992
1. INTRODUCTION

EUROCODE 5 - draft of 1992 includes a design method for the moment anchorage stress (τ_M) of the nail plate joints. The force, anchorage stress τ_F and the moment, anchorage stress τ_M are checked separately, but also the sum of them is checked. This method is used in Norway and it has been presented by Aasheim and Solli /CIB-W18, paper 23-7-1/. In this method the moment anchorage stress τ_M is calculated according to elastic theory, but the plastification is taken into account with a certain coefficient in the failure criteria. Norèn has presented a different τ_M design method for the nail plate joints /CIB-W18, paper 14-7-1/. In Norèn's theory stress τ_M is calculated with the plastic theory and only the combination of τ_F and τ_M is checked at the ultimate limit state. In proposed EC 5 method the direction angle of nail plates or the direction of the grain are not taken into account if τ_M is the critical factor. In the method presented by Norèn these factors have a clear influence in the failure criteria.

Comparison of these calculation methods with the results of standard shear tests is shown in this paper. The shear tests are the only standard tests of the nail plate joints where a clear combination of τ_F and τ_M occurs. The eccentricities are so big that usually τ_M is the critical factor in anchorage capacity when EC 5 method is used. The results from testing of 11 different nail plates are compared with these two theories. Altogether 220 shear tests where final failure mode was anchorage one have been analyzed and presented in this paper.

2. THEORIES

2.1 EUROCODE 5 - draft 1992 (elastic calculation method)

The anchorage stresses τ_F and τ_M are calculated with the elastic theory as the maximum stresses of the effective plate area from,

$$\tau_F = \frac{F_A}{A_{ef}}$$ \hspace{1cm} (2.1) \hspace{1cm}

$$\tau_M = \frac{M_A r_{\text{max}}}{I_p}$$ \hspace{1cm} (2.2) \hspace{1cm}

where

F_A is the force acting at the centroid of the effective area

M_A is the moment acting at the centroid of the effective area

I_p is the polar moment of inertia of the effective area

r_{max} is the distance from the centre of gravity to the furthest point of the effective area
The moment in the centre of gravity of the effective area is

\[M_A = M + F \, e \] \hspace{1cm} (2.3)

where plate force \(F \) (= \(F_A \)) and plate moment \(M \) and eccentricity \(e \) are shown in fig. 2.1.

At ultimate limit state the following conditions are checked:

\[\tau_F \leq f_{a,0\beta,d} \] \hspace{1cm} (2.4)

\[\tau_M \leq 2(1-c)f_{a,00,d} \] \hspace{1cm} (2.5)

\[\tau_M + \tau_F \leq 1.5 \, f_{a,00,d} \] \hspace{1cm} (2.6)

where \(f_{a,0\beta,d} \) is the anchorage capacity per unit area for direction \(\alpha \) and \(\beta \)
\(c \) is a constant given for actual type of nail plate
\(f_{a,00,d} \) is the anchorage capacity per unit area for \(\alpha = \beta = 0^\circ \)
\(\alpha \) is the angle between the x-direction of plate and the force
\(\beta \) is the angle between grain and force

Term \((1-c)f_{a,00,d}\) is the anchorage strength for the weakest direction \((\alpha = \beta = 90^\circ)\). The coefficient 2 in equation (2.5) and the coefficient 1.5 in equation (2.6) allows the plastification of anchorage stresses. The force directions are not taken into account in the equations (2.5) and (2.6). If equation (2.5) or (2.6) is the critical factor the capacity of nail plate joint is same for all \(\alpha \) and \(\beta \) directions.

![Figure 2.1](image)

Figure 2.1 Geometry of nail plate connection loaded by a force \(F \) and moment \(M \).
2.2 Plastic theory

Norèn has presented an equation of full plasticity for the moment anchorage stress

$$\tau_M = 4 \frac{M_A}{(A_{ef} d)}$$ \hspace{1cm} (2.7)

The length d is calculated from

$$A_{ef} \quad \quad A_{ef}d/4 = \int r \, dA$$ \hspace{1cm} (2.8)

which can be differential by dividing A_{ef} into a few ΔA concentrated to points. For a trapeziform joint-area (Figure 2.2) $\Delta A = A/2$ can be assumed to be concentrated to the distance $d/4$ from the centre of gravity, that is $Ad/4 = 2(A/2)d/4$ with d calculated from

$$d = 2 \sqrt{z_a^2 + z_b^2}$$ \hspace{1cm} (2.9)

$$z_a = \frac{1 + c/a + (c/a)^2}{1 + c/a} \cdot a/3$$ \hspace{1cm} (2.10)

$$z_b = \frac{1 + 2c/a}{1 + c/a} \cdot b/3$$ \hspace{1cm} (2.11)

In case $c = 0$ (triangle) $d = \sqrt{a^2 + b^2}$

In case $c = a$ (rectangle) $d = \sqrt{a^2 + b^2}$ i.e. d is the diagonal.

Figure 2.2 Diagonal d in trapezoid, triangle and rectangle.
At ultimate limit state the following condition is checked:

\[(\tau_p/f_{a,\alpha\beta,d})^2 + (\tau_M/f_{a,0,0,d})^2 \leq 1\]

(2.12)

No other design criteria’s are needed in the anchorage design, when \(\tau_p\) is calculated from (2.1) and \(\tau_M\) from (2.7). The loading directions \(\alpha\) and \(\beta\) are taken into account in each case in the term \(f_{a,\alpha\beta,d}\).

3. SHEAR TESTS

The tests reported in this paper have all been carried out at the Technical Research Centre of Finland (VTT). The selection of the material and performance of tests are in agreement with the procedure described in /CIB-W18 1985, paper 18-7-4/. The specimens and the load arrangement used in the shear tests are shown in Figure 3.1. The test specimen in shear are slightly different from what is specified in ISO 8969 but is preferred in Finland because it is simple to manufacture and easy to test. The experience in Finland is that the specimen seems to give reliable test values which are in good agreement with values determined according to the ISO standard.

The standard shear tests are carried out in parallel to the grain (\(\beta = 0^\circ\)). Shear loading test series where also \(\beta\)-direction is variable will be carried out with two different nail plates during summer 1992 by VTT. The results of the first series of these tests have been already reported in this paper (nailplate C, \(\beta = 30^\circ\)). The specimen used in the shear tests is shown in Figure 3.1.

![Figure 3.1](image)

Figure 3.1 a) Test specimen used in shear test
 b) Loading arrangement in shear test.
 c) Test specimen used in series C \(\beta = 30^\circ\).
All results of the anchorage failure in shear tests are presented from testing 11 different nail plates in altogether 220 specimens. The nail plates are called with symbols A - K because the test results are confidential. The type of nailplate is presented in table 3.1. The mean value of anchorage strength \(f_{a,00,m} \) and the constant \(c \) which have been determined from the tension tests are shown also in table 3.1. Presented mean values \(f_{a,00,m} \) and constants \(c \) have been made comparable by reducing the mean values of the tension test series to the compression strength 35 Mpa /CIB-W18, paper 18-7-5/:

\[
F_{test,m} = \bar{f}_{test} \sqrt{35 \text{ MPa} / \bar{f}_{c,test}}
\]

\[
\bar{f}_{c,test} = 0.095 \bar{\rho} (\bar{2} - \bar{w}/0.15)
\]

where \(\bar{\rho} \) is mean value of wood density of the test series

\(\bar{w} \) is mean value of moisture content of wood in the test series

Table 3.1 Types and anchorage strengths of the analyzed nail plates.

<table>
<thead>
<tr>
<th>Type of nailplate</th>
<th>Nailplate</th>
<th>(f_{a00m})</th>
<th>(c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Common" homogenous nailplate (orthogonal situation of nail lines)</td>
<td>A</td>
<td>3.81</td>
<td>0.396</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>3.04</td>
<td>0.39</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>3.52</td>
<td>0.375</td>
</tr>
<tr>
<td>"Common" nailplate with threaded nails</td>
<td>D</td>
<td>3.82</td>
<td>0.357</td>
</tr>
<tr>
<td>"Common" nonhomogenous nailplate (nonorthogonal situation of nail lines)</td>
<td>E</td>
<td>5.1</td>
<td>0.498</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>4.02</td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>3.57</td>
<td>0.549</td>
</tr>
<tr>
<td>Nailplate with 2 short nails punched from the same hole</td>
<td>H</td>
<td>3.18</td>
<td>0.373</td>
</tr>
<tr>
<td>Nailplate with 2 threaded nails punched from the same hole</td>
<td>I</td>
<td>3.34</td>
<td>0.323</td>
</tr>
<tr>
<td>Nailplate with 3 threaded nails punched from the same hole</td>
<td>J</td>
<td>4.14</td>
<td>0.451</td>
</tr>
<tr>
<td></td>
<td>K</td>
<td>4.17</td>
<td>0.511</td>
</tr>
</tbody>
</table>
4. TEST RESULTS AND COMPARISON WITH THEORIES

In the presented shear tests the density of wood was 360..410 kg/m³ and the moisture content of wood was 14.1..17.3 weight-%. All presented test results in tables 3.2 and 3.3 have been made comparable by reducing the mean values of test series to compression strength 35 MPa by equation (3.1). The force, anchorage stresses \(\tau_p \) have been calculated from equation (2.1), the elastic moment anchorage stresses \(\tau_M \) (el.) from equation (2.2) and the plastic moment anchorage stresses \(\tau_M \) (pl.) from equation (2.7) using these reduced comparable test results. The effective plate areas used in analysing are shown in figure 4.1. The moments acting in the centroid of the effective area have been calculated with eccentricities \(e (M_A = \frac{1}{2} F_{test} e) \).

The load carrying capacities of the shear test specimens have been calculated with the EC 5 method and with the plastic theory. These maximal loads \((F_{max}) \) have been calculated with the mean anchorage strength values. The geometrical values \(l_p, r_{max} \) and \(d \) have been calculated for the effective area (figure 4.1). The relations of the tests results and calculated capacities \((F_{test} / F_{max}) \) are shown in tables 4.1 and 4.2. If the agreement between theory and tests is good the relation is close to 1.0.

The test results and the comparisons with the theories are presented separately for the common plate shape \((b < a < 2b) \) and for the narrow and long nail plates \((a > 2.5b) \). With common plate shape there were contact between the timber members only with some specimens before the maximal force was exceeded (only with \(\alpha \)-angels 60° and 75°). With the narrow and long nail plates the eccentricity was so big that rotation of the specimen members became so large that a clear contact between timber members appeared before the maximal force was exceeded.

![Figure 4.1](image_url) The effective plate area and the plate forces in the shear tests.

Table 4.2 The test results of the long and narrow nail plates and the comparison with the theories.

<table>
<thead>
<tr>
<th>Plate</th>
<th>Test specimens</th>
<th>Test results</th>
<th>According to ECS</th>
<th>Plastic theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>30 72x225</td>
<td>20.24</td>
<td>3.47</td>
<td>26.95</td>
</tr>
<tr>
<td></td>
<td>45 72x225</td>
<td>51.31</td>
<td>3.43</td>
<td>23.43</td>
</tr>
<tr>
<td></td>
<td>60 72x225</td>
<td>50.98</td>
<td>3.35</td>
<td>22.03</td>
</tr>
<tr>
<td>B</td>
<td>30 78x196</td>
<td>38.69</td>
<td>2.84</td>
<td>18.92</td>
</tr>
<tr>
<td></td>
<td>45 78x196</td>
<td>48.84</td>
<td>3.35</td>
<td>16.69</td>
</tr>
<tr>
<td></td>
<td>60 78x196</td>
<td>37.92</td>
<td>2.85</td>
<td>13.77</td>
</tr>
<tr>
<td>C</td>
<td>30 72x200</td>
<td>32.53</td>
<td>2.99</td>
<td>23.94</td>
</tr>
<tr>
<td></td>
<td>45 72x200</td>
<td>41.89</td>
<td>3.18</td>
<td>21.05</td>
</tr>
<tr>
<td></td>
<td>60 72x200</td>
<td>40.03</td>
<td>2.99</td>
<td>19.87</td>
</tr>
<tr>
<td>D</td>
<td>30 77x191</td>
<td>40.73</td>
<td>4.72</td>
<td>32.96</td>
</tr>
<tr>
<td></td>
<td>45 77x191</td>
<td>58.31</td>
<td>4.35</td>
<td>27.51</td>
</tr>
<tr>
<td></td>
<td>60 77x191</td>
<td>57.54</td>
<td>4.22</td>
<td>24.32</td>
</tr>
<tr>
<td>E</td>
<td>30 70x190</td>
<td>44.12</td>
<td>3.29</td>
<td>23.31</td>
</tr>
<tr>
<td></td>
<td>45 70x190</td>
<td>43.44</td>
<td>3.18</td>
<td>21.83</td>
</tr>
<tr>
<td></td>
<td>60 70x190</td>
<td>28.43</td>
<td>2.3</td>
<td>13.86</td>
</tr>
<tr>
<td>F</td>
<td>30 60x203</td>
<td>32.63</td>
<td>2.83</td>
<td>19.99</td>
</tr>
<tr>
<td></td>
<td>45 60x203</td>
<td>30.79</td>
<td>2.54</td>
<td>19.18</td>
</tr>
<tr>
<td></td>
<td>60 60x203</td>
<td>23.36</td>
<td>2.38</td>
<td>18.99</td>
</tr>
<tr>
<td>G</td>
<td>30 63x204</td>
<td>48.71</td>
<td>4.29</td>
<td>20.88</td>
</tr>
<tr>
<td></td>
<td>45 63x204</td>
<td>43.52</td>
<td>3.63</td>
<td>15.01</td>
</tr>
<tr>
<td></td>
<td>60 60x200</td>
<td>50.25</td>
<td>4.76</td>
<td>20.8</td>
</tr>
<tr>
<td>H</td>
<td>30 60x200</td>
<td>37.45</td>
<td>3.35</td>
<td>16.72</td>
</tr>
</tbody>
</table>

In analysis of the shear tests compared with theories the mean values of anchorage strengths \(f_{a,0} \) were used. The mean values have been determined from the tension test results as Kangas has presented /CIB W18A 1992, Kangas & .../. In analysis of the shear tests with the EC 5 method the stress \(\tau_M \) was a critical factor in each case. In most cases equation (2.3) was the critical design term (\(\tau_M + \tau_p \)). The moment anchorage stress \(\tau_M \) alone was critical in some cases (equation (2.1)) and these cases have been shown in tables with symbol *).

With common plate shape the deformation at maximum test load was rather high with some specimens. The maximum forces up to slip limit of 7.5 mm and the comparisons of these forces with the theories have been shown in table 4.3. The test results of the long and narrow nail plates without contact between timber members have been shown in table 4.4. These forces have been extrapolated up to slip limit of 7.5 mm obtained from the initial curvature of load-slip curvature i.e. assuming no contact between the timber members.
Table 4.3
The test results of common plate shapes with maximal test loads of slip ≤ 7.5 mm and the comparison with the theories.

<table>
<thead>
<tr>
<th>Plate</th>
<th>Test specimens</th>
<th>Test results</th>
<th>According to EC5</th>
<th>Plastic theory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Test</td>
<td>t</td>
<td>F_{max}</td>
<td>F_{t}</td>
</tr>
<tr>
<td></td>
<td>alpha</td>
<td>b x a</td>
<td>n</td>
<td>F_{max}</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>72x158</td>
<td>5</td>
<td>32.23</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>119x158</td>
<td>3</td>
<td>42.05</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>119x158</td>
<td>3</td>
<td>43.71</td>
</tr>
<tr>
<td></td>
<td>165</td>
<td>119x158</td>
<td>3</td>
<td>36.01</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>104x147</td>
<td>5</td>
<td>33.73</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>124x147</td>
<td>3</td>
<td>40.97</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>124x147</td>
<td>3</td>
<td>37.61</td>
</tr>
<tr>
<td></td>
<td>165</td>
<td>124x147</td>
<td>5</td>
<td>29.8</td>
</tr>
<tr>
<td>C</td>
<td>0, b=30</td>
<td>84x164</td>
<td>5</td>
<td>36.43</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>124x164</td>
<td>3</td>
<td>40.44</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>100x100</td>
<td>3</td>
<td>22.25</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>100x160</td>
<td>3</td>
<td>44.89</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>100x100</td>
<td>3</td>
<td>21.32</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>121x160</td>
<td>5</td>
<td>41.44</td>
</tr>
<tr>
<td></td>
<td>165</td>
<td>121x160</td>
<td>3</td>
<td>47.42</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>127x152</td>
<td>5</td>
<td>55.56</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>127x152</td>
<td>3</td>
<td>53.7</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
<td>127x125</td>
<td>3</td>
<td>43.78</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>127x125</td>
<td>3</td>
<td>47.4</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>127x125</td>
<td>3</td>
<td>37.83</td>
</tr>
<tr>
<td>G</td>
<td>0</td>
<td>120x150</td>
<td>3</td>
<td>36.56</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>120x150</td>
<td>3</td>
<td>40.19</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>120x150</td>
<td>3</td>
<td>31.68</td>
</tr>
<tr>
<td>H</td>
<td>0</td>
<td>72x152</td>
<td>5</td>
<td>29.98</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>127x152</td>
<td>3</td>
<td>39.55</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>127x152</td>
<td>3</td>
<td>37.11</td>
</tr>
<tr>
<td>I</td>
<td>0</td>
<td>90x153</td>
<td>5</td>
<td>39.66</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>117x153</td>
<td>3</td>
<td>50.18</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>117x153</td>
<td>3</td>
<td>46.06</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>117x153</td>
<td>3</td>
<td>37.51</td>
</tr>
<tr>
<td></td>
<td>165</td>
<td>117x153</td>
<td>3</td>
<td>48.31</td>
</tr>
<tr>
<td>J</td>
<td>0</td>
<td>96x150</td>
<td>5</td>
<td>47.35</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>120x150</td>
<td>3</td>
<td>50.38</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>120x150</td>
<td>3</td>
<td>50.89</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>120x150</td>
<td>3</td>
<td>39.92</td>
</tr>
<tr>
<td></td>
<td>165</td>
<td>120x150</td>
<td>3</td>
<td>48.56</td>
</tr>
<tr>
<td>K</td>
<td>0</td>
<td>96x150</td>
<td>5</td>
<td>40.11</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>96x100</td>
<td>3</td>
<td>26.31</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>96x100</td>
<td>3</td>
<td>38.48</td>
</tr>
</tbody>
</table>

x) slip over 7.5 mm, $F_{max} = F(7.5 \text{ mm})$

<table>
<thead>
<tr>
<th>Mean value</th>
<th>Mean value</th>
<th>COV</th>
<th>COV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.76</td>
<td>1.09</td>
<td>15%</td>
<td>10%</td>
</tr>
</tbody>
</table>
Table 4.4 The test results of the long and narrow nail plates without timber contact (slip ≤ 7.5 mm) and the comparison with the theories.

<table>
<thead>
<tr>
<th>Plate</th>
<th>Test specimens</th>
<th>Plate theory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Test results</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a, b, x, a, n</td>
<td>Test results</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ftest kN, F N/mm², M (c.l.)</td>
</tr>
<tr>
<td>A</td>
<td>30 72x225 3</td>
<td>30.24, 1.47, 7.18</td>
</tr>
<tr>
<td></td>
<td>45 72x225 3</td>
<td>36.63, 2.45, 6.49</td>
</tr>
<tr>
<td></td>
<td>60 72x225 3</td>
<td>28.45, 1.87, 5.51</td>
</tr>
<tr>
<td>B</td>
<td>30 73x196 3</td>
<td>35.69, 2.84, 5.75</td>
</tr>
<tr>
<td></td>
<td>45 73x196 3</td>
<td>34.19, 2.67, 6.85</td>
</tr>
<tr>
<td></td>
<td>60 73x196 3</td>
<td>24.25, 1.82, 5.18</td>
</tr>
<tr>
<td>D</td>
<td>30 72x200 3</td>
<td>47.54, 3.76, 7.64</td>
</tr>
<tr>
<td></td>
<td>45 72x200 3</td>
<td>34.18, 2.59, 6.72</td>
</tr>
<tr>
<td></td>
<td>60 72x200 3</td>
<td>26.74, 2.01, 5.72</td>
</tr>
<tr>
<td>E</td>
<td>30 77x191 3</td>
<td>53.32, 4.14, 8.24</td>
</tr>
<tr>
<td></td>
<td>45 77x191 3</td>
<td>42.04, 3.14, 7.83</td>
</tr>
<tr>
<td></td>
<td>60 77x191 3</td>
<td>34.64, 2.54, 7.01</td>
</tr>
<tr>
<td>F</td>
<td>45 77x191 3</td>
<td>37.33, 2.78, 6.95</td>
</tr>
<tr>
<td></td>
<td>60 77x191 3</td>
<td>29.28, 2.14, 5.92</td>
</tr>
<tr>
<td>G</td>
<td>30 70x190 3</td>
<td>32.83, 2.83, 5.76</td>
</tr>
<tr>
<td></td>
<td>45 70x190 3</td>
<td>27.99, 2.31, 5.98</td>
</tr>
<tr>
<td></td>
<td>60 70x190 3</td>
<td>21.6, 1.75, 5.01</td>
</tr>
<tr>
<td>H</td>
<td>30 76x203 3</td>
<td>42.38, 3.15, 6.33</td>
</tr>
<tr>
<td></td>
<td>45 76x203 3</td>
<td>28.67, 2.03, 5.12</td>
</tr>
<tr>
<td></td>
<td>60 76x203 3</td>
<td>21.6, 1.75, 5.01</td>
</tr>
<tr>
<td>I</td>
<td>30 63x204 3</td>
<td>39.25, 3.46, 7.36</td>
</tr>
<tr>
<td></td>
<td>45 63x204 3</td>
<td>26.24, 2.19, 6.58</td>
</tr>
<tr>
<td></td>
<td>60 63x204 3</td>
<td>21.6, 1.75, 5.01</td>
</tr>
<tr>
<td>J</td>
<td>30 60x200 3</td>
<td>41.95, 3.97, 8.55</td>
</tr>
<tr>
<td></td>
<td>60 60x200 3</td>
<td>23.4, 2.09, 6.36</td>
</tr>
</tbody>
</table>

x) Timber contact, Ftest = Fex(7.5 mm) assuming no contact
xx) No contact and slip over 7.5 mm, Ftest = F(7.5 mm)

5. ANALYSIS OF THE COMPARISON RESULTS

The analyzing of all 220 anchorage broken shear test specimens with 11 different nail plates shows well the differences and the levels of the comparison with different theories and test results. We must remember however that the loading direction was in these tests parallel to the grain (β = 0°). The methods of EC 5 does not take into account the angle β at all if τₘ is the critical factor. According to the presented plastic theory both loading directions (α and β) are taken into account in each case in the anchorage capacity. If angle β is bigger than 0° this should be observed as lower capacity in the joint where a combination of stresses τₚ and τₘ occur simultaneously (according to the tension tests capacity of τₚ is strongly dependent on the loading direction of the grain direction).

The test results with the narrow and long nail plates are clearly much higher than the results of the different theories. The appeared contact and friction between timber members causes a part of this difference. But also in the tests where no contact appeared (common plate shape) both analyzed methods were generally conservative.
The τ_M design method given in EUROCODE 5 - draft 1992 seems to be generally very conservative with both equations (2.2) and (2.3). The mean value of relation $F_{\text{test}}/F_{\text{max}}$ was 1.33 (coefficient of variation 15 %) for the common plate shape and 2.15 (cov 14 %) for the long and narrow nail plates. Without timber contact this relation was 1.68 (cov 15 %) for the long and narrow nail plates. The closest values to the tests results are obtained when the effective area is rectangle (angels $\alpha = 0^\circ$ and $\alpha = 90^\circ$). The test series where loading was not parallel to the grain ($\beta = 30^\circ$) shows that this method may be also at the unsafe side because the loading directions are not taken into account in the τ_M failure criteria's.

Also in using the plastic theory the variation of the relation between the test results and the calculated capacities were rather high with different nail plates, but it was clearly lower than in the method of EC 5. The mean value of the relation $F_{\text{test}}/F_{\text{max}}$ was 1.16 (coefficient of variation 12 %) for the common plate shape and 1.57 (cov 14 %) for the long and narrow nail plates. Without timber contact this relation was 1.23 (cov 14 %) for the long and narrow nail plates. In some individual results the maximal test loads were lower than the theoretical capacities, but the differences in these cases were only some percents (lowest value 0.95). These results are acceptable because they are within the normal variation and the expected mean value is exactly the test results, if the theory describes accurately the mechanical behaviour of the joint.

The compared theories give almost the same results when loading direction $\alpha = 90^\circ$, because the coefficients of the design criteria of EC 5 (equations (2.2) and (2.3)) have been fixed for the this case. But the method of EC 5 gives the same result also for smaller α-angles where the capacities are clearly higher according to the test results. This α-angle is taken into account in the design criteria of the plastic theoretical method.

The design and calculations are clearly easier and simpler with the presented plastic theory than with the method of the proposal EUROCODE 5. The diagonal d is easy to determinate from equation (2.9) for the plastic design. Much more work is required, however in the determination of geometrical values for the elastic method (I_p and r_{max}).
6. PROPOSALS FOR DESIGN RULES OF EUROCODE 5

A following proposal for the design rules of the nail plate anchorage capacity for Eurocode 5 is given based on the investigation reported in this paper.

The anchorage stresses τ_F and τ_M are calculated from

$$\tau_F = \frac{F_A}{A_{ef}} \quad (6.1)$$
$$\tau_M = \frac{4 M_A}{(A_{ef} d)} \quad (6.2)$$

where the length d is a "diagonal" of the effective plate area. For quadrilateral and triangle joint-area it may be calculated from

$$d = 2 \sqrt{z_a^2 + z_b^2} \quad (6.3)$$

$$z_a = \frac{1 + c/a + (c/a)^2}{1 + c/a} \cdot \frac{a}{3} \quad (6.4)$$

$$z_b = \frac{1 + 2c/a}{1 + c/a} \cdot \frac{b}{3} \quad (6.5)$$

where the lengths a, b and c are shown in figure 6.1.

