Entwicklung eines Sortierverfahrens
für die kombinierte maschinelle und
visuelle Festigkeitssortierung

von

H. J. Blaß und M. Frese

Versuchsanstalt für Stahl, Holz und Steine
Abteilung Ingenieurholzbau
Universität Fridericiana Karlsruhe
Univ.-Professor Dr.-Ing. H. J. Blaß
2002
Entwicklung eines Sortierverfahrens
für die kombinierte maschinelle und
visuelle Festigkeitssortierung

von

H. J. Blaß und M. Frese

 Diese Arbeiten wurden gefördert durch die
Deutsche Gesellschaft für Holzforschung e.V. mit Mitteln des
Deutschen Institutes für Bautechnik (DIBt) in Berlin.

Versuchsanstalt für Stahl, Holz und Steine
Abteilung Ingenieurholzbau
Universität Fridericiana Karlsruhe
Univ.-Professor Dr.-Ing. H. J. Blaß
2002
Vorwort

Mit der Entwicklung von Sortiermaschinen, die vor allem Äste mittels Durchstrahlung oder Bildverarbeitung erkennen, wurde der holzverarbeitenden Industrie ein Hilfsmittel zur effizienten Nutzung von qualitativ hochwertigem Schnittholz bereitgestellt. Diese Maschinen ermöglichen die Sortierung von Schnittholz z.Zt. bis zur Festigkeitsklasse C40. Aufgrund der hohen Investitionskosten sind derartige Maschinen nur für wenige Unternehmen der Holzindustrie rentabel. Der hohe Preis wird hauptsächlich durch die Maschinenteile verursacht, die der Durchstrahlung oder Bildverarbeitung dienen.

Die Konkurrenzfähigkeit von Holz gegenüber anderen Baumaterialien ließe sich weiter steigern, wenn Unternehmen, die nicht über Sortiermaschinen o.g. Typs verfügen und ihre Sortierung bislang nach DIN 4074 T1 durchgeführt haben, ihre Angebotspalette um Holzprodukte zumindest aus C35 erweitern könnten.

Denkbar wäre das, indem die visuelle Sortierung nach DIN 4074 T1, die bis zur Sortierklasse S13 möglich ist, durch einen maschinell zu ermittelnden Parameter ergänzt und damit erheblich verbessert würde. Eine Maschine, die diesen Parameter ermittelt, müsste nicht über eine kostspielige Maschinenkomponente verfügen, die visuelle festigkeitsmindernde Merkmale erkennt.

Auf der Grundlage dieses Ansatzes wurde – angeregt durch die Brettschichtholzindustrie - das Forschungsvorhaben "Entwicklung eines Sortierverfahrens für die kombinierte maschinelle und visuelle Festigkeitssortierung" durchgeführt.


Allen Beteiligten ist für die Mitarbeit zu danken.

Hans Joachim Blaß
Inhaltsverzeichnis

1 Einleitung ....................................................................................................................... 3
2 Untersuchungsmaterial ................................................................................................. 4
  2.1 Allgemeines ............................................................................................................. 4
  2.2 Brettlamellen für die Brettschichtholzherstellung ............................................... 4
  2.3 Kanthölzer für Nagelplattenbinder ........................................................................ 5
3 Untersuchung des Schnittholzes .................................................................................. 6
  3.1 Allgemeines ............................................................................................................. 6
  3.2 Visuelle Sortierung ................................................................................................ 6
  3.3 Maschinelle Festigkeitssortierung ......................................................................... 8
  3.4 Biege- und Zugfestigkeit, E-Modul und Rohdichte ............................................... 9
4 Kombination der maschinellen und visuellen Festigkeitssortierung ......................... 11
  4.1 Allgemeines ........................................................................................................... 11
  4.2 Regressionsmodelle für Brettlamellen und Kanthölzer gemeinsam ................. 12
  4.3 Regressionsmodelle für Brettlamellen alleine ...................................................... 16
  4.4 Unschärfe der Festigkeitssortierung ..................................................................... 19
  4.5 Einfluss von Kantenflächenästen ........................................................................ 21
5 Zusammenfassung ....................................................................................................... 22