The following condition shall be satisfied

$$(\tau_F / f_{a,0\beta, d})^2 + (\tau_M / f_{a,0\beta, d})^2 \leq 1 \quad (6.6)$$

The method for the determination of anchorage strength $f_{a,0\beta, d}$ in equation (6.6) has been presented by Kangas /CIB W18A 1992, Kangas & .../ and is included in this proposal.

![Diagram](image)

Figure 6.1 Diagonal d in quadrilateral. For rectangle $c = a$ and for triangle $c = 0.$
7. CONCLUSIONS

The proposed plastic theoretical calculation method of anchorage strength of nail plates has a better correlation to the test results than the elastic calculation method with the design criteria's given in EUROCODE 5 - draft 1992. The plastic theory for design of the anchorage capacity is proposed for EC 5 method, because:

- The design criteria's τ_M and $\tau_F + \tau_M$ of Eurocode 5 (draft 1992) are in many cases very conservative, especially when $\beta = 0^\circ$ and α-angle is small. The proposed plastic theoretical method gives results which correspond much better with the test results on an acceptable safety level.

- The loading direction of the nail plate or of the grain direction are not taken into account in EC 5 method (draft 1992) when combination τ_F and τ_M or purely τ_M are the critical factors. In the proposed plastic design method these directions are always taken into account.

- There are three design criteria's that must be checked in the anchorage design of EC 5 draft. In proposed plastic design method only one design criteria is needed.

- The design and calculations are clearly easier and simpler with the proposed simplified plastic theory than with the method of EC 5 draft. The geometrical values of the elastic method (I_p and r_{max}) are more difficult to determine than the diagonal d for the plastic design.

8. REFERENCES

DESIGN VALUES OF ANCHORAGE STRENGTH OF NAIL PLATE JOINTS BY 2-CURVE
METHOD AND INTERPOLATION

by

J Kangas
Technical Research Centre of Finland (VTT)
A Kevärinniemi
Helsinki University of Technology
Finland

MEETING TWENTY - FIVE
ÅHUS
SWEDEN
AUGUST 1992
SUMMARY

In this paper a method is presented which makes possible a more effective utilization of the anchorage capacity of nail plates than in EUROCODE 5 draft 1991. The curve for design values in EUROCODE 5 is taken as a minimum one, the curve drawn through the standard test results when loaded in grain direction is taken as a maximum one and a method of interpolation between them is proposed. Test results to support the proposal are presented.

1 INTRODUCTION

In CIB-W18A meeting in Lisbon a proposal was introduced for design code for nail plate joints, which was taken into EUROCODE 5, [1] and [2]. In Finland we have another practice, which was introduced in CIB-W18A meeting in Beit Oren [3] and discussed more in Oxford [4].

This paper is an continuation to the paper CIB-W18A/24-7-3 presented in the Oxford meeting. It is based on the results of standard test series used for the approvals and on some new special test series with the combination of the direction angles α, β and γ.

2 SYMBOLS

- f_a is the anchorage strength ($F_{\text{max}}/A_{\text{eff}}$) in N/mm^2
- $f_{a\alpha\beta}$ is the anchorage strength in different angles α and β
- f_c is the calculated compressive strength of timber
- α is the angle between the force and the main direction of the nail plate
- β is the angle between the force and the grain direction
- γ is the angle between the main direction of the nail plate and the grain direction
3 STANDARD TESTS FOR ANCHORAGE STRENGTH

3.1 Test series

The anchorage strength $f_{a\alpha}$ has been tested in accordance with the testing standards of nail plate joints at the angles of $\alpha = 0^\circ$, 30°, 60° and 90°, when the load is in the grain direction ($\beta = 0^\circ$). Test specimens are shown in figure 1.

Tests for anchorage strength $f_{a\alpha\beta}$ (T-joint, figure 2) have been made at the angles

a) $\alpha = 0^\circ$; $\beta = 45^\circ$ and 90°

b) $\alpha = \beta = 90^\circ$

3.2 Test results

Anchorage strength has been calculated dividing maximum load F_{max} by effective area A_{eff}, which in the Finnish practice is the area of timber member covered by nail plate reduced by 10 mm from the end of the member in grain direction and by 5 mm from its edges as shown in figure 2 and figure 3.

The test results of two nail plates are given in figure 4 as an example of about 20 different nail plates tested in VTT, Technical Research Centre of Finland. Two curves have been drawn through them. The upper one belongs to the cases, where $\beta = 0^\circ$. Its equation has the formula

$$f_{a\alpha 0} = \begin{cases} f_{a00} + k_1^*\alpha, & \text{when } \alpha \leq \alpha_0 \\ f_{a00} + k_1^*\alpha_0 + k_2^*(\alpha - \alpha_0), & \text{when } \alpha_0 < \alpha \leq 90^\circ \end{cases}$$

(1)

where

k_1 is the slope of first line ($\Delta f_{a}/\Delta \alpha$)

k_2 is the slope of second line

α_0 is the intersectional point of the curve in two parts

The lower curve is going through the lowest values as in the proposal for Eurocode 5. Its equation has the formula
Figure 1. Standard test specimens loaded in grain direction.

a) $\alpha = 0^\circ$ and 90°
b) $0^\circ < \alpha < 90^\circ$; $\beta = 0^\circ$

Figure 2. Standard test specimens when load is across the grain, loading arrangements and effective anchorage area.

Figure 3. Effective anchorage area in joints loaded in tension
Figure 4. Through the standard test results of two nail plates drawn graphic representation of equations (1) and (2) and proposed interpolation between them.
\[f_a = (1 - c \cdot \sin \phi) \cdot f_{a0} \] \hspace{1cm} (2)

where
c is in most cases \(c = (f_{a00} - f_{a9090}) / f_{a00} \)
\(\phi \) is the maximum of the angles \(\alpha, \beta \) and \(\gamma \)

In Finland the design values are given by the equation of the type (1) also for the minimum curve, when \(\beta \geq 45^\circ \) and when \(0 < \beta < 45^\circ \) the values are interpolated linearly between those two curves.

4 TEST SERIES WITH DIFFERENT COMBINATIONS OF DIRECTION ANGLES

Test specimens and loading arrangements are shown in the figure 5. The timber material in the anchorage area was chosen so that different test series correspond to each other. Its properties in each test series are given in the table 1.

Table 1. Properties of timber members used in test series with different combinations of direction angles. \(f_c \) is the calculated strength in compression from the equation
\[f_c = 0.095 \times \text{DENS}_{0w} \times (2 - w/15) \text{ in N/mm}^2 \]

<table>
<thead>
<tr>
<th>Timber symbol</th>
<th>density [kg/m3]</th>
<th>moisture [%]</th>
<th>(f_c) [MPa]</th>
<th>(f_c/35)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>345</td>
<td>16.2</td>
<td>30.2</td>
<td>0.861</td>
</tr>
<tr>
<td>2</td>
<td>350</td>
<td>16.5</td>
<td>29.9</td>
<td>0.855</td>
</tr>
<tr>
<td>3</td>
<td>364</td>
<td>16.3</td>
<td>31.6</td>
<td>0.902</td>
</tr>
<tr>
<td>4</td>
<td>335</td>
<td>16.4</td>
<td>28.9</td>
<td>0.824</td>
</tr>
<tr>
<td>5</td>
<td>337</td>
<td>16.6</td>
<td>28.6</td>
<td>0.817</td>
</tr>
<tr>
<td>6</td>
<td>365</td>
<td>16.3</td>
<td>31.7</td>
<td>0.905</td>
</tr>
<tr>
<td>a)-c)</td>
<td>385</td>
<td>14.6</td>
<td>35.6</td>
<td>1.017</td>
</tr>
<tr>
<td>f)-j)</td>
<td>373</td>
<td>14.6</td>
<td>34.5</td>
<td>0.986</td>
</tr>
<tr>
<td>k)-o)</td>
<td>378</td>
<td>14.8</td>
<td>35.4</td>
<td>1.011</td>
</tr>
<tr>
<td>p)-t)</td>
<td>395</td>
<td>14.6</td>
<td>36.5</td>
<td>1.043</td>
</tr>
</tbody>
</table>

Test results are given in the table 2. They are also situated in figure 6 onto the patterns of maximum and minimum curves of anchorage strength with lines of interpolation.
Figure 5. Test specimens of some test series with different combinations of direction angles (see table 2)

a) Test series W1 b) Test series W2 c) Test series W3

d) Test series T6 e) Test series T2 f) Test series W6
Table 2. Test results of test series with different combinations of direction angles (5-6 test specimens in each) and estimated values based on the proposed method of interpolation and method of Eurocode 5. Test results $f_{a,corr}$ are corrected to $f_c = 35$ N/mm2 in square root like those of standard tests.

<table>
<thead>
<tr>
<th>specimens</th>
<th>α</th>
<th>β</th>
<th>γ</th>
<th>A_{ef} [mm2]</th>
<th>Test results</th>
<th>Estimation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F_{max} [kN]</td>
<td>$f_{a,corr}$</td>
<td>Proposal</td>
</tr>
<tr>
<td>W1,4 a-j</td>
<td>30</td>
<td>0</td>
<td>30</td>
<td>3580</td>
<td>31.06</td>
<td>4.34</td>
</tr>
<tr>
<td>W2 a-e</td>
<td>30</td>
<td>15</td>
<td>15</td>
<td>3618</td>
<td>28.19</td>
<td>3.87</td>
</tr>
<tr>
<td>W3 a-e</td>
<td>30</td>
<td>30</td>
<td>0</td>
<td>3729</td>
<td>20.25</td>
<td>2.70</td>
</tr>
<tr>
<td>W5 f-j</td>
<td>30</td>
<td>90</td>
<td>60</td>
<td>4134</td>
<td>16.54</td>
<td>2.01</td>
</tr>
<tr>
<td>W6 f-j</td>
<td>60</td>
<td>30</td>
<td>90</td>
<td>3729</td>
<td>19.08</td>
<td>2.58</td>
</tr>
<tr>
<td>W0A 1-6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3840</td>
<td>29.53</td>
<td>4.14</td>
</tr>
<tr>
<td>W5A 1-6</td>
<td>0</td>
<td>23</td>
<td>23</td>
<td>3840</td>
<td>27.96</td>
<td>3.92</td>
</tr>
<tr>
<td>W6B 1-6</td>
<td>45</td>
<td>23</td>
<td>67</td>
<td>3520</td>
<td>24.22</td>
<td>3.71</td>
</tr>
<tr>
<td>W7B 1-6</td>
<td>45</td>
<td>23</td>
<td>23</td>
<td>3520</td>
<td>22.53</td>
<td>3.45</td>
</tr>
<tr>
<td>F0A 1-6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4000</td>
<td>23</td>
<td>3.10</td>
</tr>
<tr>
<td>F5A 1-6</td>
<td>0</td>
<td>23</td>
<td>23</td>
<td>4000</td>
<td>21.8</td>
<td>2.94</td>
</tr>
<tr>
<td>F6B 1-6</td>
<td>45</td>
<td>23</td>
<td>67</td>
<td>3690</td>
<td>21.86</td>
<td>3.19</td>
</tr>
<tr>
<td>F7B 1-6</td>
<td>45</td>
<td>23</td>
<td>23</td>
<td>3690</td>
<td>21.77</td>
<td>3.18</td>
</tr>
<tr>
<td>T1,4 k-t</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5964</td>
<td>45.79</td>
<td>3.79</td>
</tr>
<tr>
<td>T2 k-o</td>
<td>0</td>
<td>15</td>
<td>15</td>
<td>5993</td>
<td>39.95</td>
<td>3.33</td>
</tr>
<tr>
<td>T5 p-q</td>
<td>0</td>
<td>90</td>
<td>90</td>
<td>6384</td>
<td>27.65</td>
<td>2.13</td>
</tr>
<tr>
<td>T6 p-d*</td>
<td>0</td>
<td>30</td>
<td>30</td>
<td>5904</td>
<td>37.21</td>
<td>3.14</td>
</tr>
</tbody>
</table>

*) shear tests

5 CONCLUSIONS

Test results of test series F6B and F7B; W3 and W6; W6B and W7B indicate, that angle γ has not an effect on the anchorage strength as expected in EUROCODE 5. Hence only angles α and β are needed when basic anchorage design values are calculated.

Test results in different combinations of direction angles indicate that also $f_{a \alpha \beta}$ values can be given reliably based on standard test series. Simplest method is to interpolate between the maximum curve, when $\beta = 0^\circ$ and the lowest test value $f_{a 90 90}$.
Figure 6. Test results of test series with different combinations of direction angles are situated on the pattern of maximum and minimum curves of anchorage strength.
Interpolated values are on the safe side, if f_{a9090} is taken as a minimum value for all cases when $\beta \geq 45^\circ$ and the values are interpolated linearly between $0^\circ < \beta < 45^\circ$. This interpolation will be done only on the area between formulae (1) and (2) above.

6 PROPOSAL FOR DESIGN RULES IN EUROCODE 5

The anchorage design strength $f_{a\alpha\beta d}$ in nail plate joints is calculated from the equations (3) - (6)

$$f_{a\alpha\beta d} = \begin{cases} f_{a00d} & \text{, when } \beta = 0^\circ \\ f_{a00d} - (f_{a00d} - f_{a9090d}) \times \beta/45, & \text{when } 0^\circ < \beta < 45^\circ \\ (1 - c \times \sin(\max(\alpha, \beta))) \times f_{a00d} & \text{, when } 0^\circ < \beta < 90^\circ. \end{cases} \quad (4)$$

When $0^\circ < \beta < 45^\circ$, $f_{a\alpha\beta d}$ is the maximum of the interpolation equation (4) and the equation (5), which is for minimum values.

The anchorage design strength in grain direction ($f_{a\alpha0d}$) is calculated from

$$f_{a\alpha0d} = \begin{cases} f_{a00d} + k_1 \times \alpha & \text{, when } \alpha \leq \alpha_0 \\ f_{a00d} + k_1 \times \alpha_0 + k_2 \times (\alpha - \alpha_0) & \text{, when } \alpha_0 < \alpha \leq 90^\circ. \end{cases} \quad (6)$$

$f_{a\alpha\beta d}$ is the anchorage design capacity in different combinations of angles α and β in N/mm²

α is the angle between the force and main direction of nail plate

β is the angle between the force and grain direction

α_0 is the angle in the intersectional point of the maximum curve in two parts

k_1, k_2 are the slopes of the maximum curve

c is the coefficient of the minimum curve, which is calculated from the equation $c = (f_{a00} - f_{a9090})/f_{a00}$

f_{a9090} is the lowest value got by the standard tests.
REFERENCES

INTERNATIONAL COUNCIL FOR BUILDING RESEARCH STUDIES AND DOCUMENTATION

WORKING COMMISSION W18 - TIMBER STRUCTURES

STRUCTURAL ASSESSMENT OF TIMBER FRAMED BUILDING SYSTEMS

by

U Korin
National Building Research Institute
Israel

MEETING TWENTY - FIVE
ÅHUS
SWEDEN
AUGUST 1992
STRUCTURAL ASSESSMENT OF TIMBER FRAMED BUILDING SYSTEMS

by U. Korin
National Building Research Institute, Israel

1. Scope

The dominant methods for home construction in Israel are based on reinforced concrete structures and block masonry. These methods are locally referred to as "conventional construction".

Socio-economical changes, caused in the last few years, an increase of the relative volume of low-rise home buildings. Timber framed houses, which dominate the solution for low-rise homes the world over, gradually began to penetrate the home market.

Today, timber homes account for about 10 percent of the low-rise home building (about 25 percent of the total volume of home construction). In terms of last year, we may speak of about 1500 home units of timber framed houses.

2. Assembly of specifications for timber framed construction

Conventional construction in Israel is backed by a highly developed standardization system, providing the technical, and even the legal support for the building process.

Standardization support was not available for the timber framed houses. Apart from some specifications prepared earlier for timber roofs, there were no local standards for timber building, and the municipal government found itself puzzled every time a building permit for a timber house was applied for.

Acute home shortage, in the last two years, became the lever for the search for fast building systems, among them timber framed houses.

The Israeli Government, being the main entrepreneur for the enormous national building project, requested the National Building Research Institute to prepare adequate documentation which would enable to assess the various speedy construction methods, and to assure that only reliable home building solutions would be procured.

A team, comprising of experts on the various types of construction, has been assembled, the author being a member of that team, responsible for all the aspects of timber in the "fast building methods" investigation.

(1) Head, Testing Division, National Building Research Institute, Technion, Haifa 32000, Israel.
The first stage of the work of the team was to prepare a preliminary document which would be the reference for the assessment work. The document entitled: "Concised Performance Specifications for Permanent Housing from Lightweight Construction"(2). The performance specifications for "Low-Rise Timber Structures" contain instructions about structural safety and ultimate limit state, resistance to fire, users health and safety, serviceability, internal climate, acoustics, lighting, spatial characterization, water tightness and prevention of moisture problems, long term durability and maintenance.

A very short summary of these specifications were provided to the interested parties. This summary is presented in Appendix A.

At a second stage, the Israeli Standards Institution appointed a standardization committee to prepare permanent specifications for "Low-Rise Permanent Dwellings"(3). The team, appointed by the National Building Research Institute, was very active in applying the experience gained in the preparation of the concised specifications, and its use in the assessment of construction methods to the permanent specifications.

3. Assessment of Timber Structures

The assessment of a Timber Framed House demands a comprehensive investigation of the structure, its structural design, the materials and components employed, the joints and the assembly process, details about the sheathing, the cladding and other parts of the structure. A full list of the structural details required by the assessment team is given in Appendix B.

The assessment process is an interactive system. The applicants are advised to introduce corrections of the design and detailing when these are required. The final report contains a full description of the approved building system, a set of the final principal drawings, of the structure, details of the fabrication and erection stages and description of the quality assurance and quality control relating to all the stages of the design, fabrication and erection stages.

4. The Building Systems

About 25 different timber framed houses were investigated. The assessed systems formed a very wide spectrum of construction methods: platform construction, balloon construction, cell construction; building from sticks, prefabricated panel assembly, three-dimensional module staking; marriage between timber and steel; marriage between timber and aluminum; roofs of different types; various types of sheathing means; various types of sidings.
Some of the methods were highly industrialized, but some of them were undeterred for quite primitive site assembly work.

5. Conclusions

The enormous assessment process of building systems enable to provide the country with safe, functional and durable timber framed houses, in spite of the lack of previous experience in that type of construction.

Some of the newly built timber framed houses very successfully withstood the extremely unusual heavy weather conditions the Middle East experienced last winter. The houses were found safe and provided the occupants with good living space.

References
1. The Standards Institution of Israel - Specification No. 270 - "Trussed rafter timber roofs with lightweight cover" (in Hebrew).

CONCISE PERFORMANCE SPECIFICATIONS FOR PERMANENT HOUSING FROM LIGHTWEIGHT CONSTRUCTION

1. GENERAL

A building system will be based on the use of materials, components and construction details which comply with all the performance specifications outlined herewith. Building systems which were investigated at the National Building Research Institute after 1975, and concluded to be suitable for use in Israel, will not require renewed testing. Other systems will require prototype investigation.

In any case, the responsibility for the actual construction lies with the contractor, and the issued certificate does not exempt him from responsibility for detailed planning, design and construction of the whole building and its parts, so that all the requirements are fulfilled.

In addition to all the above-mentioned items, the buildings will comply with all the Israeli building regulations and laws, the Israeli standards relevant to the system, the Israel Institute of Standards codes, the performance specifications issued by the Ministry of Housing for residential buildings, and the relevant requirements in the "General Specification for Building Works".

The entrepreneur will provide the National Building Research Institute with a detailed technical file which will include:

(a) Technical specification describing the building system, the process of construction during all the stages, details of all the materials, their specifications and treatments provided to them, description and details of all the components, joints, and connections between them, details of finish, sealing and insulation of all types.

(b) Typical static scheme of typical buildings which will clarify the mode of force transfer of vertical and horizontal loads.
(c) Sample calculations of typical load bearing components under the action of vertical and horizontal loads.

(d) Horizontal cross-section through all the typical elements of the building, including: cross-section through external wall with a door and a window with shutter; cross-section through internal partition with a door; cross-section through connections of internal walls and partitions to the external walls, and of the internal walls and partitions to each other; cross-section through concave and convex external corner; cross-section through dividing partition between apartments and its connection to the external walls;

(e) Vertical cross-section through all the typical elements of the building including:
- cross-section through external wall with window, showing the mode of connection of the walls and roof, the floor and intermediate ceiling;
- cross-section through internal partition with and without a door, including all the above-mentioned details;
- typical cross-section through lower ceiling, intermediate ceiling and roof, and all their layers.
- typical cross-section as above in washrooms in bottom story and intermediate story.

(f) Drawings detailing the mode of transfer and connection of the electrical pipes, telephone, water, drainage, sewage, and sanitary equipment (toilets, sinks, bathtubs, faucets, etc.)

(g) Details of the procedure of quality assurance in the plant and on the site.

All the drawings in items (e),(f),(g) above should be at a proper scale to fully describe the details of joints, connections, sealing, finish, overlaps, insulation, etc. Each material and element should have a clear identity as indicated in item (a) above.

The performance specifications required for every building system are in the following areas:
- Structural safety - ultimate limit state and serviceability
- Resistance to fire
- User Health and safety
- Serviceability
- Internal climate
- Acoustics
- Lighting
- Spatial characteristics
- Water tightness and prevention of moisture problems
- Durability and maintenance.

The Effective Design Life Expectancy of the whole building should be 50 years at least.

The following section provides a concise description of the requirements for the different types of structures.
APPENDIX B

LIST OF INVESTIGATED STRUCTURAL DETAILS

1. Principal layout of the investigated home.
2. Structural details of the foundation system.
3. Plan of the walls and the partitions.
4. Structural detail of the roof.
5. A complete static scheme of the house and its main load-bearing components.
6. Various assembly details of the house (connectors, anchors, marriage walls, separation walls, sheathing, siding, scaling, waterproofing, openings, full details of the wet parts of the house, thermal and acoustical insulation, vapour barriers and any other special details requiring attention).
7. A list of the various materials used in the construction of the house.
8. A full list of the mechanical connectors and fasteners used in the construction of the house.
INTERNATIONAL COUNCIL FOR BUILDING RESEARCH STUDIES AND DOCUMENTATION
WORKING COMMISSION W18 - TIMBER STRUCTURES

MECHANICAL PROPERTIES OF WOOD-FRAMED SHEAR WALLS
SUBJECTED TO REVERSED CYCLIC LATERAL LOADING

by

M Yasumura
Building Research Institute
Japan

MEETING TWENTY - FIVE
ÅHUS
SWEDEN
AUGUST 1992
MECHANICAL PROPERTIES OF WOOD-FRAMED SHEAR WALLS
SUBJECTED TO REVERSED CYCLIC LATERAL LOADING

by Motoi YASUMURA
BUILDING RESEARCH INSTITUTE, JAPAN

ABSTRACT

Wood-framed shear walls sheathed with the various types of sheet materials were subjected to the reversed cyclic lateral loading, and the effects of the cyclic loading on the mechanical properties of shear walls were studied. It was found that the reversed cyclic loading affected more on the shear strength and ductility of the shear walls sheathed with the inorganic materials such as the gypsum board, cemented wooden chip board and asbestos silica calcium board than those sheathed with the wood-based panels such as the plywood and oriented strand board. According to the experimental results, the wood-framed shear walls were classified into three groups regarding the aseismic design of wood-framed structures.

INTRODUCTION

In the draft version of Eurocode 8[1], the timber structures are classified into three types, in which the wood-framed shear walls are classified in the medium dissipative structures (Type C). Cecotti and Larsen proposed the behavior factor "q" of 2.5 for the medium-dissipative structures[2]. YASUMURA conducted the time-history earthquake response analysis on the wood framed shear walls and proved that the shear walls which kept the maximum shear deformability of 1/40 rad. gave the behavior factor of 3.0[3].

In the aseismic design of wood-framed structures, the effects of the mechanical properties of sheathing, the thickness of sheet material and nail size on the seismic behavior of shear walls should be considered as the deformability of shear walls depends much on the ductility of the nail joints connecting the sheet materials to the wooden frames.

The purpose of this study is to supply the experimental data on the mechanical properties of wood-framed shear walls subjected to the reversed cyclic lateral loading to evaluate and classify the seismic behavior of shear walls having the various types of sheathing materials.
REVERSED CYCLIC LOADING OF SHEAR WALLS

Specimens and test methods

Wood-framed shear walls of 1.82 meters in length and 2.44 meters in height were subjected to the monotonously increasing lateral loads and the reversed cyclic lateral loads. The tested walls consisted of the nominal 2-by-4 inches studs and plates of Spruce-Pine-Fir and the sheet materials as shown in Table 1. ASTM E72 using the tie rods was applied to the test method. Two specimens of each wall panel were subjected to the reversed cyclic lateral loads as shown in Fig.1, and two others were subjected to the monotonously increasing lateral loads for the comparison.

Influence of reversed cyclic loading

Table 2 summarizes the experimental results, and Figs.2 and 3 compare respectively the maximum load and the maximum shear deformation in the reversed cyclic test with those in the monotonously loading test. Here, the shear deformation is defined by the angle subtracting the rotational angle from the drift angle of wall panel, and the maximum shear deformation represents the shear deformation at the maximum load.