Literatur ......................................................................................................................... 23
Zitierte Normen ............................................................................................................. 23
Abkürzungen und Definitionen .................................................................................... 24
Anlagen ......................................................................................................................... 25
1 Einleitung


Auf diesen Grundlagen aufbauend werden kombinierte Sortierverfahren ausgearbeitet, die neben visueller Sortierung verschiedene Parameter im Bereich der maschinellen Festigkeitsvorschlags berücksichtigen. Es wird anhand von Sortierergebnissen gezeigt, dass kombiniert Verfahren, die in der maschinellen Komponente die Bruttorohdichte und/oder den dynamischen E-Modul von trockenem oder frischem Holz benötigen, zuverlässige Hilfsmittel für die Festigkeitsvorschlag für Schnittholz darstellen.

2 Untersuchungsmaterial

2.1 Allgemeines


Mit diesem Vorgehen wurden Einflussgrößer auf die Festigkeit und Steifigkeit wie Wuchsgebiete und Sägewerktechnologien berücksichtigt.


Unterstellt man, dass visuelle Sortiermerkmale, insbesondere Äste auf gehobeltem Schnittholz besser für den Sortierer erkennbar sind, wäre eine Sortierung am sägerauen Holz mit einer höheren Unsicherheit behaftet und daher weniger präzise. Aus diesem Grund wurde die Sortierung an sägerauem Schnittholz durchgeführt, damit eine Anwendung des kombinierten Sortierverfahrens bereits vor dem Hobeln abgesichert ist.

2.2 Brettlamellen für die Brettschichtholzherstellung

Die Untersuchung der Brettlamellen wurde an Querschnittsabmessungen von \( d = 20 \text{ bis } 48 \text{ mm} \) und \( b = 100 \text{ bis } 220 \text{ mm} \) durchgeführt. Die gewählten Abmessungen sind in Tabelle 1 aufgeführt.

¹ Den Sägewerken Matthäus Sturm GmbH in Herbrechtingen, Ernst Fisch GmbH & Co. KG in Rüthen, B. Keck GmbH in Ehningen und Klenk Holz AG in Oberrot wird für den Einschnitt der gewünschten Querschnittsabmessungen und die Möglichkeit der Untersuchung des Schnittholzes vor Ort gedankt.
Der Umfang der Reihe BO von 89 Probekörpern erklärt sich durch eine größere Liefermenge als geordert. Die über das geplante Maß hinaus gelieferten Probekörper wurden in die Untersuchung miteinbezogen.

Bei der Reihe BS handelt es sich abweichend vom Forschungsantrag um eine zusätzlich in das Forschungsvorhaben aufgenommene Stichprobe. Die Brettlamellen dieser Probe stammen aus einer Güteüberwachung und konnten aufgrund der hierfür erforderlichen Biegeversuche und der Querschnittsabmessung mit in die Auswertung einbezogen werden. Die Länge der Brettlamellen betrug zwischen 3,80 m und 5,20 m.

**Tabelle 1:** Probennamen und Probenumfang für Brettlamellen.

<table>
<thead>
<tr>
<th>Breite</th>
<th>Dicke</th>
<th>20 mm</th>
<th>36 mm</th>
<th>48 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 mm</td>
<td>Reihe BJ 60</td>
<td>Reihe BO 89</td>
<td>Reihe BA 57</td>
<td></td>
</tr>
<tr>
<td>175 mm</td>
<td>Reihe BC 50</td>
<td>Reihe BK 60</td>
<td>Reihe BS 60</td>
<td></td>
</tr>
<tr>
<td>220 mm</td>
<td>Reihe BQ 64</td>
<td></td>
<td>Reihe BB 55</td>
<td>Reihe BL 61</td>
</tr>
</tbody>
</table>