Fig.2 shows that the maximum loads in the reversed cyclic test were 9 to 33% smaller than those in the monotonously loading test. Fig.3 shows that there were few differences between the maximum deformation in the reversed cyclic test and that in the monotonously loading test regarding the specimens sheathed with the plywood and oriented strand board, while the maximum deformation decreased to 35 to 57% due to the reversed cyclic loading regarding the specimens sheathed with the cemented wooden chip board, gypsum board and asbestos silica calcium board. These facts indicate that the reversed cyclic loading affects little on the shear strength and ductility of the shear walls sheathed with the plywood and oriented strand board, while it affects much on the ductility of the shear walls sheathed with the inorganic materials such as the gypsum board, asbestos silica calcium board, etc.

Fig.4 shows the skeleton curves of the load-deformation relationships in the reversed cyclic test, and Fig.5 shows the ratio of the shear force in the reversed cyclic test to that in the monotonously loading test. These figures demonstrate the similar tendency mentioned above, and indicate that the special consideration should be taken in the aseismic design of wood-framed structures consisting of brittle sheathings.
Table 1. Description of specimens (Unit: mm)

<table>
<thead>
<tr>
<th>SPECIMENS</th>
<th>SHEATHING MATERIALS</th>
<th>NAIL DIAMETER</th>
<th>LENGTH</th>
<th>SPACING</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLY</td>
<td>D-fir plywood 910x2440 #9.5</td>
<td>2.87</td>
<td>50.8</td>
<td>100</td>
</tr>
<tr>
<td>OSB</td>
<td>Oriented strand board 910x2440 #9</td>
<td>2.87</td>
<td>50.8</td>
<td>100</td>
</tr>
<tr>
<td>WCB</td>
<td>Cemented wooden chip board 910x2440 #18</td>
<td>3.33</td>
<td>63.5</td>
<td>100</td>
</tr>
<tr>
<td>GYP</td>
<td>Gypsum board 910x2440 #12</td>
<td>2.34</td>
<td>38.1</td>
<td>100</td>
</tr>
<tr>
<td>ASC</td>
<td>Asbestos silca calcium board 910x1820 #8</td>
<td>2.87</td>
<td>50.8</td>
<td>100</td>
</tr>
</tbody>
</table>

* Tested wall panel had 1,820 mm in length and 2,440 mm in height
Fig. 2 Comparison of the maximum load in the reversed cyclic test with that in the monotonously loading test.

Fig. 3 Comparison of the maximum shear deformation in the reversed cyclic test with that in the monotonously loading test.
Fig. 4 Skeleton curves of load-shear deformation relationships in the reversed cyclic test.

Fig. 5 Ratio of the shear load in the reversed cyclic test to that in the monotonously loading test.
YIELD LOAD OF SHEAR WALLS

The yield load of shear walls is calculated from the following formula[4].

\[
Q = q \cdot s \cdot \frac{a}{L} \quad \text{(1)}
\]

where, \(Q \): Yield load of shear wall
\(L \): Length of shear wall
\(a \): Length of unit panel
\(q \): Yield load of nail joint
\(s \): Coefficient determined by the number of nails

\[
s = \min\left(\frac{a}{m-1}, \frac{a}{(n_1-1)h_1}, \frac{a}{(n_2-1)h_2} \right)
\]

\(h_1, h_2 \): Height of unit panel
\(m, n_1 \): Number of nails around the perimeter of unit panel.

The yield load of nail joint was calculated from the following formulas.

\[
q = C \cdot F_{e1} \cdot d \cdot t \quad \text{(2)}
\]

\[
C = \min\left\{ \frac{1}{\sqrt{\frac{2\beta(1+\beta)}{(2+\beta)^2} + \frac{2\beta \gamma (d/t)^2}{3(2+\beta)^2} - \frac{\beta}{2+\beta}}}, \frac{d}{\sqrt{\frac{2\beta \gamma}{3(1+\beta)}}} \right\}
\]

where, \(q \): Yield load of nail joint
\(t \): Thickness of sheet material
\(d \): Diameter of nail
\(\beta \): Ratio of the embedding strength of main member to that of sheet material\((F_{e2}/F_{e1}) \)
\(\gamma \): Ratio of the yield point of nail to that of the embedding strength of sheet material\((F_y/F_{e1}) \)
\(F_y \): Yield point of nail
\(F_{e1}, F_{e2} \): Embedding strength of sheet material and main member
Fig. 6 Example of the unit panel and geometry of nails.
Table 2. Outline of the experimental results

<table>
<thead>
<tr>
<th>SPECIMENS LOADING</th>
<th>PI/300(2)</th>
<th>PI/150</th>
<th>PI/60</th>
<th>PI/40</th>
<th>Py(3)</th>
<th>δy(4)</th>
<th>Pmax</th>
<th>δmax(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(kN)</td>
<td>(kN)</td>
<td>(kN)</td>
<td>(kN)</td>
<td>(kN)</td>
<td>(kN x10^3 rad.)</td>
<td>(kN x10^3 rad.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLY</td>
<td>Monotonic</td>
<td>11.9</td>
<td>15.8</td>
<td>21.0</td>
<td>21.7</td>
<td>12.3</td>
<td>3.41</td>
<td>22.4</td>
</tr>
<tr>
<td></td>
<td>Cyclic</td>
<td>10.5</td>
<td>14.0</td>
<td>18.7</td>
<td>18.6</td>
<td>(11.9)(6)</td>
<td>4.27</td>
<td>20.3</td>
</tr>
<tr>
<td>OSB</td>
<td>Monotonic</td>
<td>12.1</td>
<td>14.0</td>
<td>19.6</td>
<td>20.2</td>
<td>10.6</td>
<td>2.05</td>
<td>20.4</td>
</tr>
<tr>
<td></td>
<td>Cyclic</td>
<td>10.8</td>
<td>13.3</td>
<td>16.7</td>
<td>17.6</td>
<td>(11.1)</td>
<td>2.80</td>
<td>18.3</td>
</tr>
<tr>
<td>WCB</td>
<td>Monotonic</td>
<td>17.5</td>
<td>22.2</td>
<td>27.7</td>
<td>29.2</td>
<td>18.7</td>
<td>3.91</td>
<td>30.0</td>
</tr>
<tr>
<td></td>
<td>Cyclic</td>
<td>18.1</td>
<td>22.0</td>
<td>24.1</td>
<td>20.5</td>
<td>(15.5)</td>
<td>3.84</td>
<td>25.8</td>
</tr>
<tr>
<td>GYP</td>
<td>Monotonic</td>
<td>5.4</td>
<td>6.5</td>
<td>7.7</td>
<td>8.1</td>
<td>4.1</td>
<td>1.42</td>
<td>8.1</td>
</tr>
<tr>
<td></td>
<td>Cyclic</td>
<td>5.2</td>
<td>5.8</td>
<td>5.6</td>
<td>5.0</td>
<td>(4.1)</td>
<td>1.53</td>
<td>6.3</td>
</tr>
<tr>
<td>ASC</td>
<td>Monotonic</td>
<td>12.2</td>
<td>14.9</td>
<td>15.0</td>
<td>7.9</td>
<td>13.5</td>
<td>4.87</td>
<td>16.1</td>
</tr>
<tr>
<td></td>
<td>Cyclic</td>
<td>12.4</td>
<td>13.0</td>
<td>6.7</td>
<td>5.1</td>
<td>(11.7)</td>
<td>6.77</td>
<td>13.5</td>
</tr>
</tbody>
</table>

(1) Length of specimen of 1,820mm and the average value of two specimens
(2) Load corresponding to 1/300 of the shear deformation angle
(3) Calculated value from the formula(1)
(4) Shear deformation corresponding to the yield load (Py)
(5) Shear deformation corresponding to the maximum load (Pmax)
(6) Calculated from the lateral resistance of nail due to ASTM D1037

Table 3. Embedding strength and calculated yield load of nail joint

<table>
<thead>
<tr>
<th>Materials</th>
<th>Embedding strength (MPa)</th>
<th>Yield load (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-P-F</td>
<td>34</td>
<td>---</td>
</tr>
<tr>
<td>PLY</td>
<td>61 (56)*</td>
<td>685 (860)</td>
</tr>
<tr>
<td>OSB</td>
<td>44 (48)</td>
<td>593 (816)</td>
</tr>
<tr>
<td>WCB</td>
<td>62 (33)</td>
<td>1048 (861)</td>
</tr>
<tr>
<td>GYP</td>
<td>10 (10)</td>
<td>229 (229)</td>
</tr>
<tr>
<td>ASC</td>
<td>85 (60)</td>
<td>754 (850)</td>
</tr>
</tbody>
</table>

* The parenthesized values are the lateral resistance of nail due to ASTM D1037 with the end distance of 4d and the calculated yield load of nail joints from the lateral resistance.
The yield point of nail (Fy) was assumed to be 663MPa for the nail having the diameter of 2.34 and 2.87mm and 808MPa for the nail having the diameter of 3.33mm from the tensile test of nails, and the embedding strength of S-P-F and sheet materials were obtained from the embedding test. Table 3 shows the embedding strength of S-P-F and sheet materials, and the calculated yield load of nail joints. The embedding strength obtained from the embedding test showed the similar values to those obtained from the lateral resistance due to ASTM D1037 regarding the plywood, oriented strand board and gypsum board, however the lateral resistance due to ASTM D1037 of the cemented wooden chip board and asbestos silica calcium board were 30 to 47% smaller than the embedding strength due to the embedding test.

The ratio of the maximum load to the calculated yield load (Pmax/Py) in the monotonously loading test of the specimens sheathed with the plywood, oriented strand board and gypsum board were approximately 1.8 to 2.0, and the ratio of those having the sheathing of cemented wooden chip board and asbestos silica calcium board were 1.80 and 1.19 respectively. The ratio (Pmax/Py) of the specimens sheathed with the cemented wooden chip board and asbestos silica calcium board was respectively 1.95 and 1.38 when the lateral resistance due to ASTM D1037 was applied instead of the embedding strength. This indicates that the yield load of shear walls calculated from the embedding strength of sheet materials shows relatively higher values in some brittle materials. The ratio (Pmax/Py) in the reversed cyclic test of the specimens sheathed with the plywood and oriented strand board was respectively 1.65 and 1.73, that of the specimens sheathed with the cemented wooden chip board and gypsum board was respectively 1.38 and 1.54 and the ratio of that having the sheathing of asbestos silica calcium board was 1.0. The ratio (Pmax/Py) calculated from the lateral resistance due to ASTM D1037 of the specimens sheathed with the cemented wooden chip board and asbestos silica calcium board was respectively 1.66 and 1.15.

The ductility factor (δmax/δy) in the reversed cyclic test of the specimens sheathed with the plywood and oriented strand board was respectively 5.9 and 8.7, that of the specimens sheathed with the cemented wooden chip board and gypsum board was respectively 4.3 and 5.8. The ductility factor of the specimen sheathed with the asbestos silica calcium board was 1.0. The ductility factor obtained from the lateral resistance due to ASTM D1037 of the specimens sheathed with the cemented wooden chip board and asbestos silica calcium board was respectively 6.8 and 3.2.

Equivalent viscous damping

Fig.7 shows the equivalent viscous damping obtained from the load-
Fig. 7 Equivalent viscous damping of each specimens.

Fig. 8 Ratio of the load for the shear deformation of 1/40 to the calculated yield load of shear wall.
deformation relationships of each specimen. The equivalent viscous damping varied from approximately 15 to 20% and kept almost constant regardless of the types of sheathings after the reversed cyclic loading of 1/100.

CLASSIFICATION OF SHEAR WALLS

Fig. 8 shows the ratio of the load for the shear deformation angle of 1/40 to the calculated yield load of shear walls. The ratio \(P(1/40)/P_y \) in the reversed cyclic test of the specimens sheathed with the plywood and oriented strand board was respectively 1.59 and 1.66 and the ratio of those having the sheathings of cemented wooden chip board and gypsum board was respectively 1.10 and 1.22. The ratio \(P(1/40)/P_y \) calculated from the lateral resistance due to ASTM D1037 of the specimen sheathed with the cemented wooden chip board was 1.33. Regarding the specimen sheathed with the asbestos silica calcium board, the load decreased rapidly after the reversed cyclic loading of 1/100.

Summarizing the experimental results, the wood-framed shear walls shall be classified into the following groups.

Group A: Shear walls of which energy dissipation is not expected.
Ex: sheath walls sheathed with the inorganic materials such as the asbestos silica calcium board

Group B: Shear walls of which energy dissipation is expected but the reduction of the shear strength due to the reversed cyclic loading is remarkable.
Ex: sheath walls sheathed with the cemented wooden chip board and gypsum board.

Group C: Shear walls which show high energy dissipation.
Ex: sheath walls sheathed with the wood-based panels such as the plywood, oriented strand board, etc.

If we require the maximum shear deformation of 1/40 to the wood framed shear walls classified in the medium dissipative structure (Type C), the following ultimate shear force may be taken in case of the aseismic design.

Group B: \(Pu = 1.1 \sim 1.3 \, P_y \)

Group C: \(Pu = 1.6 \sim 1.7 \, P_y \)

If the structure includes the shear walls classified in Group A, the strength of the shear walls concerned shall not be included in the ultimate
lateral strength of the structure.

CONCLUSION

Summarizing the results of this study, the following conclusions are lead.

(1) The maximum loads in the reversed cyclic lateral loading test of shear walls showed 9 to 33% smaller value than those in the monotonously loading test.

(2) There were few differences between the maximum deformation in the reversed cyclic test and that in the monotonously loading test regarding the specimens sheathed with the plywood and oriented strand board, while the maximum deformation decreased to 35 to 57% due to the reversed cyclic loading regarding the specimens sheathed with the cemented wooden chip board, gypsum board and asbestos silica calcium board.

(3) The embedding strength obtained from the embedding test showed the similar values to that obtained from the lateral resistance due to ASTM D1037 regarding the plywood, oriented strand board and gypsum board, however the lateral resistance due to ASTM D1037 of cemented wooden chip board and asbestos silica calcium board showed 30 to 47% smaller value than the embedding strength due to the embedding test.

(4) The ratio (Pmax/Py) in the reversed cyclic test of the specimens sheathed with the plywood and oriented strand board was respectively 1.65 and 1.73, that of the specimens sheathed with the cemented wooden chip board and gypsum board was respectively 1.38 and 1.54, and the ratio of that having the sheathing of asbestos silica calcium board was 1.0. The ratio (Pmax/Py) calculated from the lateral resistance due to ASTM D1037 of the specimens sheathed with the cemented wooden chip board and asbestos silica calcium board was respectively 1.66 and 1.15.

(5) The ductility factor (δmax/δy) in the reversed cyclic test of the specimens sheathed with the plywood and oriented strand board was respectively 5.9 and 8.7 and that of the specimens sheathed with the cemented wooden chip board and gypsum board was respectively 4.3 and 5.6. The ductility factor of the specimen sheathed with the asbestos silica calcium board was 1.0. The ductility factor obtained from the lateral resistance due to ASTM D1037 of the specimens sheathed with the cemented wooden chip board and asbestos silica calcium board was respectively 6.8 and 3.2.

(6) The equivalent viscous damping obtained from the load-deformation
relationships varied from 15 to 20% and kept almost constant regardless of the types of sheathings after the reversed cyclic loading of 1/100.

(7) The ratio \((P(1/40)/Py)\) in the reversed cyclic test of the specimens sheathed with the plywood and oriented strand board was respectively 1.59 and 1.66 and that of the specimens sheathed with the cemented wooden chip board and gypsum board was respectively 1.10 and 1.22. The ratio \((P(1/40)/Py)\) calculated from the lateral resistance due to ASTM D1037 of the specimen sheathed with the cemented wooden chip board was 1.33.

(8) The wood-framed shear walls can be classified into three groups according to the strength and ductility. The ultimate shear strength of the shear walls classified in Groups B and C shall be respectively 1.1 to 1.3 and 1.6 to 1.7, and the shear strength of shear walls classified in Group A shall not be included in the ultimate lateral strength of the structures classified in the medium-dissipative structure (Type C).

ACKNOWLEDGMENTS

The author is grateful to Mr. H. SUZUKI of B.R.I. and Mr. I. FUKUDA of JAPAN TWO-BY-FOUR HOME BUILDERS ASSOCIATION for their assistance of conducting the racking test of shear walls.

LITERATURE

4. M. Yasumura and T. Murata, "DESIGN PROCEDURES FOR WOOD-FRAMED SHEAR WALLS", Pre-print for IUFRO-S5.02, August 1992
5. I. Fukuda and M. Yasumura, "Influence of Reversed Cyclic Loading on Shear Strength of Wood-framed Shear walls", Summary of Annual Meeting of A.I.J., August 1992
INTERNATIONAL COUNCIL FOR BUILDING RESEARCH STUDIES AND DOCUMENTATION

WORKING COMMISSION W18 - TIMBER STRUCTURES

THE EFFECT OF DENSITY ON CHARRING AND LOSS OF BENDING STRENGTH IN FIRE

by

J König
Swedish Institute for Wood Technology Research
Sweden

MEETING TWENTY - FIVE
ÅHUS
SWEDEN
AUGUST 1992
THE EFFECT OF DENSITY ON CHARRING AND LOSS OF BENDING STRENGTH IN FIRE

by

J König

Swedish Institute for Wood Technology Research

SUMMARY

The influence of density on charring of timber exposed to standard fire is studied, evaluating test results by Norén. It was found that both the effective and measured charring rates vary about 10% in the density interval between 290 and 420 kg/m², representing characteristic densities of strength classes C14 to C40 in prEN 338, Draft 1991. It was found that there was no influence of density on the loss of bending strength.

INTRODUCTION

In the CIB-code /1/ the charring rate has been given as being inversely proportional to density. According to this the influence of density on charring is considerably greater than reported by Schaffer /2/ for some North American species. In a recent study by White et. al. /3/ the influence of some parameters, among them density and moisture content are studied. For European spruce the influence of density is reported to be in the same order of magnitude as given in /2/, but the charring rate itself is overestimated in comparison to values which are accepted in Europe.

FIRE TESTS BY NORÉN

In an experimental investigation, the effect of knots on the loss of load capacity of light wooden members exposed to fire was determined by Norén /4/. In the tests light members of Swedish spruce of the dimension 45x120 mm² were exposed to standard fire according to ISO 834 on four sides in a small furnace. Test series of specimens with knots and of specimens fairly free from knots were compared. Using a method of matching, load capacity at normal temperature of each specimen was predicted. The load levels during the fire tests, denoted as load ratios, were one third and one sixth respectively of the ultimate load at normal temperature. The results obtained showed that the failure times were fairly independent of the existence of knots, with a slight tendency for timber with knots to exhibit longer failure times. Since this influence is very small it can be disregarded in design practice.

In the following the influence of density is shown using the test results in /4/.

The ratio A_r/A_0 versus oven dry density p_{od} is shown in Figure 1, where A_r is the residual area of the cross section at failure, and A_0 is the area prior to the test. It can be seen that density does not influence the total amount of charring that leads to failure. Since the load ratio is the same within each series, the conclusion can be made that neither does density exert any influence on the loss of bending strength of the residual cross section.

A considerable scatter of failure time in each series which allows to study how the charring rates are influenced by density. The plots of failure time versus density are shown in Figure 2. We can see that failure time increases with increasing density. Thus the charring rate
decreases with increasing density as shown in Figure 3, where the rate of charring is expressed as the charred area \(A_{\text{char}} \) divided by failure time where

\[
A_{\text{char}} = A_0 - A_r
\]

With the assumption that the bending strength of the effective residual cross section is the same as under normal conditions, effective charring rates \(\beta_{\text{ef}} \) have been calculated which lead to failure loads equal to the test loads. The results are shown in Figure 4. It is obvious that the effective rate of charring decreases with increasing density.

From the figures it can be seen that there exists considerable scatter of the results. Comparing the two test series with the load ratios 0.33 and 0.167 respectively, we can see that the charring rate is about 20% larger in the latter. One reason is that the charring rates shown in the diagrams are mean values. Since the failure times were very short - the mean values were about 10 and 15 minutes respectively - the mean charring rate is more affected by the initially low charring rate in the first series. Another reason for this result can be insufficient accuracy of the measurements of the charred sections. In the second series a digitizer was used which gives better accuracy.

In design practice characteristic densities of timber in the most used strength classes are between 290 and 420 kg/m\(^3\). These densities refer to a temperature of 20 °C and a relative humidity of 65 %, i.e. the oven dry density is between 325 and 470 kg/m\(^2\). These limits correspond to strength classes C14 and C40 according to prEN 338, Draft 1991. Using the regression lines in Figures 3 and 4 we can calculate the ratios of charring rates of the two density limits:

<table>
<thead>
<tr>
<th>Load ratio</th>
<th>(\beta_{\text{ef},470} / \beta_{\text{ef},325})</th>
<th>((A_{\text{char},470} / t)/(A_{\text{char},325} / t))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.33</td>
<td>0.90</td>
<td>0.87</td>
</tr>
<tr>
<td>0.167</td>
<td>0.92</td>
<td>0.94</td>
</tr>
</tbody>
</table>

The values for both effective and measured charring are of the same order of magnitude. Since the effective charring rate is the integrated effect of charring and loss of strength, the two values differ less than the two values belonging to the measured charring. In both cases the charring rate is about 10% smaller at the upper limit of this interval of density than at its lower limit.

This result is in the same order of magnitude as those given in /2/ and /3/.

CONCLUSIONS

The influence of density on the charring rate is considerably smaller than given in the CIB-code /1/. Since it is small in the interval of most used strength classes, it should be disregarded in practical applications.
REFERENCES

/1/ CIB Structural Timber Design Code. CIB Publication 66, 1983

/2/ Schaffer, E. L., Charring of selected woods - transverse to grain. Forest Products Laboratory, Madison, 1969.

Figure 1 Ratio of residual and initial area versus density
45x120 Load ratio = 0.167 u = 19.5%

Failure time (minutes)

Density ρ_{0u} (kg/m3)

45x120 Load ratio = 0.33 u = 17.2%

Figure 2 Failure times at same load ratios versus density
Figure 3
Rate of charred cross sectional area versus density
Effective charring rate versus density under the assumption that the bending strength of the residual cross section is not influenced by fire.
INTERNATIONAL COUNCIL FOR BUILDING RESEARCH STUDIES AND DOCUMENTATION

WORKING COMMISSION W18 - TIMBER STRUCTURES

TESTS ON GLUED-LAMINATED BEAMS IN BENDING EXPOSED TO NATURAL FIRES

by

F Bolonius Olesen
University of Aalborg
Denmark

J König
Swedish Institute for Wood Technology Research
Sweden

MEETING TWENTY - FIVE
ÅHUS
SWEDEN
AUGUST 1992
TESTS ON GLUED LAMINATED BEAMS IN BENDING EXPOSED TO NATURAL FIRES

by
F Bolonius Olesen
University of Aalborg
and
J König
Swedish Institute for Wood Technology Research

SUMMARY

A series of fire tests with so-called natural fire exposure of loaded glued laminated beams was performed. The fire exposure on three sides during the tests was governed by a temperature-time relationship determined according to an energy balance method (opening factor method) with different fire load densities and opening factors. The results confirmed the rate of charring on the wide side of the member obtained by Hadvig. The average charring depth on the lower side of the member was greater than the average charring depth on the wide side when the width of the lower side was smaller than about 180 mm. Considering the mechanical behaviour, the tests showed that a loss of strength and stiffness of the residual cross section occurred, and that it continued through the cooling period, caused by continuous heat flow to the inner parts of the cross section.

INTRODUCTION

In most structural fire design codes the fire load is given by the standard fire temperature-time curve according to ISO 834. For this type of fire exposure the behaviour of a wood member is fairly well-known for large cross sections: In practical design applications, charring is assumed to occur at an approximately constant rate and the influence of the fire exposure on strength is limited to a depth of about 40 mm below the char-line. For this type of cross sections a very simple model for design can be applied. According to this model a zero-strength layer with a thickness of about 7 mm is removed from the residual cross section, and the remaining part of the residual cross section, i.e. the effective cross section, is assumed to have full strength as in normal design.

So-called natural fires include both the period of increasing temperature and, after the combustible material in the fire compartment is consumed, the subsequent period of cooling. The rise of temperature and the length of these periods is dependent on the fire load and the number and size of openings. Such design method has been used in fire design in Denmark and Sweden for many years, and it is considered to be included in Parts 10 of Eurocodes - Structural Fire Design. Charring of timber under such fire conditions has been investigated by Hadvig /1/. The results of this research were adopted in the Danish Building Code for determination of the charring depth of members in timber structures. Since Hadvig did not perform fire tests with loaded specimens, and there did not exist any experience on the material properties of full-size glued laminated members under such conditions, a series of fire tests was performed at the University of Aalborg under the leadership of F Bolonius Olesen.

The time-temperature relationship in natural fires is dependent of the fire load q_i and the
opening factor F of the fire compartment. The opening factor is defined as

$$F = \frac{A}{A_t} \sqrt{h} \quad [\text{m}^2]$$ (1)

where
- A total area of vertical openings (windows etc.) in m2
- A_t total area of floors, walls and ceilings which enclose the fire compartment in m2
- h weighted average of heights of all vertical openings (windows etc.) in m.

The charring rate of the wide side of a member in natural fires can, as a simplification of Hadvig's expressions, be described as a function of time according to Figure 1. The initial charring rate β_0 is constant during the time period t_0 with increasing gas temperature in the fire compartment, and the charring rate decreases then until the maximum charring depth is reached after the total time $3t_0$, even though the cooling period is not terminated. The parameters β_0 and t_0 are defined as

$$\beta_0 = \frac{5F - 0.04}{4F + 0.08} \quad \left[\frac{\text{mm}}{\text{min.}} \right]$$ (2)

and

$$t_0 = 0.006 \frac{q_t}{F} \quad [\text{min.}]$$ (3)

where the fire load q_t is in MJ/m2 and F is given by Equation (1).

The Equations (1) and (2) are valid for an opening factor F between 0.02 and 0.30 m$^{1/2}$, a time period t_0 of not more than 40 minutes and a maximum charring depth on the wide sides of one fourth of the width of the narrow side of the beam.