### 2.3 Kanthölzer für Nagelplattenbinder

Die Untersuchung der Kanthölzer wurde an Querschnittsabmessungen von $b = 50$ bis $80$ mm und $h = 100$ bis $240$ mm durchgeführt. Die gewählten Abmessungen sind in Tabelle 2 aufgeführt. Der vergleichsweise große Probenumfang der Reihe KN sollte ursprünglich geteilt und von unterschiedlichen Sägewerken geliefert werden, um eine repräsentative Entnahme zu gewährleisten. Die Standardabweichungen der Biege- und Zugfestigkeit, jeweils am größten innerhalb des Kollektivs „Kanthölzer“, belegen jedoch, dass eine deutliche Streuung der mechanischen Eigenschaften innerhalb der Probe gewährleistet ist. Die Länge der Kanthölzer betrug zwischen 4,00 m und 5,10 m.

**Tabelle 2:** Probennamen und Probenumfang für Kanthölzer.

<table>
<thead>
<tr>
<th>Höhe</th>
<th>Breite</th>
<th>50 mm</th>
<th>60 mm</th>
<th>80 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 mm</td>
<td>Reihe KD 53</td>
<td>Reihe KM 60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>180 mm</td>
<td>Reihe KG 55</td>
<td>Reihe KN 89</td>
<td>Reihe KF 57</td>
<td></td>
</tr>
<tr>
<td>240 mm</td>
<td>Reihe KE 54</td>
<td></td>
<td>Reihe KH 55</td>
<td>Reihe KR 62</td>
</tr>
</tbody>
</table>
3 Untersuchung des Schnittholzes

3.1 Allgemeines


3.2 Visuelle Sortierung


Die Jahrringbreite wurde nicht berücksichtigt. Ihr Einfluss wird zutreffender über die Bruttorohdichte beschrieben, die als eine Variable zur Berechnung des maschinellen Sortierparameters bzw. des dynamischen E-Moduls benötigt wird. Festigkeitsmindernde Fäule und Fraßgänge sowie Druckholz konnten beim untersuchten Schnittholz nicht beobachtet werden.

In Tabelle 3 sind für Brettlamellen vier und für Kanthölzer drei Sortierungen zusammen gestellt, die sich jeweils als Vorstufe einer ordnungsgemäßen Sortierung nach E DIN

² Der Abteilung Physikalische Holztechnologie unter Leitung von Prof. Glos, Holzforschung München wird für die Durchführung der zahlreichen Zugversuche und die Ermittlung der Werte Zugfestigkeit, Zug-E-Modul, Holzfeuchte und Darrrohdichte gedankt.

Die Ästigkeit für den Einzelast und die Astansammlung sowie das Verhältnis E beim Kantenflächenast sind Beobachtungen an ein und demselben Querschnitt der Brettlamelle. Für die Sortierungen V1 bis V4 von Brettlamellen war dann von diesen das maßgebende Kriterium ausschlaggebend.

**Tabelle 3:** Sortierungen in Abhängigkeit von verschiedenen Kombinationen von festigkeitsrelevanten Sortierkriterien der E DIN 4074 T1

<table>
<thead>
<tr>
<th>Vorstufe einer Sortierungs Kriterien</th>
<th>festigkeitsrelevante Kriterien</th>
<th>Äste und Astansammlung</th>
<th>Mark</th>
<th>Kantenflächen-äste</th>
<th>Sonstige Merkmale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brettlamellen</td>
<td>E DIN 4074 T1</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Sortierung V1</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sortierung V2</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sortierung V3</td>
<td></td>
<td>X X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sortierung V4</td>
<td></td>
<td>X X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kanthölzer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Sortierung V1</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sortierung V2</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Sortierung V3</td>
<td></td>
<td>X X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Es wurde angenommen, dass es sich bei derjenigen Stelle, die für die visuelle Sortierung maßgebend ist, auch um den schwächsten Querschnitt für die Festigkeitsprüfung nach EN 408 handelt. Da die visuell bestimmte schwächste Stelle einer Brettlamelle oder eines Kanthölzes nicht immer innerhalb der Lastangriffspunkte (Biegeprüfung) bzw. innerhalb der freien Prüflänge (Zugprüfung) lag, müssen zwei Fälle unterschieden werden.

1. **Fall:** Lag die augenscheinlich schwächste Stelle unmittelbar am Ende des Brettes/Kanthölzes und der übrige Bereich war weitgehend frei von gleichwertigen Schwachstellen, dann wurde diese Schwachstelle in Hinblick auf ein Abtrennen in der Praxis ignoriert. Diese Vorgehensweise galt insbesondere für das Sortierkriterium, „sonstige Merkmale“, weniger für Äste.

2. **Fall:** Lag die augenscheinlich schwächste Stelle X1 unmittelbar am Ende der Brettlamelle/des Kanthölzes und der übrige Bereich wies weitgehend gleichwertige
Schwachstellen X2, X3 ... auf, dann wurde die Stelle X1 für die Sortierung zu Grunde gelegt und die Festigkeitsprüfung an einer prüfbaren Stelle X2 oder X3... durchgeführt. Diese Vorgehensweise galt insbesondere für das Sortierkriterium „Äste“.

Das Vorgehen in den Fällen 1 und 2 begünstigt die Festigkeitsvorhersage auf der Grundlage der visuellen Sortierung. Es wird einschränkend angemerkt, dass es nicht garantiert, in manchen Fällen die tatsächlich geringste Festigkeit zu ermitteln.


3.3 Maschinelle Festigkeitssortierung

Grundlage der vorgesehenen maschinellen Festigkeitssortierung ist es, mit Hilfe einer Berechnungsgleichung für jedes Stück Schnittholz, das sortiert werden soll, einen maschinellen Sortierparameter – Vorhersagewert für die Biegefestigkeit - zu ermitteln. In dieser Forschungsarbeit werden Berechnungsgleichungen mittels der linearen multiplen Regression bestimmt. Zur Auswahl stehen folgende maschinell messbaren Eigenschaften, die in Regressionsmodellen als unabhängige Parameter aufgenommen werden:

1. Bruttorohdichte von trockenem Holz
2. Bruttorohdichte von frischem Holz (dient nur der Berechnung des dyn. E-Moduls)
3. Dicke oder Höhe des Schnittholzes
4. Breite des Schnittholzes
5. Dynamischer Elastizitätsmodul von trockenem Holz
6. Dynamischer Elastizitätsmodul von frischem Holz


3.4 Biege- und Zugfestigkeit, E-Modul und Rohdichte


Die Ergebnisse der statischen Versuche an den Prüfkörpern der ersten Entnahme erwiesen sich aufgrund der Wechselwirkung zwischen Querkrümmung der ungehobelten Prüfkörper von Brettlamellen und der konventionellen Messeinrichtung als unzuverlässig. Bei den Kanthölzern war dieses Problem erwartungsgemäß nicht zu erkennen. Insbesondere war die Lage der Markröhe während des Versuchs für die Größe des ermittelten Biege-E-Moduls von Bedeutung. Das Wenden desselben Prüfkörpers führte zu einer unrealistischen Änderung des Biege-E-Moduls von bis zu 10000 N/mm². Beispielsweise hier-erwähnt, dass die Reihen BB (Breite = 215mm) und BC (Breite = 175mm) sehr hohe Standardabweichungen von 3760 N/mm² und 4740 N/mm² des Biege-E-Moduls nach EN 408 aufweisen, siehe Tabelle C2 (Anlage C-9).

Die Abteilung Physikalische Holztechnologie, Holzforschung München führte die Versuche zur Bestimmung des Zug-Elastizitätsmoduls, der Zugfestigkeit, der Holzfeuchte und der Rohdichte jeweils nach EN 408 durch.

Die Rohdichte nach EN 408 wurde auf eine Holzfeuchte von 12% bei den Karlsruher Werten nach EN 384, Abschnitt 7 linear umgerechnet und bei den Münchner Werten ausgehend von der Darrohdichte nach DIN 52 182, Abschnitt 7.2 nach Kollmann hochgerechnet.