FIRE TESTS

The test series included 18 full-scale tests with static loading, and 30 additional tests with unloaded specimens for temperature measurements inside the beams. These tests are described in a preliminary test report /2/. A report with the complete test data is in preparation /3/. In this paper the results of nine of the full-scale tests and of one of the additional tests are reported.

The test specimens fulfilled the requirements of strength class L30. The flexural stiffness of each beam was determined prior to each fire test.

The test specimens of glued laminated timber with a span of 3.60 m were acted upon by two point loads in symmetrical position, the distance between them being 0.9 meters. The middle part of the beam with a length of 2.8 m including the loading devices were inside the furnace. The test beams had the nominal initial depth b_0 of 300 mm and the nominal initial width b_0 of 140, 160 or 185 mm. They were exposed to fire on three sides, the upper side was protected by means of mineral wool batts.
The fire exposure during the tests was governed by a temperature-time relationship determined according to an energy balance method (opening factor method) with different opening factors F and fire load densities q_l. See Table 1.

The initial static loading P_0 in each loading point was 5, 7 and 8 kN respectively and held constant during the major part of the fire tests. The load level was chosen to be low in order to prevent lateral buckling, since the beams were not braced during the period of fire exposure. When the gas temperature in the furnace had decreased to about 300 to 250 °C the fire was extinguished with water, bracings were attached to the test beam, and immediately after the static loading was increased until the failure load P_u of the beam was reached.

The deflection of the beams was measured at two points at distances of 150 and 750 mm from the middle of the beam.

Temperature measurements in the test specimens were made using thermo-couples.

After the tests the char layer was removed by means of brushing off the char and the charring depth was measured at five gauge points located in the transverse direction of the beam. In the case of a long fire exposure duration it was practically possible to make measurements only at the middle three gauge points.

TEST RESULTS

Typical test results are presented in Figures 2 to 4, showing the time-dependent temperature in the furnace, and the corresponding deflection of the test beam at the two gauge points. The indices in the notations refer to the distance of the gauge point from the middle of the beam in centimetres. The figures represent the fire load conditions according to Table 2.

It is obvious that the deflection of the beams increases during the whole cooling period at about the same rate as in the initial period with increasing temperature. The rate of loss of stiffness is not affected by the fact that the maximum charring depth is already reached at the time of $3t_0$ according to Equation (3), which is considerably smaller than the time at which the load was increased.

In Figure 5 typical temperature-time curves are shown. The temperature in the outer parts reaches its maximum in the first part of the cooling period and is affected by the decreasing temperature in the furnace. The temperature of the gauge points in the inner of the cross section continues to increase during the whole test period and exceeds 100 °C even in the middle of the cross section.

The average charring depths are given in Table 3,

\[
\begin{align*}
\text{where} & \quad d_{\text{char},w} & \text{average charring depth on the wide side} \\
& \quad d_{\text{char},n} & \text{average charring depth on the narrow side.}
\end{align*}
\]

The agreement of measured and calculated values on the wide side according to Hadvig [1] is good.
Due to two-dimensional heat flow near arrisses, charring is greater on the narrow side than on the wide side, see Figure 6, where the ratio \(\frac{d_{\text{char},w}}{d_{\text{char},n}} \) is shown versus the initial width \(b_0 \) of the narrow side. This effect becomes negligible when the width of the narrow side is greater than about 170 to 180 mm. According to Hadvig this effect can be disregarded when the width of the narrow side is at least 80 mm. This result is in contradiction to Hadvig's results. Since the number of tests is limited and the variation of measured values on the lower side was considerable, this result should be regarded as preliminary.

Using the depth \(h_r \) and width \(b_r \) of the residual cross section, i.e. the initial cross section minus the char layer, the bending strength \(f_{\text{m,r}} \) was calculated. If we assume that the bending strength of the test beams at normal temperature was 40 MPa (the mean bending strength of Nordic glued laminated timber is about one third greater than the characteristic value), the bending strength ratio

\[
k_r = \frac{f_{\text{m,r}}}{f_m}
\]

(4)

of the residual cross section, see Table 3, can be presented as a function of the relative charring depth \(\frac{d_{\text{char},w}}{b_0} \), see Figure 7. The regression line is

\[
k_r = 0.98 - 3.02 \frac{d_{\text{char},w}}{b_0}
\]

(5)

For comparison this has been done also for \(f_m = 30 \) MPa.

This relationship shows that the amount of charring, or indirectly the duration of time, is important for the reduction of bending strength of the residual cross section. With increasing charring a greater part of the cross section is affected by elevated temperature caused by continuous heat flow during the cooling period.

For comparison, for standard fire exposure, a typical value of the bending strength ratio is 0.8. Values of this order of magnitude are used in some national fire design codes.

With

\[
d_{\text{char},w} = 2 \beta_0 t_0
\]

(6)

see Figure 1, and substitution of Equations (2) and (3) we get approximately

\[
k_r = 1.0 - \frac{q_s}{27 b_0 F} \frac{5 F - 0.04}{4 F + 0.08}
\]

(7)

Thus the bending strength ratio for three-sided fire exposure can be expressed by the width of the narrow side, the fire load and the opening factor.
CONCLUSIONS

In structural fire design the charring rates obtained by Hadvig /1/ according to Equations (2) and (3) and Figure 1 should be used for the wide vertical sides of a member. The charring rates on the narrow side according to Hadvig could not be confirmed. The reason for this might be that the number of tests was too small.

Compared to the conditions at standard fire exposure, the mechanical behaviour at natural fire exposure is different due to the changes of temperature in the residual cross section during the cooling period. In natural fires the bending strength and stiffness is lower than in standard fire. The influence of elevated temperature is no longer concentrated to the outer layer of the residual cross section. Thus the concept of a reduced bending strength of the residual cross section should be applied, e.g. by using a bending strength ratio similar to Equation (5).

REFERENCES

/1/ Hadvig, S., Charring of wood in building fires. Technical University of Denmark, Lyngby, 1981.

/2/ Bolonius Olesen, F., Brandteknisk dimensionering af limtrakstruktur, University of Aalborg, 1992

/3/ Toft Hansen, F & Bolonius Olesen, F., Full-scale tests on loaded glulam beams exposed to natural fires. University of Aalborg, 1992

Table 1 Test data and results

<table>
<thead>
<tr>
<th>No.</th>
<th>h_0</th>
<th>b_0</th>
<th>$F_{1/2}$</th>
<th>q_{k}</th>
<th>P_0</th>
<th>P_u</th>
</tr>
</thead>
<tbody>
<tr>
<td>G 07</td>
<td>298</td>
<td>137</td>
<td>0.04</td>
<td>126</td>
<td>5.0</td>
<td>12.6</td>
</tr>
<tr>
<td>G 08</td>
<td>296</td>
<td>136</td>
<td>0.06</td>
<td>113</td>
<td>5.0</td>
<td>22.0</td>
</tr>
<tr>
<td>G 09</td>
<td>296</td>
<td>136</td>
<td>0.08</td>
<td>151</td>
<td>5.0</td>
<td>20.6</td>
</tr>
<tr>
<td>G 23</td>
<td>298</td>
<td>158</td>
<td>0.04</td>
<td>126</td>
<td>7.0</td>
<td>16.7</td>
</tr>
<tr>
<td>G 25</td>
<td>298</td>
<td>158</td>
<td>0.08</td>
<td>251</td>
<td>7.0</td>
<td>13.2</td>
</tr>
<tr>
<td>G 26</td>
<td>299</td>
<td>158</td>
<td>0.08</td>
<td>151</td>
<td>7.0</td>
<td>30.1</td>
</tr>
<tr>
<td>G 32</td>
<td>299</td>
<td>184</td>
<td>0.04</td>
<td>188</td>
<td>8.0</td>
<td>11.6</td>
</tr>
<tr>
<td>G 33</td>
<td>298</td>
<td>183</td>
<td>0.06</td>
<td>188</td>
<td>8.0</td>
<td>19.6</td>
</tr>
<tr>
<td>G 34</td>
<td>297</td>
<td>183</td>
<td>0.08</td>
<td>251</td>
<td>8.0</td>
<td>19.8</td>
</tr>
</tbody>
</table>
Table 2 Some typical fire load conditions

<table>
<thead>
<tr>
<th></th>
<th>Fire load</th>
<th>Opening factor</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>G 07</td>
<td>small</td>
<td>small</td>
<td>medium</td>
</tr>
<tr>
<td>G 09</td>
<td>small</td>
<td>large</td>
<td>short</td>
</tr>
<tr>
<td>G 32</td>
<td>medium</td>
<td>small</td>
<td>large</td>
</tr>
</tbody>
</table>

Table 3 Test results and evaluation

<table>
<thead>
<tr>
<th>No.</th>
<th>$d_{	ext{char,w}}$ test</th>
<th>$d_{	ext{char,n}}$ test</th>
<th>$3t_0$ calc.</th>
<th>$d_{	ext{char,w}}$ calc.</th>
<th>h_r</th>
<th>b_r</th>
<th>$f_{m,r}$</th>
<th>$f_r / 40$</th>
<th>$f_r / 30$</th>
</tr>
</thead>
<tbody>
<tr>
<td>G 07</td>
<td>24.1</td>
<td>32.2</td>
<td>57</td>
<td>25.2</td>
<td>266</td>
<td>89</td>
<td>16.2</td>
<td>0.405</td>
<td>0.540</td>
</tr>
<tr>
<td>G08</td>
<td>16.4</td>
<td>17.7</td>
<td>34</td>
<td>18.4</td>
<td>278</td>
<td>103</td>
<td>22.4</td>
<td>0.560</td>
<td>0.747</td>
</tr>
<tr>
<td>G 09</td>
<td>20.3</td>
<td>22.8</td>
<td>34</td>
<td>20.4</td>
<td>273</td>
<td>95</td>
<td>23.6</td>
<td>0.590</td>
<td>0.787</td>
</tr>
<tr>
<td>G 23</td>
<td>26.0</td>
<td>28.3</td>
<td>57</td>
<td>25.2</td>
<td>270</td>
<td>106</td>
<td>17.5</td>
<td>0.438</td>
<td>0.583</td>
</tr>
<tr>
<td>G 25</td>
<td>32.0</td>
<td>36.9</td>
<td>56</td>
<td>33.9</td>
<td>271</td>
<td>94</td>
<td>15.5</td>
<td>0.388</td>
<td>0.517</td>
</tr>
<tr>
<td>G 26</td>
<td>20.0</td>
<td>22.3</td>
<td>34</td>
<td>20.4</td>
<td>276</td>
<td>118</td>
<td>27.1</td>
<td>0.678</td>
<td>0.903</td>
</tr>
<tr>
<td>G 32</td>
<td>38.9</td>
<td>40.4</td>
<td>85</td>
<td>37.6</td>
<td>259</td>
<td>106</td>
<td>13.2</td>
<td>0.330</td>
<td>0.440</td>
</tr>
<tr>
<td>G 33</td>
<td>29.4</td>
<td>26.4</td>
<td>56</td>
<td>30.7</td>
<td>272</td>
<td>124</td>
<td>17.3</td>
<td>0.433</td>
<td>0.577</td>
</tr>
<tr>
<td>G 34</td>
<td>34.1</td>
<td>30.6</td>
<td>56</td>
<td>33.9</td>
<td>266</td>
<td>115</td>
<td>19.7</td>
<td>0.493</td>
<td>0.657</td>
</tr>
</tbody>
</table>

Figure 1 Simplified relationship between charring rate and time
Figure 2 Gas temperature in the furnace and deflection of the test beams versus time
Figure 3 Gas temperature in the furnace and deflection of the test beams versus time
Figure 4: Gas temperature in the furnace and deflection of the test beams versus time
Figure 6 Ratio of charring depths on narrow and wide side versus initial width of narrow side

Figure 7 Bending strength ratio of residual cross section versus relative charring depth
INTERNATIONAL COUNCIL FOR BUILDING RESEARCH STUDIES AND DOCUMENTATION

WORKING COMMISSION W18 - TIMBER STRUCTURES

A BODY FOR CONFIRMING THE DECLARATION OF CHARACTERISTIC VALUES

by

J Sunley
Independent Timber Consultant
United Kingdom

MEETING TWENTY - FIVE
ÅHUS
SWEDEN
AUGUST 1992
A BODY FOR CONFIRMING THE DECLARATION OF CHARACTERISTIC VALUES

Under the system emerging from the implementation of the Construction Products Directive in the European Community (and possibly the EFTA countries) a manufacturer will be able to declare his own attestation of conformity. This means he will give the characteristic values to be used in design of products using his material.

There is an assumption in the Construction Products Directive that a single large factory produces a unique product which is subject to a quality control system (where necessary with independent control), has been type tested and the manufacturer declares his characteristic values or strength class. There is also the possibility of a small producer for a local market using a less rigid or even no system at all by claiming he is producing a local product.

With timber it is quite normal to have a large number of small sawmills from many different countries (from EC, EFTA or third countries) producing the same apparent grade/species or strength class. It is likely that due to problems of sampling and differing growth characteristics that type testing from such a large number of small mills will give differing values. Also there is evidence from the past that some suppliers are somewhat ambitious in their claims.

In the UK control is exercised over the approval of grading organisations and grading machines, allocation of characteristic values (or safe design stresses) and of species/grades to strength classes for solid timber and allocation of characteristic values for wood-based panel products. We are concerned that such control is not being considered in relation to current CEN work. The UK imports timber and timber products from over 80 countries in the world and over the years we have had many doubtful claims from many suppliers.

In the UK we deal with this problem in two main ways. Firstly we have an independent UK Grading committee which approves grading agencies and grading machines (leaflet attached). Secondly our Timber Design Code committee allocates and publishes design stresses and appropriate strength classes against submitted data. The system works well and everybody accepts it (including supplying countries).

Timber is different from most other constructional materials in that very large quantities of timber from a large number of small outlets cross national boundaries and hence are not suitable to be declared as 'local' products. The Construction Products Directive operates downwards through constructions rather than upwards through materials and tends therefore not to consider the trading needs of a particular material.
We would like to see some form of approval of grading bodies, grading machines and allocation of characteristic values and strength classes for solid timber and similarly for characteristic values for wood based panels.

It is interesting that CEN/TC 112 and CEN/TC 124 have solved the problem in two areas by drafting standards giving characteristic values for widely used wood based panels and traditional connectors.

Although the chief objective of the Single European Act is to provide a 'market open to all goods and services' most of the current activity in the construction sector is in the implementation of the Construction Products Directive by governmental regulatory type people in the Standing Committee in Brussels. As a result regulatory matters appear to take precedence over trading ones.

If the timber industries require 'free trade' within certain acceptable limits they should consider taking some action to achieve this objective.

To obtain a solution to this problem initiative should be taken by an organisation with the necessary expertise and free from any form of community or national governmental control. Such an organisation should be open to all EC and EFTA country membership. Possibilities include CIB/W18, CEN committees (TC 112 and 124) and Eurowood. Maybe when its future is a little clearer EUTC will be able to provide an umbrella for such an activity.

As an aid to discussion I think the first decision to be made is if such a 'clearing house' is necessary and desirable. If the answer is yes then ways and means of achieving it should follow.

John Sunley
July 1992
INTERNATIONAL COUNCIL FOR BUILDING RESEARCH STUDIES AND DOCUMENTATION

WORKING COMMISSION W18 - TIMBER STRUCTURES

ANNEX TO PAPER CIB-W18/25-102-1
EUROCODE 5 - DESIGN OF NOTCHED BEAMS

by

H J Larsen
Danish Building Research Institute, Denmark
Lund Institute of Technology, Sweden

H Riberholt
Structural Research Laboratory
Denmark

P J Gustafsson
Lund Institute of Technology
Sweden

MEETING TWENTY - FIVE
ÅHUS
SWEDEN
AUGUST 1992
Annex to paper CIB-W18/25-102-1

Hans Jørgen Larsen, Hilmer Riberholt & Per Johan Gustafsson

Note on EUROCODE 5 - Design of notched beams

In [Gustafsson, 1991] an expression is derived for the load-carrying capacity of notched beams with a geometry as shown in Figure 1. This expression can be rewritten as follows:

\[V = k_s \left(\frac{2}{3} b h e f v \right) \] \hspace{1cm} (1)

with

\[k_v = \frac{k \sqrt{\frac{E W}{f_v^2 h}}}{\sqrt{0.6 \lambda (1-\lambda) \frac{E}{G} + \beta \sqrt{6 \frac{1}{\lambda} - \lambda^2}}} \] \hspace{1cm} (2)

where the symbols have the following meaning

\(E \) modulus of elasticity
\(G \) shear modulus
\(W \) fracture energy in splitting along the grain
\(f_v \) shear strength
\(k \) a factor; theoretically is it 1.5, but in practice smaller values are found and it has to be determined by testing notched beams

In Eurocode 5 a value of 16 is assumed for \(E/G \) and the denominator in (2) becomes approximately

\[3 \left(\sqrt{\lambda (1-\lambda)} + 0.8 \lambda \sqrt{\frac{1}{\lambda} - \lambda^2} \right) \] \hspace{1cm} (3)

Characteristic values for \(E, f_v \) and the density \(\rho \) are given in [EN 384, 1991] for a wide range of strength classes. Examples are given in Table 1.

In [Larsen & Gustafsson, 1990] the following relationship was found between the mean values of \(W \) and \(\rho \) in kg/m³
\[W = 1.04\rho - 146 \text{ N/m} \]

(4)

For \(\rho \) between 300 and 450 (4) can be replaced by

\[W = 0.65\rho \]

(5)

In Table 1 \(EW/f_v^2 \) has been calculated using (5) and assuming that the ratios between characteristic and mean values are the same for \(E, W, \) and \(f_v \).

Table 1

<table>
<thead>
<tr>
<th>Strength Class</th>
<th>C14</th>
<th>C22</th>
<th>C27</th>
<th>C30</th>
<th>C35</th>
<th>C40</th>
<th>C70</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E) N/mm²</td>
<td>4700</td>
<td>6700</td>
<td>8000</td>
<td>8000</td>
<td>8700</td>
<td>9200</td>
<td>16700</td>
</tr>
<tr>
<td>(f_v) N/mm²</td>
<td>1.7</td>
<td>2.4</td>
<td>2.8</td>
<td>3.0</td>
<td>3.4</td>
<td>3.8</td>
<td>6.2</td>
</tr>
<tr>
<td>(\rho) kg/m³</td>
<td>290</td>
<td>340</td>
<td>370</td>
<td>380</td>
<td>400</td>
<td>420</td>
<td>900</td>
</tr>
<tr>
<td>(W) N/mm</td>
<td>0.190</td>
<td>0.220</td>
<td>0.235</td>
<td>0.245</td>
<td>0.260</td>
<td>0.280</td>
<td>0.585</td>
</tr>
<tr>
<td>(\sqrt{EW/f_v^2}) (\text{\sqrt{mm}})</td>
<td>17.6</td>
<td>16.0</td>
<td>15.5</td>
<td>14.8</td>
<td>14.0</td>
<td>13.4</td>
<td>16.5</td>
</tr>
</tbody>
</table>

As an approximation the square root can be taken as a constant, i.e.

\[K_v = \frac{K}{\sqrt{h} \left(\sqrt{\alpha (1 - \lambda)} + 0.8 \left(2\sqrt{\frac{f_v}{\lambda}} - \lambda^2 \right) \right)} \]

(6)

In [Gustafsson, 1991] the result from nine test series is summarized. In Table 2 \(K \) is calculated from the same tests. Where \(f_v \) is not given in the reports a value of \(f_v = 4 \text{ MPa} \) has been assumed (corresponding to a rather high grade: C27).

For structural timber the average value of test results is \(K = 5.18 \), for glued laminated timber the average is \(K = 6.67 \). \(K = 5 \) corresponds to \(k = 1 \) in (2).

![Figure 2](image)

[Riberholt et al., 1992] have made tests with tapered notched beams with a geometry as shown in Figure 2. The results are summarized in Table 3 together with a proposal from [Riberholt, 1991] for an inclination factor \(k_r \).
Table 2. Values of k_v and K for various softwood beams.

<table>
<thead>
<tr>
<th>$b \times h$ mm2</th>
<th>α</th>
<th>β</th>
<th>k_v from tests</th>
<th>K</th>
<th>K_{mean}</th>
<th>Source. Material. Number of tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>63 x 125</td>
<td>.75</td>
<td>.40</td>
<td>0.729</td>
<td>5.82</td>
<td>5.77</td>
<td>(Larsen & Riberholt, 1972). Whitewood and redwood. 63 + 2 x 68 tests.</td>
</tr>
<tr>
<td></td>
<td>.50</td>
<td></td>
<td>0.543</td>
<td>5.61</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.25</td>
<td></td>
<td>0.495</td>
<td>5.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32 x 125</td>
<td>.917</td>
<td>.25</td>
<td>0.878</td>
<td>3.62</td>
<td>4.33</td>
<td>(Möhlcr & Mistler, 1978). Whitewood. 159 tests.</td>
</tr>
<tr>
<td></td>
<td>.833</td>
<td></td>
<td>0.718</td>
<td>4.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.750</td>
<td></td>
<td>0.625</td>
<td>4.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.667</td>
<td></td>
<td>0.565</td>
<td>4.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.583</td>
<td></td>
<td>0.558</td>
<td>4.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.500</td>
<td></td>
<td>0.592</td>
<td>4.96</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.333</td>
<td></td>
<td>0.551</td>
<td>4.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 x 600</td>
<td>.917</td>
<td>.42</td>
<td>0.744</td>
<td>8.09</td>
<td>7.15</td>
<td>(Möhlcr & Mistler, 1978). Gluelam. 3 x 2 tests.</td>
</tr>
<tr>
<td></td>
<td>.833</td>
<td></td>
<td>0.599</td>
<td>8.98</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.750</td>
<td></td>
<td>0.327</td>
<td>5.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.667</td>
<td></td>
<td>0.320</td>
<td>6.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.500</td>
<td></td>
<td>0.279</td>
<td>6.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45 x 50</td>
<td>.50</td>
<td>.50</td>
<td>0.744</td>
<td>5.41</td>
<td>5.80</td>
<td>(Carlsson et al, 1983). Redwood. 3 x 2 tests.</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td>0.543</td>
<td>5.59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td></td>
<td></td>
<td>0.439</td>
<td>6.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45 x 45</td>
<td>.50</td>
<td>.50</td>
<td>0.670</td>
<td>4.63</td>
<td>4.83</td>
<td>(BML, LTH, 1985 + 86). Redwood. 2 x 10 tests.</td>
</tr>
<tr>
<td>195</td>
<td></td>
<td></td>
<td>0.350</td>
<td>5.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79 x 305</td>
<td>.70</td>
<td>2.50</td>
<td>0.171</td>
<td>7.16</td>
<td>7.07</td>
<td>(Murphy, 1986). Gluelam. 3 x 2 + 1 tests.</td>
</tr>
<tr>
<td>79 x 457</td>
<td></td>
<td>5.50</td>
<td>0.089</td>
<td>7.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.50</td>
<td>0.141</td>
<td>7.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.50</td>
<td>0.060</td>
<td>6.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44 x 12</td>
<td>.75</td>
<td>.50</td>
<td>1.235</td>
<td>3.36</td>
<td>5.41</td>
<td>(Gustafsson & Enquist, 1988). Redwood. 3 x 7 tests.</td>
</tr>
<tr>
<td>48</td>
<td></td>
<td></td>
<td>1.023</td>
<td>5.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>192</td>
<td></td>
<td></td>
<td>0.484</td>
<td>5.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45 x 95</td>
<td>.875</td>
<td>.34</td>
<td>1.079</td>
<td>5.24</td>
<td></td>
<td>(Riberholt et al, 1992). Whitewood. 10 x 6 + 2 x 6 tests.</td>
</tr>
<tr>
<td></td>
<td>.75</td>
<td></td>
<td>0.826</td>
<td>5.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.50</td>
<td></td>
<td>0.543</td>
<td>4.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.25</td>
<td></td>
<td>0.536</td>
<td>5.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.75</td>
<td>.66</td>
<td>0.729</td>
<td>6.37</td>
<td>4.99</td>
<td></td>
</tr>
<tr>
<td>195</td>
<td>.50</td>
<td>.159</td>
<td>0.398</td>
<td>4.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.75</td>
<td>.168</td>
<td>0.554</td>
<td>4.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.50</td>
<td></td>
<td>0.376</td>
<td>3.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85 x 185</td>
<td>.75</td>
<td></td>
<td>0.852</td>
<td>6.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.50</td>
<td></td>
<td>0.491</td>
<td>4.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90 x 200</td>
<td>.75</td>
<td>.175</td>
<td>0.952</td>
<td>7.48</td>
<td></td>
<td>(Riberholt et al, 1992). Gluelam. 7 x 4 tests.</td>
</tr>
<tr>
<td>300</td>
<td>.50</td>
<td></td>
<td>0.592</td>
<td>5.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.833</td>
<td>.150</td>
<td>0.766</td>
<td>6.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.722</td>
<td></td>
<td>0.606</td>
<td>5.92</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.50</td>
<td></td>
<td>0.536</td>
<td>6.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.50</td>
<td>.300</td>
<td>0.472</td>
<td>6.68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>160 x 567</td>
<td>.50</td>
<td>.123</td>
<td>0.361</td>
<td>5.42</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$^1)$ Value disregarded because the geometry is atypical for practice.
Table 3. Strength of beams with taper relative to similar beams without taper (i = 0). From [Riberholt et al, 1992].

<table>
<thead>
<tr>
<th>b x h mm²</th>
<th>α</th>
<th>β</th>
<th>i</th>
<th>Relative strength</th>
<th>$k_i = 1 + 1,1i^{15}/h$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural timber 45 x 95</td>
<td>0,50</td>
<td>0,34</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0,95</td>
<td>1,11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>1,95</td>
<td>1,32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>1,92</td>
<td>1,59</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>2,64</td>
<td>2,26</td>
</tr>
<tr>
<td></td>
<td>0,66</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>2,35</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,75</td>
<td>0,34</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>1,03</td>
<td></td>
<td>1,11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>1,41</td>
<td></td>
<td>1,59</td>
</tr>
<tr>
<td>85 x 185</td>
<td>0,50</td>
<td>0,17</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>1,55</td>
<td></td>
<td>1,42</td>
</tr>
<tr>
<td></td>
<td>0,75</td>
<td>0,17</td>
<td>0</td>
<td>1 ¹)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>0,88 ¹)</td>
<td></td>
<td>1,42</td>
</tr>
<tr>
<td>Glued laminated timber 90 x 300</td>
<td>0,50</td>
<td>0,15</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>1,15</td>
<td></td>
<td>1,06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1,28</td>
<td></td>
<td>1,18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>1,92</td>
<td></td>
<td>1,71</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>1,94</td>
<td></td>
<td>2,44</td>
</tr>
<tr>
<td></td>
<td>0,30</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1,49</td>
<td></td>
<td>1,18</td>
</tr>
<tr>
<td>160 x 567</td>
<td>0,12</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1,13</td>
<td></td>
<td>1,13</td>
</tr>
</tbody>
</table>

¹) The strength for i = 0 is unusually high.
Conclusion

For Eurocode 5 the following design requirements are proposed.

For beams notched at the ends the shear stress shall be calculated using the effective (reduced) depth h_e.

For beams notched on the loaded side it should be verified that

$$\tau_d \leq k_v f_{vd}$$

where for solid timber

$$k_v = \frac{5(1 + \frac{1.1 \epsilon}{h})^{1.5}}{\sqrt{h} \left({\sqrt{\frac{a}{L}} (1 - \frac{a}{L}) + 0.8 \sqrt{\frac{a}{L} - \frac{a^2}{L^2}}} \right)}$$

For glued laminated timber k_v should be taken 30 per cent higher.

k_v should not be taken greater than unity.

References

EN 384, European Standard, Structural Timber - Determination of characteristic values of mechanical properties and density.
LATEST DEVELOPMENT OF EUROCODE 5

by

H J Larsen
Danish Building Research Institute
Denmark
Lund Institute of Technology
Sweden

MEETING TWENTY - FIVE
ÅHUS
SWEDEN
AUGUST 1992
1. INTRODUCTION

The latest draft for Eurocode 5, Part 1: General Rules and Rules for Building, was finalized by April 1992. It is expected to be adopted as a European Prestandard (an ENV) in November 1992 for a period of 3 years. After this period a redrafting will start aiming at a European standard that will eventually replace the corresponding national documents. The basis for this redrafting will be the experience gained by experimental use of Eurocode 5, trial calculations of representative structures in different countries and new results from research.

CIB W18 can have a great influence on the final version of Eurocode 5 by reverting to the method of work that successfully led first to the CIB Structural Timber Design Code (1983) and the first complete version for Eurocode 5 (1987): Discussions of proposal for clauses in the code based on literature surveys and research leading to consensus on a final proposal. Because of the time pressure this procedure has not been followed by the final drafting of Eurocode 5 (1992), but the three ENV-years (minimum) will hopefully be used in this manner.

This paper describes some of the major changes and their background. It also identifies items still unsatisfactorily treated.

Joints are not treated in this paper but in a later paper by Ehlbeck and Larsen.
2. SAFETY

There is a disparity between the fine details in the code rules for the calculation of stresses and deformations in the members and the coarse way in which safety/reliability is treated.

The problem is that no safety philosophy has been formulated for timber structures, and therefore Eurocode 5 (1992) has had restricted manoeuvring possibilities.

The bounds from the other Eurocodes are the partial safety factors for actions common for all materials ($\gamma_o = 1.35$ for permanent actions and $\gamma_o = 1.5$ for variable actions), and the choices of partial safety factors for materials made by Eurocode 2, Concrete ($\gamma_m = 1.5$) and Eurocode 3, Steel ($\gamma_m = 1.1$). In Eurocode 5 (1992) a value of $\gamma_m = 1.3$ is proposed for timber and wood-based materials, a lower value would probably be questioned by the other materials.

An internal Eurocode 5 bound is the knowledge about the influence on the strength of the load duration, reflected in the factor k_{mod} in the equation for determining the design strength f_d from the characteristic one, f_c:

$$f_d = k_{mod} f_c / \gamma_m$$

The Eurocode 5 (1992) k_{mod} values are given in table 2.1 for service classes 1 and 2 (moisture content below about 20%).

Table 2.1 Load Duration Factor k_{mod} for Service Classes 1 and 2

<table>
<thead>
<tr>
<th>Load Duration Class</th>
<th>Order of Accumulated duration of Characteristic Load</th>
<th>k_{mod}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permanent</td>
<td>more than 10 years</td>
<td>0.6</td>
</tr>
<tr>
<td>Long-term</td>
<td>6 months - 10 years</td>
<td>0.7</td>
</tr>
<tr>
<td>Medium-term</td>
<td>1 week - 6 months</td>
<td>0.8</td>
</tr>
<tr>
<td>Short-term</td>
<td>less than 1 week</td>
<td>0.9</td>
</tr>
<tr>
<td>Instantaneous</td>
<td></td>
<td>1.1</td>
</tr>
</tbody>
</table>

For permanent load alone the global safety level becomes $1.35 \cdot 1.3 / 0.6 = 2.93$. For a load combination with a ratio of 2 between variable and permanent loads the global safety varies between 2.69 (long-term) and 2.09 (short-term). Some countries will find some of these values rather high.
A main problem is that there are in reality no guidelines on how to assign a load to a load duration class, neither in Eurocode 5 nor in Eurocode 1, Basis of Design. There is therefore a risk that national authorities will make different decisions, and probably with a preference for the classes with the longer duration. It is therefore suggested that CIB W18 prepares guidelines on how to assign actions to load duration classes.

A departure point may be the distinction made in the Eurocodes between 4 representative values of variable actions

- characteristic value, \(Q_k \), corresponding in general to a 50 years return period
- combination value, \(\psi_6 Q_k \)
- frequent value, \(\psi_1 Q_k \)
- quasi permanent value, \(\psi_2 Q_k \)

The present trend is to refer the characteristic value to a load duration class. Another solution might be to refer the different parts of actions to different classes.

For snow-load, where the following values are proposed in Eurocode 1

\[
\psi_6 = 0.6; \quad \psi_1 = 0.2; \quad \psi_2 = 0
\]

20% of the load might be regarded as long-term/medium-term and 80% as medium-term/short-term.

For imposed floor loads where

\[
\psi_6 = 0.7; \quad \psi_1 = 0.5; \quad \psi_2 = 0.3
\]

are proposed, only 30% should be regarded as permanent, 20% as long-term and 50% as medium-term.

3. GLULAM

Eurocode 5 (1992) gives design rules for glulam members assuming that the basic material parameters - bending strength, tension strength, ..., and moduli of elasticity - are known.

There are, however, no provisions on how to determine these values for a given lay-up (number and thickness of laminations, species and grades etc). Some guidelines are given in an annex to the draft CEN-standard CEN TC 124.207: Glued Laminated Timber - Strength Classes. This annex corresponds to CIB W18 paper 23-12-4: Riberholt, H., Ehlbeck, J. and Fewel, A.: Glued Laminated Timber - Strength classes and determination of characteristic properties.
The guidelines are based on a compilation of "lamination-factors" in existing European codes and not on a general model as for example the Karlsruhe-model described in a number of papers, see CIB W18 paper 24-12-1: Colling, F., Ehlbeck, J. and Görlacher, R.: Glued Laminated Timber, Contribution to the determination of the bending strength of glulam beams. This model represents a big step forward, but there are still some details that have to be solved - e.g. the relationship between the strength of the finger joints in the beam and the strength determined by the standard bending test.

A controversial question in relation to glulam beams is the depth factor. The results from standardized short-term test with beams with depths between 300 and 900 mm and the Karlsruhe-model show depth effect corresponding to a factor of \((h_o/h)^x\) where \(h\) is the depth, \(h_o\) a reference depth and \(x\) a exponent in the range 0.15 - 0.4, see CIB W18 paper 23-12-12: Ehlbeck, J. and Colling, F.: Bending Strength of Glulam Beams, A design proposal. An acceptance of this depth factor would, however, for big structures lead to much bigger sizes than used today and there are no indications that today's design practice is unsafe.

During the final discussions on Eurocode 5 (1992) it was therefore decided to disregard the depth effect and in reality base the design on values found by testing 300 mm deep beams. The arguments being

- Glulam has more uniform properties than normal timber. (The logical consequence would be to give lower \(\gamma\)-values for glulam, but this was not found acceptable for "political" reasons)
- The depth effect is only proved for short-term testing, long-term evidence is missing: the effect might be counteracted by "creep"
- The characteristic loads are only valid for rather small contributory areas; for large structures their use leads to unreasonably safe structures (if true, the same argument would apply to other materials)
- For deep beams there is a beneficial effect from the increasing number of laminations not taken into account in the present models.

Obviously the situation is dissatisfactory. There is a need for research aimed at better models for the strength of glulam - long-term and short-term.

4. SERVICEABILITY LIMIT STATES

The section on serviceability has been redrafted completely.
Requirements to the stiffness of domestic floors have been introduced based on a proposal from Sv.V. Ohlsson (see Serviceability Criteria - Especially floor vibration criteria, in Proceedings of the 1991 International Timber Engineering Conference, London).

For deflection calculations the main changes are

- In Eurocode 5 (1987) the final deformation u_{fin} (deflection, slip etc) was derived from the initial deformation, u_{inst}, calculated with mean short-term stiffness values as
 \[u_{fin} = k_{creep} u_{inst} \]
 In Eurocode 5 (1992) this expression is replaced by
 \[u_{fin} = (1 + k_{del}) u_{inst} \]
 bringing the presentation in line with the normal way of presenting time related deformation behaviour and indicating that the increase in the deformation is not related to creep alone, but also for example to moisture and the combined effect of moisture variations and creep.

- There is a very detailed table giving k_{del} values for timber, glulam, and different types and qualities of wood based panels. The values are based on a large number of test results made available by the members of CEN TC124, notably the Finnish member. The test from which they are found, differ, however, widely, and the tables contain a large amount of engineering judgement: there is a big need for standardized test and evaluation methods.

- Slip values are given for all dowel-type fasteners as function of diameter and densities of the jointed timber. The basis for these are given in a Discussion Note by Jürgen Ehlbeck: Slip moduli for dowel-type fasteners.

Regarding deformation limitation there are two schools. One maintains that there should be no general prescribed deflection criteria. It is the responsibility of the designer to limit the deformations having regard to as well the appearance of the finished structure as the functional requirements (avoiding damages to surfacing materials, ceilings, partitions and finishes). This school wants to have detailed codified rules on how to determine the deformations to relieve the designers of the responsibility for this side of the design process.

The other school wants also to have codified deflection limits relieving the designers also from the responsibility of deciding on acceptable deflection limits.
The Eurocode 5 rules are biased towards the first school, giving only deflection limits for simple beams and in a very vague form ("... if it is found appropriate to give general limits to deflections, the following values are recommended.").

5. BENDING

For bending of a beam with a rectangular cross-section it is required that the more stringent of the following two conditions shall be satisfied:

\[k_m \left(\frac{\sigma_{mY}}{f_{my}} + \frac{\sigma_{mZ}}{f_{mz}} \right) \leq 1 \]

\[\frac{\sigma_{mY}}{f_{my}} + k_m \frac{\sigma_{mZ}}{f_{mz}} \leq 1 \]

with \(k_m = 0.7 \).

\(\sigma_{mY} \) and \(\sigma_{mZ} \) are the bending stresses from moments about the principal axis and \(f_{my} \) and \(f_{mz} \) are the corresponding bending strengths (they may be different because of different depth factors).

The introduction of the factor \(k_m \) is based on an intuitive feeling that the load-carrying capacity is not exhausted just because the stresses - calculated by the unrealistic theory of elasticity - reached the bending strength in a small zone at a corner. Test results to verify the expression or to improve it is very much required.

The maximum value of the form factor is about 15%, for a square for bending over the diagonal for rectangular cross-section for smaller values of \(\alpha \), see figure 15. For \(h = 4b \) the form factor is maximum for \(\alpha \sim 15^\circ \).

There is no form factor for round cross-sections. Poles should be regarded as an independent material and not calculated with the strength values found for rectangular sawn timber.
6. SHEAR

For shear the detailed rules of Eurocode 5 (1987) for glu lam, taking into account volume and load distribution has been given up. The majority found that the complexity of the design was inappropriate to the importance of the problem in practice. For unnotched beams the design is based on the traditional strength theory (as opposed to a fracture theory).

It is still assumed that the shear strength is dependent on the stressed volume, and Eurocode 5 relates the characteristic strength in shear to a uniformly stressed volume of 0.0005 m³, but the value found for this volume is used for all beams irrespective of their size.

For notched beams completely new design rules based on fracture mechanics have been given, covering also tapered notches. The basis for these rules are given in the enclosed annex.

7. INSTABILITY

For columns the design is as agreed by CIB W18 based on the proposal by Hans Blass - see CIB W18 paper 20-2-2: Blass, H.J.: Design of Timber Columns, and paper 21-110-1: Larsen, H.J.: CIB Structural Timber Design Code - Proposed changes. For lateral instability of beams there are no changes from Eurocode 5 (1987). The recommendations by CIB W18 to introduce the design method proposed by Harold Burgess - see CIB W18 paper 21-101-1 - have not been followed. The two methods give approximately the same results, but the Burgess method is more complicated and requires instability design for all beams, not only for beams with a slenderness ratio above a certain threshold.

The two cases columns (with or without lateral loads) and beams for which instability is possible, are unfortunately still treated as two completely separate cases and not as two extremes of a general problem.

Some of the expressions for instability and other cases requiring 2nd order elastic calculations are unnecessarily complicated in their formulation because the concept of a design modulus of elasticity

\[E_d = k_{mod} E_k / \gamma_m \]

has not been introduced explicitly. The idea of accepting such a value has been fiercely opposed by Eurocode 2 and Eurocode 3, for steel with the argument that E was a natural constant without uncertainty.
8. COMBINED STRESSES

At the surface of a tapered beam the stress is parallel to the surface. There is a combined stress situation with axial stresses parallel and perpendicular to the grain and shear stresses.

\[
\sigma_{m,a} \quad \sigma_{c,90} \quad \tau
\]

Eurocode 5 (1987) was in principle based on Norris' failure criterion

\[
\left(\frac{\sigma_{c,2}}{f_m} \right)^2 + \left(\frac{\sigma_{c,90}}{f_{c,90}} \right)^2 + \left(\frac{\tau}{f_t} \right)^2 \leq 1
\]

and the corresponding for tension, see CIB W18 paper 9-6-4: Möhler, K.: Consideration of Combined Stresses for Timber and Glued Laminated Timber, and paper 11-6-2: Möhler, K.: Addition to paper CIB W18 19-6-4.

In Eurocode 5 (1992) a simple Hankinson expression is used

\[
\sigma_{m,c} \leq f_{m,c} = \frac{f_m}{f_{c,90}} \sin^2 \alpha + \cos^2 \alpha
\]

The latter formula is much simpler to use, and E. Gehri has shown that it gives approximately the same results as Norris' formula, but fits test results slightly better, see Einführung in die Norm SIA 164 (1981) Holzbau, Publikation 81-1, Baustatik und Stahlbau, ETH, Zürich.

9. CURVED AND CAMBERED BEAMS

The expressions for calculating the stresses in tapered beams and pitched cambered beams look very different from those of Eurocode 5 (1987), but the results are only marginally different: the expression in both Eurocode versions are approximations to the stresses found by finite-element calculations or similar methods. The main difference is the choice of the reference geometry parameters. In Eurocode 5 (1987) the correction factors were applied to stresses calculated with the depth at the tangent point, in Eurocode 5 (1992) the apex depth is used.
For tension perpendicular to the grain it is required that

\[\sigma_{90} \leq k_{\text{vol}} k_{\text{dis}} f_{90} \]

The volume factor is unchanged

\[k_{\text{vol}} = (V_0/V)^{0.2} \]

where \(V_0 \) is a reference volume and \(V \) is the stressed volume (the volume of the apex zone).

The distribution factor is given as

- \(k_{\text{dis}} = 1.4 \) for double tapered and curved beams, and
- \(k_{\text{dis}} = 1.7 \) for pitched cambered beams

valid for all loading types although theoretically the moment distribution influences the distribution factor (for a curved beam with constant moment \(k_{\text{dis}} = 1/0.83 = 1.2 \) and \(1/0.83^2 = 1.45 \) for a moment varying parabolically over the curved part).

In CIB W18 paper 24-12-2: Ehlbeck, J. and Kürth, J.: Influence of Perpendicular-to-grain Stressed Volume on the Load-carrying Capacity of Curved and Tapered Glulam Beams a value of \(k_{\text{dis}} = 1.4 \) was proposed for all beams. The value \(k_{\text{vol}} = 1.7 \) is, however, not in disagreement with the results in Ehlbeck's and Kürth's paper and reflects that the volume with high stresses is much smaller for the pitched cambered beams than for curved beams.

It should be noted that there are some discrepancies between the theoretical results and the test results, reported in CIB W18 paper 19-12-3: Colling, F.: Influence of Volume and Stress Distribution on the Shear Strength and Tensile Strength Perpendicular to the Grain, and more research is needed.
10. TRUSSES

The section on trusses is an edited version of the proposal given in CIB W18 paper 23-14-2: Riberholt, H.: Proposal for Eurocode 5 Text on Timber Trussed rafters.

The general rules for trusses are given in the main text, special rules for trusses with punched metal plate fasteners are given in an annex with the same status as the main text, the reason for an annex is that the section is rather voluminous and of interest to only a minority of the users of the code.

11. BRACING

The section on bracing in Eurocode 5 (1987) was based on a second order analysis, assuming initial deviations from straightness. It contained, however, a number of errors and never got into an acceptable shape.

The 1992-version is therefore simplified considerably. The basis for this simplification is given by Pierre Dubas in the ETH publication mentioned in 8.

12. DETERMINATION OF CHARACTERISTIC VALUES

Annex A* in Eurocode 5 (1992) gives a method for estimation of the characteristic value from test results and a method to estimate whether the 5-percentile for a sample drawn from the production is above the declared value.

The basis for the proposal is the following.

The characteristic value is the population 5-percentiles, i.e. the value found by testing an unlimited number. If only a limited number of test results is available, it is necessary to choose a level "of confidence" with which the estimation shall be made, and since the information is rarely sufficient to determine the distribution function, a prescribed distribution function shall be used.

In Eurocode 5 a log-normal distribution is assumed and rather arbitrarily a confidence level of 84.1% is chosen; it corresponds to one standard deviation from the mean.

* Annex A is based on a draft from professor Gunnar Mohr, The Danish Engineering Academy, who has been responsible for the corresponding sections in the Danish Codes of Practice.
This leads to

\[x_k = m \cdot \exp \left[- (1.645 + \frac{1}{\sqrt{n}}) \cdot v \right] \]

where the symbols are defined as follows

- \(x_k \): characteristic value of the property \(x \)
- \(m \): mean value of \(x \)
- \(v \): coefficient of variation of \(x \)
- \(n \): number of test results

To obtain a constant reliability level the partial coefficient should be a function of the coefficient of variation. This is, however, not practical; instead the characteristic value is adjusted. As a good approximation this can be done by multiplying the directly estimated value by a factor \(\exp[v_0 \cdot v] \), where \(v_0 \) is a chosen reference coefficient of variation. In this case \(v_0 = 0.15 \) is chosen, leading to formula A2.2a and A2.2b in Eurocode 5 (1992):

\[x_k = m \cdot \exp \left[- 2.645 + \frac{1}{\sqrt{n}} \right] \cdot v \cdot 0.15 \]

If the characteristic value is determined for a sample drawn from a production, it can be argued that the production should be accepted even when the characteristic value falls slightly below the assumed (declared) characteristic value: by the testing the uncertainty to be covered by the partial safety factors is reduced. In Eurocode 5 (1992) a 5% reduction in the requirement is accepted, corresponding approximately to a reduction of the safety index by 0.25.
INTERNATIONAL COUNCIL FOR BUILDING RESEARCH STUDIES AND DOCUMENTATION

WORKING COMMISSION W18 - TIMBER STRUCTURES

MOISTURE CONTENT ADJUSTMENT PROCEDURES FOR ENGINEERING STANDARDS

by

D W Green
J W Evans
Forest Products Laboratory
U S A

MEETING TWENTY - FIVE
ÅHUS
SWEDEN
AUGUST 1992
INTRODUCTION

Over the last 10 years, a considerable amount of work has been conducted at, or in cooperation with, the U.S. Forest Products Laboratory (FPL) on the effect of moisture content (MC) on the mechanical properties of standard 38-mm (nominal 2-inch) thick structural lumber (Green and Evans, 1989). These studies have shown that the change in properties with the change in MC is a function of lumber quality and that strength does not necessarily increase with decreasing MC, Figure 1. These studies have produced new analytical models for relating lumber properties to change in MC (Evans, et al., 1986). Additional simplified models for incorporating this information into engineering design standards have been recently approved in the U.S. (ASTM, D1990) and replace analytical models given in ASTM D245. The FPL research, as well as research by Madsen (1975, 1982) and Hoffmeyer (1978), was used to establish proposed MC-property adjustment recommendations for Eurocode 5. The research on which the U.S. models for adjusting bending properties are based utilize test results from only two species: Douglas-fir and Southern Pine (McLain, et al., 1984, and Aplin, et al., 1986). To evaluate the applicability of the D1990 simplified adjustment procedure, and the proposed Eurocode 5 procedure, to other species a limited study was conducted on MC-bending property relationships for 38- by 89-mm (nominal 2- by 4-in.) lumber of five additional species (Green and Evans, 1991).

The objective of this paper is to evaluate analytical models for describing the effect of change in MC on the bending properties nominal 2x4 dimension lumber for five additional species. This work is limited to models applicable to engineering design codes, and to MC's of 10-percent or more.

BACKGROUND

Intersection Moisture Content

The mechanical properties of small, clear wood specimens decrease with increasing moisture content up to some moisture content level. Past this level, properties are independent of moisture content (USDA, 1987). The moisture content is called the intersection moisture content, Mp.

In the United States the value of Mp of clear wood has been traditionally obtained by fitting an analytical model to property-moisture content data for dry lumber and observing where this model intersects a horizontal curve drawn through data for green wood. From plots of the logarithm of properties versus moisture content Wilson (1932) established Mp values for a few species, Table 1. The Wood Handbook (USDA, 1987) recommends using Mp = 25% for all other species. This is the average value of the species listed in Table 1. ASTM D2915, on the other hand, cites a formula for achieving the adjustments factors given in ASTM D245. The standard assumes an Mp value of 22% for all properties. Neither of these historical procedures are currently used to assign allowable for bending, tension parallel or compression parallel to the grain properties to dimension lumber in the United States.
Analytical Models

Previous studies at the FPL utilized data for almost 8,000 pieces of two species of lumber (Douglas-fir and Southern Pine). The lumber was of three sizes (38- by 89-mm, 38- by 140-mm, and 38- by 184-mm; nominal 2- by 4-in., 2- by 6-in., and 2- by 8-in.) and three grades (Select Structural, No. 2, and No. 3). Matched samples were equilibrated to target MC levels of 10%, 15%, and 20%, as well as tested green. Of the many models fit to this data, a quadratic surface model was found to provide the best fit to the bending strength (modulus of rupture, MOR and moment capacity, RZ) data (Green and Evans, 1989).

\[P_2 = P_1 + b(M_2-M_1) + c(M_2^2-M_1^2) \] \hspace{1cm} (1)

where

- \(P_1 \) is the property measured at MC = \(M_1 \)
- \(P_2 \) is the property adjusted to MC = \(M_2 \), and
- \(b \) and \(c \) are coefficients determined from the data.

To make the model reversible from one MC level to another, it was deemed desirable to fix the coefficients with respect to a reference MC, arbitrarily chosen as 15-percent. The complexity of this "fixed quadratic surface model" made it desirable to use a computer program to make the MOR adjustments (Evans, et.al, 1986). Modulus of elasticity (MOE) could be modeled with a much simpler model.

\[P_2 = P_1 \times \left[\frac{(1.857 - (0.0237\times M_2))/1.857}{1.857 - (0.0237\times M_1)} \right] \] \hspace{1cm} (2)

The authors judged these models applicable for adjusting lumber properties from green to 8-percent MC.

After considerable discussion, Committee D-7 decided to adopt a simpler model for adjusting the MOR of lumber for changes in moisture content.

\[P_2 = P_1 + \left[(P_1 - 16.649)/(40 - M_1) \right] \times (M_2 - M_1) \] \hspace{1cm} (3)

if \(P_1 > 16.649 \) MPa, and

\[P_2 = P_1 \]

if \(P_1 \leq 16.649 \) MPa

This model was deemed applicable to lumber in the lower end of lumber strength distributions normally used to assign allowable properties and to moisture contents from green to 10-percent. This model is given in Appendix I of ASTM D1990. Model (2) was adopted in D1990 for adjusting MOE values for change in MC between green and 10-percent. Analysis indicated that a moisture content of 23-percent should be used with models (2) and (3). No guidance is given for adjusting lumber properties below 10-percent MC.