Eine Übersicht über die Anzahl aller gültigen Beobachtung, die in Kap. 3.2 bis 3.4 eingeführt wurden, ist in den Tabellen D1 und D2 (Anlage D-1 bis D-2) zu finden.
4 Kombination der maschinellen und visuellen Festigkeitssortierung

4.1 Allgemeines


Es bietet sich daher an, den maschinellen Sortierparameter als Vorhersagewert ausschließlich für die Biegefestigkeit mittels multipler linearer Regression zu modellieren. Anschließend wird ein Grenzwert festgelegt (Anpassungsschritt), der eine Sortierung neben Rohdichte und E-Modul mittels der 5%-Fraktile der Biegefestigkeit in die Festigkeitsklasse C35 ermöglicht. Dieser Grenzwert kann abschließend durch eine Sortierung der Schnitthölzer, für die die Zugfestigkeit ermittelt wurde, überprüft werden (Überprüfungsschritt): Kommt die Überprüfung zu dem Ergebnis, dass die 5%-Fraktile der Zugfestigkeit den Grenzwert für C35 einhält, gewährleistet der Grenzwert des maschinellen Sortierparameters auch eine ausreichende Zugfestigkeit.

Ist dies nicht der Fall, so ist das gewählte Regressionsmodell + Grenzwert ungeeignet, Schnittholz allein auf Grundlage eines Vorhersagewertes für die Biegefestigkeit zu sortieren. Es erfolgt dann die Festlegung des Grenzwertes über die Zugfestigkeit.


In den Kapiteln 4.2 und 4.3 werden Regressionsgleichungen für maschinelle Sortierparameter hergeleitet. Diese Gleichungen sind das Ergebnis von verschiedenen Kombi-
nationen der maschinell messbaren Eigenschaften der Schnitthölzer innerhalb der Regressionsmodelle. So ergeben sich eine Reihe von Regressionsgleichungen, die unterschiedlichen praktischen Anwendungen einer maschinellen Festigkeitssortierung gerecht werden – z.B. Verzicht auf die Ermittlung des dynamischen E-Moduls, Sortierung vor der technischen Trocknung oder auch Verzicht auf die Berücksichtigung der Querschnittsabmessungen im Regressionsmodell.


4.2 Regressionsmodelle für Brettlamellen und Kanthölzer gemeinsam

### Tabelle 4: Regressionsmodelle 1/BK bis 16/BK und Sortierergebnisse

<table>
<thead>
<tr>
<th>Modell</th>
<th>Breite b</th>
<th>dicke h</th>
<th>Brüttordachdichte</th>
<th>dyn. E-Modul (frisches Holz)</th>
<th>Grenzwert [N/mm²]</th>
<th>Alle Kollektive 5%-Fraktile [N/mm²/Stk.]</th>
<th>Kollektiv Brettlamiert [N/mm²/Stk.]</th>
<th>Kollektiv Kanthölzer 5%-Fraktile [N/mm²/Stk.]</th>
<th>Im Modell berücksichtigt</th>
<th>Kollektive 5%-Fraktile [N/mm²/Stk.]</th>
<th>Kollektiv Brettlamiert [N/mm²/Stk.]</th>
<th>Kollektiv Kanthölzer 5%-Fraktile [N/mm²/Stk.]</th>
<th>Zugfestigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/BK</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>63</td>
<td>35,5/6</td>
<td>k.A./0</td>
<td>35,5/6</td>
<td>441</td>
<td>40,9/9</td>
<td>k.A./0</td>
<td>40,9/9</td>
<td>383</td>
</tr>
<tr>
<td>2/BK</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>56</td>
<td>36,0/44</td>
<td>48,8/26</td>
<td>32,5/18</td>
<td>441</td>
<td>27,0/31</td>
<td>23,7/15</td>
<td>33,1/16</td>
<td>383</td>
</tr>
<tr>
<td>4/BK</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>55</td>
<td>35,2/58</td>
<td>37,9/41</td>
<td>32,5/17</td>
<td>441</td>
<td>23,7/57</td>
<td>22,8/38</td>
<td>29,4/19</td>
<td>383</td>
</tr>
<tr>
<td>7/BK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>48</td>
<td>36,0/196</td>
<td>38,7/149</td>
<td>30,5/47</td>
<td>441</td>
<td>23,9/145</td>
<td>23,0/101</td>
<td>33,9/44</td>
<td>383</td>
</tr>
<tr>
<td>8/BK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>48</td>
<td>36,0/195</td>
<td>38,6/148</td>
<td>30,5/47</td>
<td>441</td>
<td>23,9/145</td>
<td>23,0/101</td>
<td>33,9/44</td>
<td>383</td>
</tr>
<tr>
<td>10/BK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>48</td>
<td>35,2/197</td>
<td>36,2/142</td>
<td>30,8/55</td>
<td>441</td>
<td>24,0/149</td>
<td>23,0/98</td>
<td>31,0/51</td>
<td>383</td>
</tr>
<tr>
<td>13/BK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>48</td>
<td>35,0/149</td>
<td>40,9/83</td>
<td>30,5/66</td>
<td>386</td>
<td>25,7/150</td>
<td>23,9/85</td>
<td>28,0/65</td>
<td>384</td>
</tr>
<tr>
<td>16/BK</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>48</td>
<td>36,3/154</td>
<td>39,0/109</td>
<td>31,4/45</td>
<td>386</td>
<td>21,4/153</td>
<td>20,6/110</td>
<td>29,6/43</td>
<td>384</td>
</tr>
</tbody>
</table>