Barrett and Lau (1991) have proposed a series of "linear surface models" similar to models studied by Green, et. al. (1986, 1988) for use in engineering design standards. Barrett and Lau modify the least squares fit
of the parameter values of Green, et. al. by forcing the fitted polynomial curves for the parameter estimates of the model through the origin. Only one of these models, termed by Barrett and Lau as the "2-term linear surface model", can be solved in closed form without the use of a computer program. As with the quadratic surface model (1), the linear surface model is fixed with respect to a reference moisture content of 15-percent.

\[P_2 - P_1 = (D_1 * P_{15} + D_2 * P_{15}^2) * (M_2 - M_1) \]

(4)

where

\[P_{15} = \left([1-D_1 * (15-M_1)] - \sqrt{((D_1 * (15-M_1))^2 -
\quad 4*D_2 * P_1 * (15-M_1))} / [2*D_2 * (15-M_1)] \right) \]

and \(D_1 \) and \(D_2 \) are coefficients determined from the data.

An \(M_p \) value of 25% is recommended by Barrett and Lau for use with the linear surface models.

Previous versions of Eurocode have assumed a constant percent change in property per percent change in MC to adjust properties for a change in MC. However, it is currently assumed that there is no change in MOR with changes in MC with the range of 12 to 18-percent MC. MOE is assumed to change 2-percent for each 1-percent change in MC. The authors are not sure if this is meant to be applied as a simple interest type model or as a compound interest type model. The compound interest type model is more traditional in the United States because it yields the same answer whether adjusting from one MC level to a lower one or if adjusting the other way. The formula for adjusting MOE using a compound interest formula is:

\[P_2 = P_1 * (1 + C/100)^{-M_2 - M_1} \]

(5)

where \(C \) is the assumed percent change in property per percent change in MC.

A simple interest formula for adjusting MOE could be written as:

\[P_2 = P_1 * (1 + (C/100)*(M_1 - M_2)) \]

(6)

Table 2 presents a comparison of formula 2, 5, and 6 for adjusting MOE to 12-percent moisture content using an assumed change of 2-percent change in MOE for each 1-percent change in MC. Note that if \(P_1 \) is adjusted from 25-percent to 12-percent and back to 25-percent again using Equation (6) with \(C = 2\text{-percent} \), then the ratio of the final to the initial value of \(P_1 \) is 0.932. Each iteration of MOE from 25 to 12-percent MC and back again will lower the MOE at 25-percent.
SUMMARY OF PROCEDURES

Experimental

A detailed discussion of the experimental procedures is given in Green and Evans, 1991. The five species chosen for this study were black spruce (Picea mariana), sugar pine (Pinus lambertiana), western white pine (Pinus monticola), grand fir (Abies grandis), and eastern hemlock (Tsuga canadensis). These species were selected to represent a wide range of material that might be expected to be adjusted by the standardized models (Green and Evans, 1991). The lumber for this study was selected from production inventory at lumber mills. Two grades, Select Structural (SS) and No. 2, were selected to provide a range of quality levels. The lumber was selected to be "on grade" based on characteristics that affect strength (e.g., appearance characteristics such as wane were not considered). Modulus of elasticity in the flatwise orientation and strength ratio were used to match the samples in the green condition. Once matched, each of the three groups was then randomly assigned to one of three moisture categories---green, 15%, or 10%. The target sample size for each MC-species-grade combination was 50. However, about 55 pieces were assigned to each group to allow for damage in handling and degrade as a result of drying.

To match drying conditions used in the Douglas-fir and Southern Pine studies, the green lumber to be dried to the 10% and 15% MC levels was carefully dried using a mild schedule in which the dry bulb reading did not exceed 40 degrees C (120 degrees F). The specimens were removed from the kiln when the mean MC was several percentage points above the target MC, and then the specimens were placed in appropriate equilibration chambers. Finally, the lumber was regraded and any change in grade was noted.

The lumber was tested to failure in edgewise bending using third-point loading and a span-to-depth ratio of 17:1 (ASTM D4761, 1992). The grade-controlling defect was located within the test span and randomly located with respect to the direction of loading. Both modulus of rupture (MOR) and MOE in the edgewise orientation were calculated for each piece of lumber. Load deflection curves were obtained for each piece.

Evaluation of Models

Selection of an analytical procedure for comparing the goodness-of-fit of models to the data presents unusual problems. Because the sample size varied between species-grades-moisture content groups, and because we did not have "true" and "predicted" values, most conventional procedures for evaluating goodness-of-fit are not appropriate. It seems logical to us, however, that within a given grade and species the models could be compared by adjusting the properties obtained at each of the three MC levels to a common MC level. Assuming that the three MC groups had the same property distribution in the green condition, and that a model is a perfect predictor of the effect of MC on property values, then at a common MC level all three properties would have an identical value. Thus the maximum absolute difference between the maximum of the three property estimates and the minimum of the three property estimates, after adjustment to the common MC level, would be an indication of model performance. Past experience has shown that although the magnitude of
this difference will vary with the absolute magnitude of the common MC level chosen, the "best" equation (lowest max difference) will also be the "best" equation at other MC levels. For convenience of display we average this maximum difference at the chosen common MC level across sizes and grades.

RESULTS AND DISCUSSION

Modulus of Rupture

Observations from the data. Common percentile estimates for the MOR of species tested in this study are shown in Figure 2. For comparison, the equivalent data obtained in the previous studies on Douglas-fir and Southern Pine are also shown. For illustrative purposes, lines have been drawn between percentile estimates.

As was noted in the Introduction, this study was initiated to evaluate analytical models that were applicable to design codes using a wider range of species than was available for the initial work on Douglas-fir and Southern Pine. Analytical models to be used in standards usually are simple in form and are, of necessity, a compromise between models derived for a specific species. Because our goal was to select one simple model and apply it to as many species as possible, we felt that we could reduce the range of grade-size-MC combinations to be tested. Dropping the 20-percent MC level tend to make the data look more linear than they would if the intermediate MC level were present. Thus care should be taken not to extrapolate the results presented here for drawing inferences about the "best" model for any particular species.

With all seven species there is a tendency for the weakest material to be unaffected by moisture content. Figure 2. With the highest strength lumber MOR tends to increase with decreasing MC. With most species there tends to be a correspondence of moisture effects at equivalent MOR levels for an individual species. Finally, with the exception of eastern hemlock, the slope of the trend line between MOR and MC tends to be similar from green to 15% MC for MOR values below about 40 MPa (at 15% MC). Thus there appears reason to believe that a single species independent code model could be applicable to the lower half of the strength distribution.

Selection of model form. Previous work on modeling MC-MOR relationships had investigated many model types and variations (Green, et.al. 1986; Green, et.al. 1988, Green and Evans, 1989). This study primarily focused on the ASTM D1990 model (Equation 3) and the 2-term linear surface model (Equation 4) for prediction of MOR. The 2-term model was included because it was proposed by the Barrett and Lau for possible adoption in a design standard. A "zero adjustment model", which is the current EuroCode 5 model, is also included for comparison. Because it is the best research model we investigated, the quadratic surface model (Equation 1) is also included for comparison. However, we are not suggesting this model be used in engineering design standards.

The "best" models for a given model type are the models with the smallest average maximum difference. The average maximum differences were evaluated at several percentiles of the distribution, as well as at the mean. To simplify discussion, only the average maximum differences at the 50th
percentile are given, Table 3. All of the best models provide a better fit than taking no adjustment. If the only data available were for the lower stress classes, perhaps ignoring adjustments in MOR values due to change in moisture content might not result in a very large error. However, testing data at 18% MC and assuming this is the value at 12% MC could result in significant error in assignment to the proper stress class.

The single most important factor in identifying the best model for a given model type is the selection of the M_p value. This is because without the proper selection of M_p, the maximum difference for the data adjusted to any MC level by a proposed model is always controlled by the data set for green lumber. The models were developed assuming a particular M_p value. Without refitting them under a different assumed M_p value, the only change easy to incorporate into the models that retain the current parameter estimates is to assume a different M_p value for the green specimens of a species. For the 2-term linear surface model and the ASTM model the M_p value that minimizes the average maximum difference separates into three levels: $M_p = 22-23\%$ for Southern Pine and eastern hemlock; $M_p = 26-27\%$ for Douglas-fir, sugar pine, and grand fir; and $M_p = 29-30\%$ for western white pine and black spruce. No attempt was made to derive a quadratic surface model for the limited data on 2x4’s. Thus it is not surprising that the quadratic surface model with an assumed M_p value of 23% is not as good as the best linear model. Also, as noted previously, having only two dry moisture levels and a movable M_p value tends to make the data favor a linear model.

Another factor to consider in selecting the model form is the ease in using the model. The quadratic surface model was already eliminated by the authors (and by the committee that chose the models to be used in ASTM D1990) because it was too complex. Although the 2-term linear surface model can be solved in closed form, and thus does not require a computer program to use, the equations can not be done easily with a paper and pencil. Further, care must be taken that the term under the square root in Equation 4 not be allowed to become negative. This happen several times when trying to use this equation on the data obtained in this study. There is no obvious "fix" that totally solves problems of the 2-term linear model when the term under the square root becomes negative. When all the specimens in a data set could not be adjusted for the model, an * was placed in Table 3 to denote the problem. Given that there is usually no practical difference between the average maximum differences for the "best" equations of the ASTM and 2-term linear surface model types, the authors feel that an equation of the ASTM type would be easier to use in a design standard.

Application to other species. One option for using these formulas in a design standard is to use the best M_p value for the species for which data is available, and to use an assumed M_p value for species for which data is not available. This is the procedure suggested in the Wood Handbook for adjusting the properties of small, clear pieces (USDA, 1987). Another alternative is to assume one M_p value and apply it to all (or nearly all) species. This is the procedure often adopted in design standards such as ASTM D2915. To evaluate how these options might work, we calculated the mean value of the average maximum difference across species, Table 3. For the ASTM type model the best overall M_p value appears to be 25-26 %.
If an M_p value of 25% is chosen as the best average value to apply to all species, and an ASTM type model is assumed for this example, then a comparison between the maximum differences at 25% for each species and the maximum differences for the best model indicate some significant errors could occur. Thus the results of this study suggest that we should use the best M_p value for that species if it is known and only apply an average M_p value to species for which we have no data. However, before making a final recommendation the authors will go back and reanalyze the full Douglas-fir and Southern Pine data sets using the ASTM model, Equation 3.

A final option is to try to predict a new intersection moisture content, \hat{M}_p, for a species based on some other information about the species. Using information on the traditional intersection moisture content, $(M_p$ in Table 1), and dry/green ratio ($DGR = \text{ratio of MOR at 12\% MC to that green}$) from the Wood Handbook (USDA, 1987), the authors have noticed an equation that provides a reasonable estimate of \hat{M}_p.

$$\hat{M}_p = M_p + 10 \times (DGR - 1.5)$$ (7)

This equation results in estimated \hat{M}_p values of 23 for Southern Pine, 24 for eastern hemlock, 25 for Douglas-fir and grand fir, 27 for sugar pine, 29 for black spruce and 31 for western white pine. The authors will also be looking to further attempt to refine predicting M_p.

Moment Capacity

The bending moment capacity, RZ, is the product of the member bending strength, MOR, and the bending section modulus, $Z = (\text{thickness} \times \text{width} \times \text{width})/6$. The RZ is often the controlling factor in structural performance. However, the actual RZ of lumber is a function of individual mill cutting tolerances. Therefore it is common to adjust MOR and Z separately for change in MC (Green, 1989). In the United States, ASTM chose to adopt a linear model for MOR and for Z. But in recognition of the potential loss in MOR with decreasing MC shown in Figure 1 they also limited the application of this model to MC's greater than 10%.

The results of this study suggest that there is little reason to expect a loss in bending capacity with drying for MC from green to 15%, Figure 3. The data also suggests that restricting to application of the model to MC's or 10% or more will result in little significant loss of bending capacity with further drying below 15%. However, the results also suggest that the caution of the ASTM committee in restricting the use of the model to higher MC levels may have been warranted. The effect of very low MC on lumber strength is a focus of current research at the U.S. Forest Products Laboratory.

Modulus of Elasticity

Observations from the data. Percentile estimates for the MOE of species tested in this study are shown in Figure 4. Most species generally show an increase in MOE with drying from green to 10% MC. The MOE of Grand fir and eastern hemlock appear less sensitive to change in MC than the other species. The insensitivity of eastern hemlock was expected (Green and Evans, 1991), but that of grand fir was not. Further, both the MOR and MOE of eastern hemlock are less sensitive than the other species to change in MC.
With grand fir only the MOE appears to be less sensitive to a change in MC. Thus we suggest the anomalous behavior of grand fir be confirmed in a future study.

Model selection. As with MOR, selection of \(\text{M}_p \) value appears to be the most important factor in selecting a particular model. For the ASTM model there is generally good correspondence between the best \(\text{M}_p \) value for MOR, Table 3, and that for MOE, Table 4. Even when the correspondence is not exact, the error in MOE resulting from assuming the best \(\text{M}_p \) value for MOR is not large. The same can not be said for grand fir, where the selected \(\text{M}_p \) value for MOR would be 27%, but for MOE it would be 20%. Generally there would appear to be little practical difference between the ASTM type model and the compound interest type model.

Bending Stiffness

The bending stiffness, \(EI \), is the product of the member modulus of elasticity, \(\text{MOE} \), and the moment of inertia, \(I = \text{thickness} \times \text{width} \times \text{width} \times \text{width} / 12 \). The \(RZ \) is often the controlling factor in structural performance. The results of this study generally confirm the historical evidence that \(EI \) either increases with decreasing MC or at least stays constant, Figure 5. There is some indication this assumption might not hold for eastern hemlock. However, the error involved would appear to be small for MC’s above 10%.

CONCLUSIONS

From the results of this study we conclude the following.

1. For adjusting modulus of rupture for change in MC, any of the better models provides a better property estimate than taking no adjustment. The adoption of some MC-MOR adjustment model would be especially important for the higher stress class levels.

2. The simple linear model of ASTM D1990 (Equation 3) is recommended. Its use should be restricted to MC’s above about 10%. The results of this study suggest that the upper limit of the adjustment be the \(\text{M}_p \) values determined in this paper, or 25% for untested species.

3. For modulus of elasticity either the constant percentage model of ASTM D1990, or a constant percentage model of the type used to compute compound interest be adopted (Equation 5). The \(\text{M}_p \) value should be based on those chosen for MOR.

4. There is a need to go back and re-evaluate the full Douglas-fir and Southern Pine MC-MOR data sets using the knowledge gained in this study. This work is in progress.
REFERENCES

 D 245-81. Establishing structural grades and related allowable properties for visually graded lumber.

Table 1.--Historical values of intersection moisture content values for selected species (USDA, 1987).¹

<table>
<thead>
<tr>
<th>Species</th>
<th>Mp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ash, white</td>
<td>24</td>
</tr>
<tr>
<td>Birch, yellow</td>
<td>27</td>
</tr>
<tr>
<td>Chestnut, American</td>
<td>24</td>
</tr>
<tr>
<td>Douglas-fir</td>
<td>24</td>
</tr>
<tr>
<td>Hemlock, western</td>
<td>28</td>
</tr>
<tr>
<td>Larch, western</td>
<td>28</td>
</tr>
<tr>
<td>Pine, loblolly</td>
<td>21</td>
</tr>
<tr>
<td>Pine, longleaf</td>
<td>21</td>
</tr>
<tr>
<td>Pine, red</td>
<td>24</td>
</tr>
<tr>
<td>Redwood</td>
<td>21</td>
</tr>
<tr>
<td>Spruce, red</td>
<td>27</td>
</tr>
<tr>
<td>Spruce, Sitka</td>
<td>27</td>
</tr>
<tr>
<td>Tamarack</td>
<td>24</td>
</tr>
</tbody>
</table>

¹Intersection moisture content is the point at which mechanical properties begin to change when drying from the green condition.
Table 2.—Adjusting Modulus of Elasticity by Various Formula

<table>
<thead>
<tr>
<th>Moisture Content</th>
<th>Ratio of MOE at M_2 to MOE at M_1 by</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ASTM</td>
</tr>
<tr>
<td>Initial</td>
<td>Final</td>
</tr>
<tr>
<td>25</td>
<td>12</td>
</tr>
<tr>
<td>23</td>
<td>12</td>
</tr>
<tr>
<td>21</td>
<td>12</td>
</tr>
<tr>
<td>19</td>
<td>12</td>
</tr>
<tr>
<td>17</td>
<td>12</td>
</tr>
<tr>
<td>15</td>
<td>12</td>
</tr>
</tbody>
</table>
Table 3.--Average maximum absolute difference for modulus of rupture at the 50th percentile for species at 15 percent moisture content.

<table>
<thead>
<tr>
<th>Model¹</th>
<th>Average maximum absolute difference, MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Douglas-Fir</td>
</tr>
<tr>
<td>No adjustment</td>
<td>25.0</td>
</tr>
<tr>
<td>Quad. surface</td>
<td>6.5</td>
</tr>
<tr>
<td>ASTM</td>
<td></td>
</tr>
<tr>
<td>Mp = 23</td>
<td>9.4</td>
</tr>
<tr>
<td>= 24</td>
<td>7.2</td>
</tr>
<tr>
<td>= 25</td>
<td>5.0</td>
</tr>
<tr>
<td>= 26</td>
<td>4.2</td>
</tr>
<tr>
<td>= 27</td>
<td>6.1</td>
</tr>
<tr>
<td>= 28</td>
<td>--</td>
</tr>
<tr>
<td>= 29</td>
<td>--</td>
</tr>
<tr>
<td>= 30</td>
<td>--</td>
</tr>
<tr>
<td>Linear surface</td>
<td></td>
</tr>
<tr>
<td>Mp = 23</td>
<td>10.1</td>
</tr>
<tr>
<td>= 24</td>
<td>8.1</td>
</tr>
<tr>
<td>= 25</td>
<td>5.8</td>
</tr>
<tr>
<td>= 26</td>
<td>*</td>
</tr>
<tr>
<td>= 27</td>
<td>*</td>
</tr>
<tr>
<td>= 28</td>
<td>--</td>
</tr>
<tr>
<td>= 29</td>
<td>--</td>
</tr>
<tr>
<td>= 30</td>
<td>--</td>
</tr>
</tbody>
</table>

¹Quad. surface = Quadratic surface model of Equation 1.
Linear surface = 2-term linear surface model of Equation 4.

*Did not converge.
Table 4.

Average absolute maximum difference of modulus of elasticity at 50th percentile for species at 15 percent moisture content.

<table>
<thead>
<tr>
<th>Model 1</th>
<th>Douglas-Fir</th>
<th>Southern Pine</th>
<th>Western White Pine</th>
<th>Sugar Pine</th>
<th>Black Spruce</th>
<th>Grand Fir</th>
<th>Eastern Hemlock</th>
</tr>
</thead>
<tbody>
<tr>
<td>No adjustment</td>
<td>1972</td>
<td>2585</td>
<td>2599</td>
<td>2337</td>
<td>2840</td>
<td>1737</td>
<td>669</td>
</tr>
</tbody>
</table>

ASTM

<table>
<thead>
<tr>
<th>Mp</th>
<th>20</th>
<th>--</th>
<th>--</th>
<th>--</th>
<th>--</th>
<th>1027</th>
<th>586</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>731</td>
<td>972</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>1117</td>
<td>655</td>
</tr>
<tr>
<td>22</td>
<td>593</td>
<td>869</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>1213</td>
<td>731</td>
</tr>
<tr>
<td>23</td>
<td>593</td>
<td>807</td>
<td>1007</td>
<td>724</td>
<td>1103</td>
<td>1310</td>
<td>834</td>
</tr>
<tr>
<td>24</td>
<td>593</td>
<td>807</td>
<td>862</td>
<td>586</td>
<td>944</td>
<td>1406</td>
<td>--</td>
</tr>
<tr>
<td>25</td>
<td>669</td>
<td>807</td>
<td>703</td>
<td>448</td>
<td>779</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>26</td>
<td>786</td>
<td>917</td>
<td>545</td>
<td>365</td>
<td>614</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>27</td>
<td>993</td>
<td>1144</td>
<td>386</td>
<td>303</td>
<td>483</td>
<td>1737</td>
<td>--</td>
</tr>
<tr>
<td>28</td>
<td>1206</td>
<td>1386</td>
<td>310</td>
<td>379</td>
<td>407</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>29</td>
<td>1434</td>
<td>1634</td>
<td>324</td>
<td>462</td>
<td>407</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>30</td>
<td>1668</td>
<td>1889</td>
<td>352</td>
<td>--</td>
<td>524</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Compound interest

<table>
<thead>
<tr>
<th>Mp</th>
<th>20</th>
<th>634</th>
<th>--</th>
<th>--</th>
<th>--</th>
<th>986</th>
<th>641</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>545</td>
<td>800</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>1096</td>
<td>717</td>
</tr>
<tr>
<td>22</td>
<td>524</td>
<td>683</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>1200</td>
<td>820</td>
</tr>
<tr>
<td>23</td>
<td>614</td>
<td>683</td>
<td>717</td>
<td>358</td>
<td>717</td>
<td>1310</td>
<td>951</td>
</tr>
<tr>
<td>24</td>
<td>703</td>
<td>696</td>
<td>552</td>
<td>234</td>
<td>545</td>
<td>1420</td>
<td>--</td>
</tr>
<tr>
<td>25</td>
<td>--</td>
<td>876</td>
<td>379</td>
<td>207</td>
<td>365</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>26</td>
<td>--</td>
<td>--</td>
<td>296</td>
<td>234</td>
<td>269</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>27</td>
<td>--</td>
<td>--</td>
<td>317</td>
<td>372</td>
<td>303</td>
<td>1992</td>
<td>--</td>
</tr>
<tr>
<td>28</td>
<td>--</td>
<td>--</td>
<td>352</td>
<td>--</td>
<td>345</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

1 ASTM = ASTM D1990 model of Equation 2.

Compound Interest = 2 percent change in MOE per percent change in moisture content, Equation 5.
Figure 1. Analytical model of the effect of moisture content on the bending properties of dimension lumber (Green and Evans, 1988).
Figure 2. Effects of moisture content on the modulus of rupture of Select Structural and No. 2, 2 by 4's (percentile levels are 5, 10, 25, 50, 75, 90, 95).
Figure 3. Effect of moisture content on the moment capacity of Select Structural and No. 2, 2 by 4's (percentile levels are 5, 10, 25, 50, 75, 90, 95).
Figure 4. Effect of moisture content on the modulus of elasticity of Select Structural and No. 2, 2 by 4's (percentile levels are 5, 10, 25, 50, 75, 90, 95).
Figure 5. Effect of moisture content on the stiffness of Select Structural and No. 2, 2 by 4's (percentile levels are 5, 10, 25, 50, 75, 90, 95).
CONTROL OF DEFLECTIONS IN TIMBER STRUCTURES WITH REFERENCE TO EUROCODE 5

by

A Martensson
S Thelandersson
Lund Institute of Technology
Sweden

MEETING TWENTY - FIVE
ÅHUS
SWEDEN
AUGUST 1992
1. *Introduction*

The competitiveness of timber versus other structural materials depends to a great extent on the possibility to produce structures with high quality in service. Consequently, serviceability requirements related to deflections, vibrations and sound transmission are of very high significance for a rational utilization of timber in buildings.

In principle, serviceability requirements should be set by the client in agreement with the builder and not by codes. The codes give, however, general principles for loads, material parameters and calculation methods which may be used for design in serviceability limit states. The present draft of Eurocode 5 also gives recommended limits of deflections and recommended methods to control vibrations. It is clear that rational guidelines for design of timber structures with regard to serviceability are needed in practice. Such guidelines could be given in manuals and textbooks and do not have to be included in the code. Serviceability criteria given as recommendations in Eurocode will have a powerful influence in practice, due to the legal authority of an official document. Hence, if serviceability recommendations are given in Eurocode 5, it is very important that they have a rational and sound basis. If this is the case, the code recommendations can be efficient to promote good quality and unified rules of application in practice.

The purpose with the present paper is to discuss design methods and criteria for limitation of short term and long term deflections in timber structures with particular reference to the present recommendations given in Eurocode 5 [1]. Alternative methods and criteria, to replace the ones in the present draft of Eurocode 5, are suggested.

2. *Combination of actions in the serviceability limit state*

The basis of design common to all Eurocodes (see e.g. [2]) specifies three different types of load combinations which may be considered in serviceability limit states. These are:

Rare combinations

The rare combinations are used mainly in those cases when exceedance of a limit state causes a permanent local damage or a permanent unacceptable deformation. They include

\[\sum_{j \geq 1} G_{k,j} + Q_{k,1} + \sum_{i > 1} \psi_{0,i} Q_{k,i} \] \hspace{1cm} (1)
Frequent combinations

The frequent combinations are used mainly in those cases when exceedance of a limit state causes local damage, large deformations or vibrations which are temporary. They include

$$\sum_{j \geq 1} G_{k,j} + \psi_{1,i} Q_{k,i} + \sum_{i > 1} \psi_{2,i} Q_{k,i}$$ \hspace{1cm} (2)

Quasi—permanent combinations

The quasi—permanent combinations are used when long term effects are of importance. They include

$$\sum_{j \geq 1} G_{k,j} + \psi_{2,i} Q_{k,i}$$ \hspace{1cm} (3)

In expressions (1—3), $G_{k,j}$ and $Q_{k,i}$ are characteristic values of permanent and variable loads, respectively. The values $\psi_{0,i}$, $\psi_{1,i}$, $\psi_{2,i}$, $Q_{k,i}$ and $Q_{k,i}$ are the combination value, frequent value and the quasi—permanent value of variable load $Q_{k,i}$, respectively.

3. Deflection criteria in the present version of Eurocode 5

According to the present draft of Eurocode 5 [1] the design load combination to be used in the serviceability limit state is chosen as

$$\sum G_{k,j} + Q_{k,i} + \sum_{i > 1} \psi_{1,i} Q_{k,i}$$ \hspace{1cm} (4)

It should be noted that the load combination (4) differs from all three combinations defined in "Basis of design", eqs. (1—3).

As far as creep deflections are concerned the final deflection u_{fin} shall be calculated for each load type as

$$u_{\text{fin}} = u_{\text{inst}} (1 + k_{\text{def}})$$ \hspace{1cm} (5)

where u_{inst} is the instantaneous deflection of the load considered and k_{def} is a "creep" factor.
depending on load duration class and service class. For load combinations, the deflections shall be calculated for each load separately and then be added.

Recommended limits of deflection are given in EC 5. For the instantaneous deflection \(u_{2,\text{inst}} \) due to variable loads the following limit is proposed for a simply supported beam:

\[
\frac{u_{2,\text{inst}}}{L} \leq \frac{1}{400} \tag{6a}
\]

where \(L \) is the beam span.

For long term deflections the following limits are proposed:

\[
\frac{u_{2,\text{max}}}{L} \leq \frac{1}{300} \tag{6b}
\]

\[
\frac{u_{\text{nett, max}}}{L} \leq \frac{1}{200} \tag{6c}
\]

where \(u_2 \) and \(u_{\text{nett}} \) are defined in Fig. 1. The subscript max indicates long term values of the deflections.

\begin{center}
\begin{tikzpicture}

\draw (0,0) -- (4,0) node[midway, below] {\(L \)};
\draw (0,0) -- (0,2) node[left] {\(u_0 \)} node[below] {precamber (if applied)};
\draw (0,0) -- (4,2) node[below] {\(u_{\text{nett}} \)};
\draw (1,2) -- (1.5,2) node[above] {\(u_1 \)};
\draw (1.5,2) -- (2,2) node[above] {\(u_0 \)};
\draw (2,2) -- (2.5,2) node[above] {\(u_2 \)};
\end{tikzpicture}
\end{center}

Fig. 1 Deflection of a structural beam. Definition of different components of deflection.

To illustrate the practical significance of the recommended deflection requirements in comparison with ultimate limit state design some results are given below for straight beams made of glulam and timber. Unless otherwise stated the calculations are based on the rules and numbers given in the Eurocode 5 draft from December 1991 [1]. It is assumed in all cases that the beam is loaded with only one variable load \(Q_k \) (e.g. imposed load or snow load) in addition to the permanent load \(G_k \). Only rectangular beams with width \(b \) and depth \(h \) are considered. The beams are assumed to be regularly spaced with spacing \(c \) and the loads \(G_k \) and \(Q_k \) are uniform and specified per unit area.
Glulam beams

To compare the ultimate and serviceability limit states, the required beam depth h_s given by a serviceability criterion and the required beam depth h_u given by the ultimate limit state were calculated for different cases. The ratio between h_s and h_u is taken as an indicator on which of the criteria is decisive in design of the beam. For h_s/h_u greater than 1 the dimensions of the beam are governed by the deflection limit.

Fig. 2 displays the ratio h_s/h_u as a function of the load parameter $(Q_k + G_k)$ c/b. Calculations were made with each of the three criteria in Eq. (6a, 6b and 6c) respectively. The results in Fig. 2 are valid for glulam GL 37 with $f_{m,k} = 37$ MPa and $E_{0,\text{mean}} = 14500$ MPa. The ratio $G_k/(G_k + Q_k)$ is 0.25 in Fig. 2a and 0.5 in Fig. 2b. The variable load Q_k belongs to the load duration class "medium term".

The beam dimension is determined by the deflection requirement for low values of the load parameter $(G_k + Q_k)$ c/b and by failure for high values of this parameter. All deflection criteria give almost the same results when the permanent load is low compared to the total load (Fig. 2a). For higher ratios of $G_k/(G_k + Q_k)$ the long term deflection criterion (6c) is governing (Fig. 2b).

The practical range of the parameter $(G_k + Q_k)$ c/b for glulam is between 20 and 150 kN/m². For floors with imposed loads and roofs in regions with high snow loads $(G_k + Q_k)$ c/b is usually in the range 50–100 kN/m² whereas for roofs with low snow loads the common range is 25–50 kN/m².

The results given in Fig. 2 are displayed in an alternative way in Fig. 3, where h_s/h_u is given as a function of the ratio L/h_s where L is the span of the beam and h_s as before is the required depth with respect to the serviceability criterion in question. Usually, L/h_s will be between 15 and 30 in practice, with lower values for heavily loaded beams.

From these results it is quite evident that for high quality glulam, the deflection criteria recommended in Eurocode 5 are decisive in a majority of cases in practice.
Fig. 2 The ratio between the required beam depths h_s and h_u in the serviceability and ultimate limit states, respectively.
Fig. 3 The ratio between the required beam depths h_s and h_u in the serviceability and ultimate limit states as a function of the length to depth ratio L/h_s.

Control of deflections in timber structures with reference to Eurocode 5
Timber beams

The ratio h_s/h_u is given in Table 1 for simply supported timber beams of different strength classes and according to different serviceability criteria. The values in the table refer to a specific case with regard to loading, spacing c and width b of the beam. The deflection criterion specified for limitation of vibrations (maximum deflection 1.5 mm under a point load of 1 kN) is also included in the table. In evaluation of this criterion it has been assumed that composite action between the floor sheathing and the beams gives an increase in stiffness with 75 percent. Furthermore, it was assumed that the load could be reduced by 25 percent due to load sharing with the adjacent beams. Without these effects, i.e. if the point load is assumed to be carried by only one timber joist without composite action, the required value of h_s would be more than doubled and the vibration criterion would be decisive in all cases.

The results in the table indicate that if any of the serviceability criteria are used, there is not much sense in using timber of higher strength class than C24. For the case $G_k/(G_k + Q_k) = 0.25$ all the deflection criteria are almost identical, whereas if the permanent load is relatively larger, the long term criterion will be decisive.

<table>
<thead>
<tr>
<th>G_k</th>
<th>CRITERIA</th>
<th>STRENGTH CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$G_k/(G_k + Q_k)$</td>
<td>$u_{2,\text{inst}} \leq L/400$</td>
<td>C14</td>
</tr>
<tr>
<td>0.25</td>
<td>0.93</td>
<td>0.97</td>
</tr>
<tr>
<td></td>
<td>$u_{2,\text{max}} \leq L/300$</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td>$u_{\text{net},\text{max}} \leq L/200$</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td>VIBRATION WITH LOAD SHARING AND COMPOSITE ACTION</td>
<td>0.94</td>
</tr>
<tr>
<td>0.5</td>
<td>$u_{2,\text{inst}} \leq L/400$</td>
<td>0.82</td>
</tr>
<tr>
<td></td>
<td>$u_{2,\text{max}} \leq L/300$</td>
<td>0.81</td>
</tr>
<tr>
<td></td>
<td>$u_{\text{net},\text{max}} \leq L/200$</td>
<td>0.95</td>
</tr>
</tbody>
</table>

Table 1: Values of h_s/h_u for different serviceability criteria and strength classes. $G_k + Q_k = 2.5$ kN/m². Rectangular beams with width $b = 45$ mm and regular spacing $c = 600$ mm.

Control of deflections in timber structures with reference to Eurocode 5
Conclusions

The examples above show that limits on deflection such as those recommended in the current version of Eurocode 5 very often are decisive in practical design, provided that there is a need to limit deflection. For long span glulam beams limitation of deflections could be met by providing a precamber on the beam. This possibility has not been considered in the present analysis. However, it is clear that an accurate prediction of long term as well as short term deformations of timber and glulam is very important from a practical point of view. It should have at least the same level of priority as prediction of failure in timber.

In view of this it is also important to formulate rationally based serviceability criteria and to promote a sound understanding of these problems to structural engineers.

4. Proposed design method for limitation of deflections

The discussion in what follows is illustrated by a simply supported beam loaded by permanent loads and variable loads. The fact that variable loads often dominate in timber structures means that the deflection will fluctuate to a great extent during the lifetime of the structure, which has to be considered in the choice of design criteria for deflections.

Fig. 4 illustrates in principle the deflection behaviour of a beam loaded with permanent load and snow load, see e.g. [3]. The total deflection can be subdivided into one part δ_1 due to permanent loads immediately after loading and one part δ_2 which is variable during the lifetime of the structure. The variable part δ_2 consists of a reversible portion $\delta_{2, \text{inst}}$ which is present only during limited periods when the variable load is high, and a continuously increasing portion δ_{creep}, which for all practical purposes may be considered as irreversible [3]. Load peaks with short duration, such as those illustrated in Fig. 4, occur both for snow load and imposed loads in the most common types of buildings.
Fig. 4 Time variation in principle for deflection (lower figure) of a beam with permanent and variable loads according to the upper figure. Curve A shows the creep deflection if the beam is loaded with $G_k + Q_k$ during the whole period.
In view of this behaviour, the deflection criteria recommended in the present Eurocode 5 draft should be revised and clarified. To discuss more functional and rational design criteria some definitions of deflection components will be introduced with reference to Fig. 5.

![Diagram of deflection components for a simply supported beam.](image)

Fig. 5 Deflection components for a simply supported beam.

The deflections are here denoted by the symbol δ to distinguish them from the present EC5 definitions shown in Fig. 1. We propose that the deflection components are redefined as follows, c.f. Eurocode 3 for steel structures [5]:

- δ_{nett} = sagging of the beam relative to the straight line joining the supports.
- δ_0 = precamber of the beam in the unloaded state (state 0).
- δ_1 = deflection of the beam due to permanent loads immediately after loading (state 1).
- δ_2 = deflection of the beam due to variable loads plus any time dependent deformation due to permanent loads (state 2).

Normally, both δ_0 and δ_1 are fixed when the construction work is completed and do not change during the lifetime of the structure. (The case when the permanent load is changed during the building lifetime is not considered here). The component δ_2, however, is varying during the lifetime of the structure. The same applies to the nett deflection which is given by...
\[\delta_{\text{nett}} = \delta_1 + \delta_2 - \delta_0 \]

The deflection \(\delta_2 \) may be calculated as

\[\delta_2 = \delta_{2,\text{inst}} + \delta_{\text{cr}} \]

where \(\delta_{2,\text{inst}} \) is instantaneous deflection due to variable loads and \(\delta_{\text{cr}} \) is the total creep deflection due to permanent and variable loads. Here \(\delta_{2,\text{inst}} \) can be conceived as a temporary, reversible part and \(\delta_{\text{cr}} \) as a permanent, non-reversible part of \(\delta_2 \).

The maximum creep deflection \(\delta_{\text{cr,max}} \) that will occur during the lifetime can be predicted in design as

\[\delta_{\text{cr,max}} = \delta_{\text{qp,inst}} \cdot k_{\text{def}} \]

where \(\delta_{\text{qp,inst}} \) is the instantaneous deflection due to quasi-permanent loads (load combination according to Eq. (3)) and \(k_{\text{def}} \) is a factor which takes into account the increase in deflection with time due to the effect of creep and moisture variations.

Based on these concepts two types of deflection criteria will be suggested. These criteria are proposed to replace the three criteria given in the present EC5–draft.

Deflection criterion to avoid permanent damage

A typical case is when excessive deformations may cause permanent damage to partitions, to members attached to or in contact with the member considered and to fixtures and finishes. In this case the risk of passage of the deflection limit should be small which means that the instantaneous deflection should be calculated for the rare load combination defined by Eq. (1). The following criteria is suggested in this case

\[\delta_{2,\text{max}} = \delta_{2,\text{inst}} + \delta_{\text{cr,max}} \leq \delta_{\text{crit}} \]

where \(\delta_{2,\text{inst}} \) is the instantaneous deflection due to variable loads calculated on the basis of the rare load combination, Eq. (1) and \(\delta_{\text{cr,max}} \) is the long term deflection given by Eq. (9). The critical deflection \(\delta_{\text{crit}} \) generally depends on the nature of the elements which could suffer damage, but in the absence of more precise information the limit [L/400] is considered sufficient for most circumstances. (In EC2 for concrete structures the limit L/500 is recommended and in EC3 for steel structures the limit L/350 is given.)
In summary, the criterion (10) is directly targeted at the maximum extra deflection \(\delta_{2, \text{max}} \) that may occur after the building has been erected. Since the criterion is related to the risk of permanent damage in secondary building elements, the probability of passage of the criterion should be kept at a low level.

Proposed deflection criterion with respect to appearance and general utility

From the point of view of appearance and general utility it may be desirable to avoid excessive deflections which are permanent or occur during long periods. Occasional passages of the deformation limit may, however, be acceptable if they are reversible and occur only during short periods. An appropriate deflection criterion for this case is

\[
\delta_{\text{max}} = \delta_{\text{qp, max}} - \delta_0 \leq \delta_{\text{acc}}
\]

(11)

where \(\delta_{\text{qp, max}} \) is the maximum deflection due to quasi-permanent loads, Eq. (3), calculated as

\[
\delta_{\text{qp, max}} = \delta_{\text{qp, inst}} (1 + k_{\text{def}})
\]

(12)

where \(\delta_{\text{qp, inst}} \) and \(k_{\text{def}} \) is defined in connection with Eq. (9).

In Eq. (11) \(\delta_{\text{acc}} \) is the acceptable deflection limit with respect to appearance and general utility. Ideally, the value of \(\delta_{\text{acc}} \) should be decided by the client, but as a general recommendation the value \(\delta_{\text{acc}} = L/250 \) may be taken. (Both EC2 and EC3 recommend this value).

The deflection calculated according to Eq. (11) on the basis of the quasi-permanent load combination will contain the "permanent" deflection plus a certain portion of the instantaneous deflection due to variable loads. The latter contribution depends on the nature of the variable load in question. Loads with long duration give higher contributions than loads occurring over short periods.
5. **Prediction of long term deflections**

It is suggested in this paper that the long term creep deflection \(\delta_{cr, max} \) should be calculated from

\[
\delta_{cr, max} = \delta_{QP, inst} \cdot k_{def}
\]

(9)

where \(\delta_{QP, inst} \) is the instantaneous deflection induced by the collective action of quasi-permanent loads given by

\[
\sum G_{k,i} + \sum_{i \geq 1} \psi_{2,i} Q_{k,i}
\]

(3)

The quasi-permanent value \(\psi_{2,i} Q_{k,i} \) is an estimate of the time averaged mean value of variable load \(i \). Values of \(\psi_2 \) will be given in Eurocode 1 for different types of load, but specific numbers are not definitely decided yet.

By introducing quasi-permanent loads the value of \(k_{def} \) in Eq. (9) corresponds to the case with a load constant in time. This means that \(k_{def} \) should be calibrated against creep tests with constant load under conditions which are representative for the service class considered. In this case there is no need for different values of \(k_{def} \) for different load durations, since this is already considered in the load combination. This makes the calculations easier.

It may also be noted that existing experimental information about creep under natural conditions almost invariably refers to the case with constant load during the test. Therefore, reliable estimates of the factor \(k_{def} \) can only be made for permanent loading and the influence of variable loads on accumulated permanent creep deflection during the lifetime of a structure is more realistically estimated within the framework of general load combination rules.

In timber structures creep is significantly enhanced by moisture variations. It has been shown in [3] and [4] that the effects of moisture variations are generally smaller for variable loads than for permanent load. The creep induced by moisture variations for high loads acting in short intervals separated by longer periods of low loads is smaller than if the high load is acting during an unbroken time period with a duration equal to the sum of the short intervals. Therefore, if a time averaged mean for a variable load is used as a basis for creep prediction, the influence of moisture variations may in some cases be more significant than in reality. On the other hand, the use of a time averaged load underestimates normal creep, since a higher load during a shorter time period gives more creep than a lower load during a longer time.
period even if the time average is the same. Thus, it seems reasonable to estimate creep in timber due to variable loads on the basis of the quasi-permanent load combination.

Service classes

The service classes in EC5 are defined as follows:

Service class 1: is characterized by a moisture content in the materials corresponding to a temperature of 20°C and the relative humidity of the surrounding air only exceeding 65 percent for a few weeks per year.

Service class 2: is characterized by a moisture content in the materials corresponding to a temperature of 20°C and the relative humidity of the surrounding air only exceeding 85 percent for a few weeks per year.

Service class 3: climatic conditions leading to higher moisture contents than in service class 2.

It is furthermore stated that the average equilibrium moisture content in most softwoods will not exceed 12 percent in service class 1 (SC1) and 20 percent in service class 2 (SC2). Accordingly, the definitions of the service classes are given in terms of limits of relative humidity and moisture content in the materials. Nothing is said about the variations in humidity or moisture content, although it is well known that such variations have a great influence on both long-term deformations and strength.

In practical applications, at least in the Scandinavian countries, the following principles are presently used in allocation of different types of structures to service classes (with almost the same definitions as those in EC5):

SC2: Indoor. Non-permanently heated buildings, for instance storage buildings and leisure houses. Structural elements used in climate separating structures.

SC3: Outdoor, or indoor where there is a large generation of moisture.

It can be questioned if these application principles really are coherent with the formal definitions given in the code. In a number of cases the relative humidity indoors is higher than 65 percent for a considerably longer time than a few weeks. If the formal definition should be
followed strictly the majority of structural elements in practice should be allocated to SC2. It is logical in this situation to modify the definitions given in Eurocode 5 so that they become more compatible with current practice and so that effects of moisture variations are considered. The following tentative definitions are proposed:

SC1: is characterized by a moisture content in the materials corresponding to a temperature of 20°C and the relative humidity of the surrounding air only exceeding 75 percent for a few weeks per year. The variations of the daily average relative humidity during a period of two weeks shall not be larger than 20 percent.

SC2: is characterized by a moisture content in the materials corresponding to a temperature of 20°C and the relative humidity of the surrounding air only exceeding 90 percent for a few weeks per year. Structural elements subjected to larger moisture variations than prescribed for service class 1 belong to service class 2 even if the limiting level of humidity for service class 1 is met.

SC3: climatic conditions leading to higher moisture contents than in service class 2.

Creep factors

The numerical values of creep factors to be included in the code will be briefly discussed in what follows. As a basis for estimation of creep factors, creep data for full size timber and glulam from references [6] and [7] are used as well as qualitative information from theoretical studies such as those in references [4] and [5]. For the purpose of discussion the total creep is considered as the sum of two components, basic creep and mechano—sorptive creep. Basic creep is defined as the creep that occurs under constant moisture conditions and has been measured directly by several investigators. Mechano—sorptive creep is that part of creep which is induced by moisture variations.

According to [6] the basic creep factor (defined according to Eq. (9)) for timber and glulam after one year is 0.3—0.4. These figures were obtained from tests on full size beams in constant climate, with different relative humidities in different test series ranging from 35 percent to 90 percent. The amount of creep increases to some extent with the relative humidity level, but the influence is generally very small. Fifty year extrapolations of basic creep which could be used as a basis for estimation of creep factors in the code are given in Table 2. These values have been estimated roughly as twice the one—year values.
The creep induced by moisture variations can not be measured separately. Only the total creep under changing moisture conditions can be determined, and only few tests are available for naturally varying conditions. A few test series, see [6] and [7], have been performed in outdoor environment with weather protection. Under these conditions, one year creep factors between 0.3 and 1.4 have been found by various investigators. It was found in [7] that the one year creep was much lower for beams with varnish \(k_{\text{def}} = 0.6 \) than for unvarnished beams \(k_{\text{def}} = 1.4 \). One test series with glulam in outdoor conditions and exposed to rain showed larger creep compared to the same conditions with protection against direct weathering exposure.

Based on this information it can be concluded that the 50-year value 2.0 of the total creep factor in service class 3 included in the present draft of EC5 is reasonable. This gives a mechano-sorptive creep factor of 1.2 in service class 3, see Table 2.

<table>
<thead>
<tr>
<th>Service class</th>
<th>Basic creep</th>
<th>Mechano-sorptive creep</th>
<th>Total creep</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.6</td>
<td>0.4</td>
<td>1.0</td>
</tr>
<tr>
<td>2</td>
<td>0.7</td>
<td>0.8</td>
<td>1.5</td>
</tr>
<tr>
<td>3</td>
<td>0.8</td>
<td>1.2</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Table 2: Estimation of 50-year creep factors for timber and glulam.

Another (smaller) group of experimental data concerns naturally varying climate indoors, where one-year values of creep factors between 0.3 and 0.6 have been measured [6, 7]. According to [6] Bohannan observed the value 0.6 for glulam after 8 years. Based on these scarce facts a 50-year total creep factor for service class 1 may be estimated to 1.0, giving a mechano-sorptive creep factor of 0.4 for this service class, see Table 2. As far as the authors know, direct measurements are not available for conditions representative for service class 2. Since moisture variations are generally more severe in SC2 than in SC1, it seems reasonable to interpolate between SC1 and SC3, giving a total creep factor for SC2 equal to 1.5, with an intermediate mechano-sorptive creep factor of 0.8.

For the sake of simplicity several factors which are known to influence creep have not been included in the proposal. Large size glulam members are for instance less sensitive to moisture variations than small size members. Surface coatings of paint and varnish also tend to reduce the effect of moisture variations if the coating is durable. Calculations by Toratti [5] indicate however that the size effect seems to vanish after a number of years. The effect of a moisture
protective coating could be taken into account by assigning the member to a lower service class, provided that the coating layer has sufficient durability.

As in the present draft of Eurocode 5, the creep factors of Table 2 should be modified for the case when timber is installed at or near fibre saturation point, and is likely to dry out in service. The values of \(k_{\text{def}} \) should then be increased with 1.0.

For solid timber and glulam in climate separating structures, moisture gradients in service may increase deflection considerably. An example of such a structure is a crawl space floor where higher moisture content at the bottom side than at the top side will create an additional deflection unless special measures are taken during installation of the floor structure [3]. As a general rule \(k_{\text{def}} \) should be increased with 0.5 in such situations. For a roof structure with higher moisture content at the top side the moisture gradient will have the opposite effect [4]. In such cases no modification of the creep factor is needed.

6. **Application of the proposed deflection criteria**

The deflection criteria with associated design principles proposed in sections 4 and 5 will be applied here for some typical examples. Design according to these criteria is compared with ultimate state design and with the present deflection criteria in Eurocode 5.

Fig. 6 shows the ratio between \(h_s \) and \(h_u \) for glulam beams (GL 37) with snow load, where \(h_s \) is the required beam depth according to a deflection criterion and \(h_u \) is the required beam depth determined by ultimate state design. The calculations were made for two cases: one with low snow load (continental Europe) and one with high snow load (northern Scandinavia, mountain regions in mid–Europe), with the data given in Table 3.
Fig. 6 Ratio between h_s and h_u for new proposals of deflection criterion.
<table>
<thead>
<tr>
<th>Load duration class</th>
<th>Case I Low snow load</th>
<th>Case II High snow load</th>
</tr>
</thead>
<tbody>
<tr>
<td>$G_k/(G_k + Q_k)$</td>
<td>0.5</td>
<td>0.25</td>
</tr>
<tr>
<td>Load duration</td>
<td>short term</td>
<td>medium term</td>
</tr>
<tr>
<td>ψ_0</td>
<td>0.6</td>
<td>0.8</td>
</tr>
<tr>
<td>ψ_2</td>
<td>0</td>
<td>0.2</td>
</tr>
<tr>
<td>Service class</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Material</td>
<td>GL37</td>
<td>GL37</td>
</tr>
</tbody>
</table>

Table 3: Data used in example calculations

The upper diagram in Fig. 6 shows the result for the proposed deflection criterion with regard to general utility and appearance, Eq. (11), without precamber ($\delta_0 = 0$). Comparing this diagram with Fig. 3, it is found that the proposed criterion gives almost the same results as the present EC5 for the case with low snow load. For the case with high snow load the new proposal is more liberal. Thus a more strict formal deflection limit (L/250) compared to L/200) can be met with unchanged or smaller dimensions of the beam. The reason for this is that the deflection is calculated for a more realistic load combination giving smaller design loads. Also note that a slightly higher and more realistic creep factor has been introduced (1.0 compared to 0.8).

The lower diagram in Fig. 6 shows the result from the proposed deflection criterion in cases where there is a clear risk for permanent damage in secondary structures. With this criterion the required dimensions are higher than those obtained from the present EC5 criteria. This is reasonable, since this criterion should only be applied in those specific situations where excessive deflection may cause damage in secondary structures.

<table>
<thead>
<tr>
<th>CRITERIA</th>
<th>SERVICE CLASS</th>
<th>STRENGTH CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C14</td>
<td>C18</td>
</tr>
<tr>
<td>GENERAL UTILITY & \ APPEARANCE</td>
<td>1</td>
<td>0.81</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.87</td>
</tr>
<tr>
<td>PERMANENT DAMAGE</td>
<td>1</td>
<td>1.03</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.09</td>
</tr>
</tbody>
</table>

Table 4: Values of h_u/h_s for different strength and service classes according to the proposed design principles. $G_k + Q_k = 2.5 \text{ kN/m}^2$. Beam width $b = 45 \text{ mm}$, spacing $c = 600 \text{ mm}$. Long term variable load with $\psi_0 = 0.7$, $\psi_2 = 0.3$, $G_k/(G_k + Q_k) = 0.25$.
Values of h_{e}/h_{u} are given in Table 4 for simply supported timber beams according to the deflection criteria proposed by the authors. Comparing these values with those of Table 1 it is found that the proposed criterion for general utility and appearance is more liberal than the present EC5–criterion, Eq. (6c). On the other hand the "permanent damage" criterion is more severe.

In summary, the criterion defined in this paper for general utility and appearance, which is formally equivalent with the corresponding criteria for steel and concrete structures, is more liberal than the present EC5–criterion in many cases. This criterion could be anticipated to be used rather frequently for horizontal members of glulam and timber. However, when the designer considers that there is risk for permanent damage a more strict limitation of deflections is motivated. In this case the deflection criterion most often is decisive for dimensions, but this situation is only valid for a minority of horizontal members in practice.

7. **Summary and conclusions**

Serviceability requirements such as limitation of deflection are often decisive for the dimensions of horizontal members of timber and glulam. This is especially true for higher strength classes. The deflection criteria and the associated design principles recommended in the present version of Eurocode 5 are not logically related to the actual behaviour of members in service. They are also formulated in a manner which can cause confusion among structural designers about when and where they should be applied. Furthermore, they are not compatible with the principles in the Eurocodes for steel structures and concrete structures.