k.A.: keine Angabe

bei Ausbeuten kleiner 20 wird ersatzweise der minimale Festigkeitswert angegeben

Die Modelle der Zeilen 4/BK, 12/BK und 16/BK sind detailliert ausgewertet (Anlage F-2 bis F-31)
Tabelle F1 (Anlage F-1) enthält ergänzend die Korrelationskoeffizienten der in Tabelle 4 aufgeführten Regressionsmodelle sowie die Konstanten und Koeffizienten der zugehörigen Regressionsgleichungen.

Die gemeinsame Zusammenstellung der Sortierergebnisse in Tabelle 4 lässt folgende Schlussfolgerungen zu:


Da die Biegefestigkeit bei den Kanthölzern mit der Bruttohöchstdicke (r=0,49) weniger gut korreliert ist als bei den Brettlamellen (r=0,59), erscheint eine gemeinsame Regression für Brettlamellen und Kanthölzer für eine Festigkeitssortierung nach der Bruttohöchstdicke zu unvorteilhaft. Das bezieht sich auf die untersuchten Schnitthölzer der Sortierklassen S10/V2 und S13/V2. Daher wird zusätzlich für Brettlamellen eine eigene Regression durchgeführt. Siehe dazu Kap 4.3.

2. Modelle 5/BK-8/BK: Die Breite der untersuchten Brettlamellen liegt zwischen 100mm und 220 mm die Dicke zwischen 20mm und 48mm. Die Breite der untersuchten Kanthölzer liegt zwischen 50mm und 80 mm die Höhe zwischen 100mm und 240mm. So ist es nachvollziehbar, dass eine Brettlamelle sowohl durch eine große Breite als auch eine geringe Dicke geometrisch festgelegt ist. Bei den Kanthölzern gilt das Gegenteil. So erklärt sich im Modell 6/BK das positive Vorzeichen für den Koeffizienten der Breite und beim Modell 7/BK das negative Vorzeichen für denjenigen der Dicke, um dem Einfluss der Dicke gerecht zu werden. Im Modell 8/BK spielt die Breite eine untergeordnete Rolle. Die Sortierergebnisse der Modelle 7/BK und 8/BK sind weitgehend identisch.