It is proposed that the present deflection criteria in EC5 are replaced by two distinctly different criteria:

* Limitation of deflection to avoid permanent damage. In this case the maximum extra deflection that will occur after the building has been erected should be limited. This deflection consists of instantaneous deflection due to variable loads and creep deflection due to permanent and variable loads. The instantaneous part of the deflection should be calculated for the so-called rare load combination, which is defined in EC1.

* Limitation of deflection with respect to general utility and appearance. The purpose here is to avoid excessive deflections which are permanent or occur during long periods. Occasional passages of the deformation limit may be acceptable. The deflection in this case is calculated for the so-called quasi-permanent load
combination and includes creep. As a recommendation a limiting value of L/250 is given.

It is also proposed that the calculation of creep should be based directly on the quasi-permanent load combination which is defined in EC1. The total design load according to this combination can approximately be considered as a permanent load, from which creep can be calculated based on a creep factor \(k_{\text{def}} \) which only depends on service class.

Furthermore, the authors suggest that the present definition of service classes are modified to take into account moisture variations and to be compatible with the present use of service classes in practice. Numerical values for the creep factor \(k_{\text{def}} \) for timber and glulam in different service classes are proposed as follows:

<table>
<thead>
<tr>
<th>Service classes</th>
<th>(k_{\text{def}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0</td>
</tr>
<tr>
<td>2</td>
<td>1.5</td>
</tr>
<tr>
<td>3</td>
<td>2.0</td>
</tr>
</tbody>
</table>

These creep factors are intended to be used with the quasi-permanent load combination. Contrary to the present draft of EC5, \(k_{\text{def}} \) differs between service class 1 and 2.
References

Softwood and Hardwood Embedding Strength
for Dowel-type Fasteners

Background of the formulae in EUROCODE 5, draft April 1992

Juergen Ehlbeck and Hartmut Werner
University of Karlsruhe, Germany

1 Introduction

The embedding strength of timber and wood-based materials as well as the yield moment of the fasteners are (besides the joint's geometry) governing properties for determining the load-carrying capacities of joints with dowel-type fasteners. The embedding strength depends on the type of fastener, the joint configuration (such as member thicknesses, end and edge distances as well as spacing of the fasteners), the manufacturing of the joint (e.g. predrilled holes), and the wood species or the quality of the wood-based materials. Thus, the embedding strength is not a special material property, but a system property.

Many research work has been done to describe this property and to collect sufficient test data. The test methods used differed, however, in many cases significantly so that the results can not be compared without any reservation. It was therefore an important task of the responsible European standardization committee to produce a test standard. A proposal was presented by the CEN-TC 124 as prEN 383 "Timber Structures - Test Methods - Determination of Embedding Strength and Foundation Values for Dowel-type Fasteners".

The embedding strength of some hardwoods was tested in line with this European proposal of a harmonized test method. The tests were made under different load - grain angles using bolts and dowels. Additional tests were performed with European whitewood (picea abies) under 90° load - grain angle. When evaluating all test data, the results published by Whale and Smith (1986 a und b) were also used because these tests under loading parallel to grain were in line with the main principles of the test standard prEN 383.
2 Test method

In prEN 383 the embedding strength is defined as the average compressive stress at maximum load in a specimen of timber or wood-based sheet product under the action of a stiff linear fastener with the fastener's axis perpendicular to the surface of the specimen. The fastener itself is loaded perpendicular to its axis. In order to comply with this principle the thickness t of the specimen should be about twice the diameter of the fastener. The fasteners shall be placed in the same way as in practice. The dimensions of the specimens for testing the embedding strength are shown in Fig. 1 and Table 1. The loading may be in compression (Fig. 1a) or tension (Fig. 1b) in case of load-grain angle of 0° and in compression in case of load perpendicular to grain (Fig. 1c). When performing tests with hardwoods under compression parallel to grain with dowels, the measurement of l_1 was reduced from 7d to 3d. The maximum load, F_{max}, and the embedding strength derived from F_{max} is defined as the maximum load or embedding strength before the deformation of the specimen has reached a limit of 5 mm.

Figure 1: Test specimens
(Dimensions are specified in table 1)
Table 1: Dimension of specimens

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Nails not prebored</th>
<th>Nails prebored</th>
<th>Bolts or dowels</th>
<th>Specimen material</th>
</tr>
</thead>
<tbody>
<tr>
<td>a₁</td>
<td>5d</td>
<td>5d</td>
<td>3d</td>
<td>Timber or wood based sheet products</td>
</tr>
<tr>
<td>l₁</td>
<td>20d</td>
<td>12d</td>
<td>7d</td>
<td></td>
</tr>
<tr>
<td>l₂</td>
<td>20d</td>
<td>12d</td>
<td>7d</td>
<td></td>
</tr>
<tr>
<td>l₃</td>
<td>20d</td>
<td>12d</td>
<td>7d</td>
<td></td>
</tr>
<tr>
<td>l₄</td>
<td>40d</td>
<td>40d</td>
<td>30d</td>
<td></td>
</tr>
<tr>
<td>a₂</td>
<td>5d</td>
<td>5d</td>
<td>2d</td>
<td>Timber or layered wood products with one grain direction</td>
</tr>
<tr>
<td>a₃</td>
<td>5d</td>
<td>5d</td>
<td>4d</td>
<td></td>
</tr>
<tr>
<td>l₅</td>
<td>20d</td>
<td>12d</td>
<td>7d</td>
<td></td>
</tr>
</tbody>
</table>

For the species of:
- European beech (*Fagus sylvatica*),
- European oak (*Quercus robur* and *Quercus petraea*),
- Teak (*Tectona grandis*),
- Merbau (*Intsia*),
- Afzelia (*Afzelia*) and
- Azobé (*Lophira alata*)

in total 125 tests were carried out under compression and tension load parallel to grain with a dowel diameter ranging from 8 to 30 mm. Additional 90 tests were performed with beech and azobé under load-grain angles of 30°, 45°, 60° and 90° using dowel diameters of 8, 16 and 30 mm. In these cases the dimensions of the test specimens were chosen according to prEN 383 for loading perpendicular to grain (see Fig. 1c). Details are given in a research report of EHLBECK and WERNER (1992). In addition to the tests with European whitewood (*picea abies*), which were available from a research project of WHALE and SMITH (1986), another 80 tests were performed under loading perpendicular to grain.
3 Test results

Typical load-deformation curves for loading parallel to grain may be well approximated by a linear elastic-plastic diagram confirming the assumptions of JOHANSEN's theory. In some cases, however, a sudden splitting of the members occurred without any significant plastic deformation. The load-deformation curves for loading perpendicular to grain had a different shape with an elastic behaviour up to a certain proportional limit followed by a flat inclined continuous increase without reaching a sudden maximum load under deformations less than 5 mm.

The test results with European whitewood under loading perpendicular to grain are given in Table 2.

Table 2: Results of the embedding tests with European whitewood loaded perpendicular to the grain
(Mean values and coefficients of variation of 20 tests)

<table>
<thead>
<tr>
<th>Species</th>
<th>Diameter</th>
<th>Mean density</th>
<th>Coefficient of variation (density)</th>
<th>Mean embedding strength $f_{h,90}$ (N/mm²)</th>
<th>Coefficient of variation ($f_{h,90}$) (%)</th>
<th>$\frac{f_{h,90}}{\rho}$ (N m²/mm² kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>European whitewood</td>
<td>8</td>
<td>413</td>
<td>4,54</td>
<td>22,0</td>
<td>10,2</td>
<td>0,053</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>413</td>
<td>13,2</td>
<td>19,4</td>
<td>21,2</td>
<td>0,046</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>418</td>
<td>7,59</td>
<td>16,5</td>
<td>17,3</td>
<td>0,039</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>444</td>
<td>11,0</td>
<td>15,1</td>
<td>16,5</td>
<td>0,034</td>
</tr>
</tbody>
</table>

The results with hardwoods are listed in Table 3 (loading parallel to grain) and Table 4 (loading under different load-grain angles). These tables show the mean values and the coefficients of variation of the densities of the specimens as well as the mean values of the embedding strengths and their coefficients of variation. In the last columns of the tables the ratios of f_{h}/ρ are listed.
Table 3: Results of the embedding tests with hardwoods loaded parallel to the grain
(Mean values and coefficients of variation of three to five tests)

<table>
<thead>
<tr>
<th>Species</th>
<th>Kind of loading</th>
<th>Diameter (d) (mm)</th>
<th>Density (\rho) (kg/m³)</th>
<th>Coefficient of variation (density) (%)</th>
<th>Mean embedding strength (f_{h,0}) (N/mm²)</th>
<th>Coefficient of variation ((f_{h,0})) (%)</th>
<th>(\frac{f_{h,0}}{\rho})</th>
<th>(\text{N m}^{-2}) (mm² kg⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beech</td>
<td>comp.</td>
<td>8</td>
<td>703</td>
<td>7,60</td>
<td>57,6</td>
<td>5,88</td>
<td>0,082</td>
<td></td>
</tr>
<tr>
<td></td>
<td>comp.</td>
<td>16</td>
<td>724</td>
<td>1,89</td>
<td>62,6</td>
<td>8,23</td>
<td>0,086</td>
<td></td>
</tr>
<tr>
<td></td>
<td>comp.</td>
<td>30</td>
<td>706</td>
<td>2,60</td>
<td>47,4</td>
<td>15,1</td>
<td>0,067</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tension</td>
<td>8</td>
<td>714</td>
<td>6,79</td>
<td>68,3</td>
<td>9,67</td>
<td>0,096</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tension</td>
<td>12</td>
<td>697</td>
<td>5,22</td>
<td>59,6</td>
<td>8,08</td>
<td>0,086</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tension</td>
<td>16</td>
<td>741</td>
<td>0,31</td>
<td>67,0</td>
<td>8,07</td>
<td>0,090</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tension</td>
<td>24</td>
<td>717</td>
<td>4,59</td>
<td>51,3</td>
<td>9,54</td>
<td>0,072</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tension</td>
<td>30</td>
<td>712</td>
<td>2,77</td>
<td>51,9</td>
<td>8,61</td>
<td>0,081</td>
<td></td>
</tr>
<tr>
<td>Oak</td>
<td>comp.</td>
<td>8</td>
<td>722</td>
<td>0,20</td>
<td>63,4</td>
<td>3,28</td>
<td>0,088</td>
<td></td>
</tr>
<tr>
<td></td>
<td>comp.</td>
<td>16</td>
<td>732</td>
<td>4,50</td>
<td>55,8</td>
<td>5,12</td>
<td>0,076</td>
<td></td>
</tr>
<tr>
<td></td>
<td>comp.</td>
<td>30</td>
<td>734</td>
<td>2,54</td>
<td>58,8</td>
<td>3,57</td>
<td>0,080</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tension</td>
<td>8</td>
<td>743</td>
<td>2,30</td>
<td>60,8</td>
<td>4,67</td>
<td>0,082</td>
<td></td>
</tr>
<tr>
<td>Teak</td>
<td>tension</td>
<td>8</td>
<td>652</td>
<td>1,49</td>
<td>46,7</td>
<td>1,83</td>
<td>0,072</td>
<td></td>
</tr>
<tr>
<td>Merbau</td>
<td>comp.</td>
<td>8</td>
<td>797</td>
<td>2,51</td>
<td>69,7</td>
<td>5,51</td>
<td>0,087</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tension</td>
<td>8</td>
<td>800</td>
<td>2,68</td>
<td>87,4</td>
<td>3,47</td>
<td>0,109</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tension</td>
<td>16</td>
<td>771</td>
<td>4,91</td>
<td>60,9</td>
<td>7,25</td>
<td>0,079</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tension</td>
<td>30</td>
<td>849</td>
<td>2,33</td>
<td>52,7</td>
<td>6,74</td>
<td>0,062</td>
<td></td>
</tr>
<tr>
<td>Afzelia</td>
<td>comp.</td>
<td>8</td>
<td>720</td>
<td>3,29</td>
<td>67,4</td>
<td>6,32</td>
<td>0,094</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tension</td>
<td>8</td>
<td>709</td>
<td>5,70</td>
<td>76,0</td>
<td>10,8</td>
<td>0,107</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tension</td>
<td>16</td>
<td>722</td>
<td>2,19</td>
<td>53,3</td>
<td>2,32</td>
<td>0,074</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tension</td>
<td>30</td>
<td>705</td>
<td>0,78</td>
<td>52,2</td>
<td>5,87</td>
<td>0,074</td>
<td></td>
</tr>
<tr>
<td>Azobé</td>
<td>comp.</td>
<td>8</td>
<td>1030</td>
<td>1,65</td>
<td>107</td>
<td>6,62</td>
<td>0,103</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tension</td>
<td>8</td>
<td>1047</td>
<td>1,71</td>
<td>114</td>
<td>3,86</td>
<td>0,109</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tension</td>
<td>16</td>
<td>1097</td>
<td>1,84</td>
<td>86,1</td>
<td>4,79</td>
<td>0,079</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tension</td>
<td>30</td>
<td>1121</td>
<td>1,53</td>
<td>78,1</td>
<td>6,56</td>
<td>0,070</td>
<td></td>
</tr>
</tbody>
</table>
Table 4 Results of the embedding tests with hardwoods loaded under an angle to the grain

(Mean values and coefficients of variation of five tests)

<table>
<thead>
<tr>
<th>Species</th>
<th>Load-grain angle α (°)</th>
<th>Diameter d (mm)</th>
<th>Mean density ρ (kg/m3)</th>
<th>Coefficient of variation (density) (%)</th>
<th>Mean embedding strength $f_{h,a}$ (N/mm2)</th>
<th>Coefficient of variation ($f_{h,a}$) (%)</th>
<th>$f_{h,a}$/ρ (N m3 mm2 kg$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beech</td>
<td>30°</td>
<td>8</td>
<td>699</td>
<td>6.39</td>
<td>57.4</td>
<td>26.2</td>
<td>0.082</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>740</td>
<td>3.09</td>
<td>53.0</td>
<td>2.52</td>
<td>0.072</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
<td>716</td>
<td>3.26</td>
<td>49.3</td>
<td>6.64</td>
<td>0.072</td>
</tr>
<tr>
<td></td>
<td>45°</td>
<td>8</td>
<td>670</td>
<td>3.92</td>
<td>46.3</td>
<td>12.3</td>
<td>0.069</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>708</td>
<td>1.68</td>
<td>46.4</td>
<td>12.9</td>
<td>0.066</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
<td>725</td>
<td>1.34</td>
<td>43.6</td>
<td>9.51</td>
<td>0.060</td>
</tr>
<tr>
<td></td>
<td>60°</td>
<td>8</td>
<td>698</td>
<td>4.82</td>
<td>60.6</td>
<td>15.9</td>
<td>0.087</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>726</td>
<td>3.15</td>
<td>44.6</td>
<td>5.36</td>
<td>0.061</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
<td>720</td>
<td>3.54</td>
<td>38.9</td>
<td>8.97</td>
<td>0.054</td>
</tr>
<tr>
<td></td>
<td>90°</td>
<td>8</td>
<td>716</td>
<td>3.55</td>
<td>71.9</td>
<td>12.7</td>
<td>0.100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>719</td>
<td>2.77</td>
<td>47.5</td>
<td>4.27</td>
<td>0.066</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
<td>754</td>
<td>3.95</td>
<td>37.7</td>
<td>6.04</td>
<td>0.050</td>
</tr>
<tr>
<td>Azobé</td>
<td>30°</td>
<td>16</td>
<td>1086</td>
<td>3.80</td>
<td>84.7</td>
<td>10.7</td>
<td>0.078</td>
</tr>
<tr>
<td></td>
<td>45°</td>
<td>16</td>
<td>1081</td>
<td>1.87</td>
<td>85.1</td>
<td>4.96</td>
<td>0.079</td>
</tr>
<tr>
<td></td>
<td>60°</td>
<td>16</td>
<td>1028</td>
<td>0.44</td>
<td>91.9</td>
<td>3.51</td>
<td>0.089</td>
</tr>
<tr>
<td></td>
<td>90°</td>
<td>8</td>
<td>1067</td>
<td>1.77</td>
<td>95.2</td>
<td>5.25</td>
<td>0.089</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>1068</td>
<td>2.07</td>
<td>91.1</td>
<td>14.0</td>
<td>0.085</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
<td>1123</td>
<td>2.32</td>
<td>61.9</td>
<td>6.35</td>
<td>0.055</td>
</tr>
</tbody>
</table>
4 Conclusions

From the test data the following may be argued:

- **Influence of tension and compression tests parallel to grain**

Due to the fact that both tension and compression tests parallel to grain are considered in prEN 383 it was meaningful to perform tests with both kinds of loading (see table 3). Under compression loading, as a rule, smaller embedding strength values were obtained than under tension loading. In most cases an early splitting of the test specimens occurred under compression loading. This might be explained by the small end distance of \(l_1 = 3d \) (see Fig. 1) instead of 7d, as proposed in prEN 383. In EUROCODE 5, draft April 1992, it is stated that tensile tests shall be used in case where both tensile and compressive tests are described in the relevant test standards. Thus, in evaluating the test results the tension embedding strength data (see Fig. 1b) were taken into account.

- **Tendency to splitting**

Different wood species have different tendency to split under load or when manufacturing the joints. Oversea hardwoods (Teak, Merbau, Afzelia) are more sensitive than European hardwoods.

- **Influence of bolt hole diameter**

Research results of KOPONEN (1991) using bolt hole diameters up to 2 mm larger than the bolt diameter have demonstrated no significant influence on the embedding strength. EUROCODE 5 recommends, however, not to use bolt holes more than 1 mm larger than the bolt in order to avoid large deformations under service loads.

- **Influence of density**

The embedding strength may be assumed to increase linearly with increasing wood density independent of the wood species.
• *Influence of fastener diameter*

All test data indicate that the embedding strength depends significantly on the fastener diameter. It should, however, be taken into account some relevant parameters, such as predrilling of holes, softwood/hardwood, surface of shape of the fastener and load-grain angle. This can be seen from the analysis of test data available from tests in several test laboratories performed under similar test conditions:

a) Softwood, predrilled holes, smooth round fasteners:

\[
\begin{align*}
\text{load-grain angle } 0^\circ & \quad 360 \text{ tests} \\
fh,0 &= 0,082 \cdot (1 - 0,010 \cdot d) \cdot \rho \\
r &= 0,49 & \quad (1) \\
\text{load-grain angle } 90^\circ & \quad 78 \text{ tests} \\
fh,90 &= 0,058 \cdot (1 - 0,015 \cdot d) \cdot \rho \\
r &= 0,85 & \quad (2)
\end{align*}
\]

b) Smooth round nails in softwood, nail holes *not* predrilled:

\[
\begin{align*}
\text{load-grain angle } 0^\circ & \quad 400 \text{ tests} \\
fh,0 &= 0,082 \cdot d^{-0,30} \cdot \rho & \quad (3)
\end{align*}
\]

c) Hardwood, predrilled holes, smooth round fasteners:

\[
\begin{align*}
\text{load-grain angle } 0^\circ & \quad 119 \text{ tests} \\
fh,0 &= 0,102 \cdot (1 - 0,010 \cdot d) \cdot \rho \\
r &= 0,68 & \quad (4) \\
\text{load-grain angle } 90^\circ & \quad 29 \text{ tests} \\
fh,90 &= 0,102 \cdot (1 - 0,016 \cdot d) \cdot \rho \\
r &= 0,87 & \quad (5)
\end{align*}
\]

In equis. (1) to (5) the following symbols apply:
Figure 2: Ratio $\frac{f_{n,0}}{\rho}$ over diameter d

(Softwood, predrilled holes, smooth round fasteners, load-grain angle 0°)

Figure 3: Ratio $\frac{f_{n,90}}{\rho}$ over diameter d

(Softwood, predrilled holes, smooth round fasteners, load-grain angle 90°)
Figure 4: Ratio $\frac{f_{h,0}}{\rho}$ over diameter d

(Hardwood, predrilled holes, smooth round fasteners, load-grain angle 0°)

Figure 5: Ratio $\frac{f_{h,90}}{\rho}$ over diameter d

(Hardwood, predrilled holes, smooth round fasteners, load-grain angle 90°)
\(f_{h,0} \) embedding strength parallel to grain, in N/mm²,
\(f_{h,90} \) embedding strength perpendicular to grain, in N/mm²,
\(\rho \) density at normal climate conditions (20°C temperature and 65% relative humidity), in kg/m³,
\(d \) fastener diameter, in mm,
\(r \) coefficient of correlation

The variance of the embedding strength of hardwoods (coefficient of variation 15%) is larger than the variance of the hardwood densities (coefficient of variation 8%). This taking into account, the characteristic embedding strength, \(f_{h,k} \), can be derived assuming a Gaussian distribution:

hardwood, parallel to grain:

\[
f_{h,0,k} = 0.09 \cdot (1 - 0.01 \cdot d) \cdot \rho_k
\]

(6)

hardwood, perpendicular to grain:

\[
f_{h,90,k} = 0.09 \cdot (1 - 0.016 \cdot d) \cdot \rho_k
\]

(7)

Similar to the behaviour of wood under compressive stresses the embedding strength decreases with increasing load-grain angle, \(\alpha \). This effect is also depending on the fastener diameter, i.e. the decrease of embedding strength is more distinct with large than with small diameters. As a good fitting approximation can be used the HANKINSON-formula (see Fig. 6):

\[
f_{h,\alpha} = \frac{f_{h,0}}{f_{h,0,90} \cdot \sin^2 \alpha + \cos^2 \alpha}
\]

(8)

Using the abbreviation

\[
k_{90} = \frac{f_{h,0}}{f_{h,90}}
\]

(9)

the general formula may be written as

\[
f_{h,\alpha} = \frac{f_{h,0}}{(k_{90} \cdot \sin^2 \alpha + \cos^2 \alpha)}
\]

(10)
Figure 6: Ratio $\frac{f_{h,\alpha}}{\rho}$ over load - grain angle α

(Hardwood, predrilled holes, smooth round fasteners, diameter $d = 30$ mm)

k_{90} can be derived from equs. (6) and (7) or approximated by simplified formulae.

For nailed joints without predrilled holes the embedding strengths are approximately independent of the load-grain angle because incipient cracks due to splitting tendency are reducing the embedding strength parallel to grain. This is generally assumed in all design codes, where load-carrying capacities or allowable loads for nailed joints are independent of the load-grain angle. In this case, $k_{90} = 1$.

\[N \text{m}^3/\text{mm}^2 \text{kg} \]

\[0.16 \]

\[0.14 \]

\[0.12 \]

\[0.10 \]

\[0.08 \]

\[0.06 \]

\[0.04 \]

\[0.02 \]

\[0.00 \]

\[0.00 \]

\[0.02 \]

\[0.04 \]

\[0.06 \]

\[0.08 \]

\[0.10 \]

\[0.12 \]

\[0.14 \]

\[0.16 \]

\[0.00 \]

\[0.02 \]

\[0.04 \]

\[0.06 \]

\[0.08 \]

\[0.10 \]

\[0.12 \]

\[0.14 \]

\[0.16 \]

\[0.00 \]

\[0.02 \]

\[0.04 \]

\[0.06 \]

\[0.08 \]

\[0.10 \]

\[0.12 \]

\[0.14 \]

\[0.16 \]

\[0.00 \]

\[0.02 \]

\[0.04 \]

\[0.06 \]

\[0.08 \]

\[0.10 \]

\[0.12 \]

\[0.14 \]

\[0.16 \]

\[\frac{f_{h,0}}{\rho} = \frac{f_{h,0}}{\rho \cdot (k_{90} \cdot \sin^2\alpha + \cos^2\alpha)} \]

\[k_{90} = \frac{f_{h,0}}{f_{h,90}} \]

\[\alpha \]

\[0 \]

\[15 \]

\[30 \]

\[45 \]

\[60 \]

\[75 \]

\[90 \]

\[\circ \text{ Beech} \]

\[\blacklozenge \text{ Azobé} \]
6 Proposals

Based on these investigations the following proposals are given to be used in the EUROCODE 5 - design code for timber structures:

Bolted and dowelled joints

characteristic embedding strengths:

\[f_{h,\alpha,k} = \frac{f_{h,0,k}}{(k_{90} \cdot \sin^2 \alpha + \cos^2 \alpha)} \] \hspace{1cm} (11)

\[f_{h,0,k} = 0.082 \cdot (1 - 0.01 \cdot d) \cdot \rho_k \] \hspace{1cm} (12)

\[k_{90} = 1.35 + 0.015 \cdot d \quad \text{ (softwood)} \] \hspace{1cm} (13a)

\[k_{90} = 0.90 + 0.015 \cdot d \quad \text{ (hardwood)} \] \hspace{1cm} (13b)

mit \(\rho_k \) in kg/m\(^3\) und d in mm

Nailed joints (d < 8 mm)

characteristic embedding strengths:

(independent of load-grain angle \(\alpha \))

\[f_{h,k} = 0.082 \cdot d^{-0.30} \cdot \rho_k \quad \text{(not predrilled holes)} \] \hspace{1cm} (14)

\[f_{h,k} = 0.082 \cdot (1 - 0.01 \cdot d) \cdot \rho_k \quad \text{(predrilled holes; see equ. (12))} \] \hspace{1cm} (15)

It can be seen from the tests that the embedding strengths of hardwoods are approximately 10\% higher than those of softwoods with same density. This could be made allowance for in design codes if further investigations verify observation.
7 References

KOPONEN, S. 1991: Embedding characteristics of wood in the grain direction. Helsinki / Finland: Laboratory of Structural Engineering and Building Physics, Helsinki University of Technology. -Research Report

WHALE, L.R.J.; SMITH, I. 1986 b: Mechanical timber joints. High Wycombe (Bucks.) / GB: TRADA. -Research Report 18/86