Bild 1: 5%-Fraktile bzw. Minimalwert der Biegefestigkeit des Sortierergebnisses nach Modell 12/BK, 5%-Fraktile gekennzeichnet*

Bild 2: 5%-Fraktile bzw. Minimalwert der Zugfestigkeit des Sortierergebnisses nach Modell 12/BK, 5%-Fraktile gekennzeichnet*

4.3 Regressionsmodelle für Brettlamellen alleine

Ausschlaggebend für eine gesonderte Betrachtung von Brettlamellen alleine war die Herleitung einer Regressionsgleichung für die Berechnung eines maschinellen Sortierparameters in Abhängigkeit von der Bruttorohdichte (Modelle 1/B bis 4/B, Tabelle 5), weil das Sortierergebnis des Modells 4/BK aus den o.g. Gründen zu einer unbefriedigenden Ausbeute für Brettlamellen führte. Die Systematik, mit der die maschinell messbaren Eigenschaften schrittweise in die Modelle aufgenommen wurden, entspricht der Vorgehensweise in Kap. 4.2. Die Modelle 5/B bis 16/B dienen vergleichenden Betrachtungen mit den Modellen 5/BK bis 16/BK.

Die Darstellung der Regressionsmodelle erfolgt auch hier in tabellarischer Form. Tabelle 5 ist bis einschließlich Spalte 6 identisch mit Tabelle 4. Während die Ergebnisse des Überprüfungsschrittes in Kap. 4.2 die Einhaltung der charakteristischen Zugfestigkeit für C35 von 21 N/mm² bis auf eine Ausnahme bestätigen, führt die Einhaltung der erforderlichen 5%-Fraktile der Biegefestigkeit für Brettlamellen alleine nicht zu dieser Bestätigung (Spalten 7 bis 9). Für die Einhaltung der 5%-Fraktile der Zugfestigkeit ist ein weiteres Anheben des Grenzwertes erforderlich (Spalten 10 bis 12). In Spalte 13 kann die Anzahl der im Regressionsmodell berücksichtigten Prüfkörper aus den Sortierklassen S10/V2 und S13/V2 abgelesen werden. In Spalte 14 steht die Anzahl der Prüfkörper der Sortierklassen S10/V2 und S13/V2, für die die Zugfestigkeit ermittelt wurde.

Tabelle G1 (Anlage G-1) enthält ergänzend die Korrelationskoeffizienten der in Tabelle 5 aufgeführten Regressionsmodelle sowie die Konstanten und Koeffizienten der zugehörigen Regressionsgleichungen.

Die gemeinsame Zusammenstellung der Sortierergebnisse in Tabelle 5 lässt nachstehende Schlussfolgerungen zu:

1. Modelle 1/B-4/B: Bei diesen Modellen geht mit dem Anheben des Grenzwertes ein monotones Wachstum der 5%-Fraktile der Zugfestigkeit nicht einher. Bei Modell 2/B fällt
Tabelle: 5: Regressionsmodelle 1/B bis 16/B und Sortierergebnisse

<table>
<thead>
<tr>
<th>Modell</th>
<th>Breite b</th>
<th>Dicke d</th>
<th>Höhe h</th>
<th>Bruttorohdichte</th>
<th>dynam. E-Modul (frisches Holz)</th>
<th>Grenzwert [N/mm²]</th>
<th>5%-Fraktile der Biegefestigkeit [N/mm²]/Stk.</th>
<th>5%-Fraktile der Zugfestigkeit [N/mm²]/Stk.</th>
<th>im Modell berücksichtigt</th>
<th>Zugfestigkeiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/B</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>50 35,9/121</td>
<td>16,1/82</td>
<td>53 36,4/86</td>
<td>22,4/57</td>
<td>274</td>
<td>226</td>
</tr>
<tr>
<td>2/B</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>50 35,7/119</td>
<td>16,4/85</td>
<td>58 36,8/43</td>
<td>24,4/37</td>
<td>274</td>
<td>226</td>
</tr>
<tr>
<td>3/B</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>50 35,9/124</td>
<td>16,5/86</td>
<td>52 35,9/103</td>
<td>21,5/65</td>
<td>274</td>
<td>226</td>
</tr>
<tr>
<td>4/B</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>50 35,9/121</td>
<td>16,4/85</td>
<td>52 35,9/102</td>
<td>21,4/64</td>
<td>274</td>
<td>226</td>
</tr>
<tr>
<td>5/B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>44 35,9/180</td>
<td>17,9/133</td>
<td>47 36,1/156</td>
<td>21,7/108</td>
<td>274</td>
<td>226</td>
</tr>
<tr>
<td>6/B</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>45 36,0/173</td>
<td>18,1/126</td>
<td>48 36,9/150</td>
<td>21,5/103</td>
<td>274</td>
<td>226</td>
</tr>
<tr>
<td>7/B</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>45 36,0/169</td>
<td>18,1/125</td>
<td>48 38,7/149</td>
<td>23,0/101</td>
<td>274</td>
<td>226</td>
</tr>
<tr>
<td>8/B</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>45 36,0/171</td>
<td>18,1/125</td>
<td>48 36,9/149</td>
<td>21,1/104</td>
<td>274</td>
<td>226</td>
</tr>
<tr>
<td>9/B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45 36,1/171</td>
<td>18,1/125</td>
<td>47 37,4/158</td>
<td>21,7/108</td>
<td>274</td>
<td>226</td>
</tr>
<tr>
<td>10/B</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>45 36,2/171</td>
<td>19,0/123</td>
<td>48 36,8/147</td>
<td>21,1/104</td>
<td>274</td>
<td>226</td>
</tr>
<tr>
<td>11/B</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>45 36,1/169</td>
<td>18,0/123</td>
<td>47 37,4/158</td>
<td>21,2/108</td>
<td>274</td>
<td>226</td>
</tr>
<tr>
<td>12/B</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>45 36,1/170</td>
<td>16,0/126</td>
<td>48 36,8/148</td>
<td>21,1/104</td>
<td>274</td>
<td>226</td>
</tr>
<tr>
<td>13/B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>46 36,0/127</td>
<td>20,6/129</td>
<td>48 39,5/112</td>
<td>21,8/109</td>
<td>218</td>
<td>226</td>
</tr>
<tr>
<td>14/B</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>46 37,6/126</td>
<td>18,5/129</td>
<td>48 39,5/112</td>
<td>21,2/111</td>
<td>218</td>
<td>226</td>
</tr>
<tr>
<td>15/B</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>46 36,0/131</td>
<td>21,2/129</td>
<td>46 36,0/131</td>
<td>21,2/129</td>
<td>218</td>
<td>226</td>
</tr>
<tr>
<td>16/B</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>45 36,3/134</td>
<td>18,5/135</td>
<td>47 37,8/121</td>
<td>21,4/121</td>
<td>218</td>
<td>226</td>
</tr>
</tbody>
</table>

bei Ausbeuten kleiner 20 wird ersatzweise der minimale Festigkeitswert angegeben
Die Modelle der Zeilen 4/B und 12/B sind detailliert ausgewertet (Anlage G-2 bis G-13)

2. Modelle 5/B bis 16/B: Bei diesen Modellen fällt auf, dass mit den Grenzwerten im Bereich von 46 bis 48 N/mm² die Sortierergebnisse für Brettlamellen etwa ähnlich ausfallen wie in Tabelle 4, Zeile 5 bis 16, Spalte 9 und 13. Offensichtlich führt aber die Anpassung des Grenzwertes an die erforderliche 5%-Fraktile der Biegefestigkeit nicht auch zur notwendigen 5%-Fraktile der Zugfestigkeit. So erscheinen diese Modelle im Sinne der in Kap. 4.1 festgelegten Vorgehensweise und der EN 338 Abschnitt 6.2.2 ungeeignet.

**Bild 3:**
5%-Fraktile bzw. Minimalwert der Biegefestigkeit des Sortierergebnisses nach Modell 4/B
5%-Fraktile gekennzeichnet

**Bild 4:**
5%-Fraktile bzw. Minimalwert der Zugfestigkeit des Sortierergebnisses nach Modell 4/B
5%-Fraktile gekennzeichnet

4.4 Unschärfe der Festigkeitssortierung


Von Interesse ist also die mögliche Veränderung des Sortierergebnisses – charakteristische Festigkeitswerte und Ausbeute – wenn die visuelle Sortierung unter praktischen Bedingungen, wie z.B. hohem Holzdurchsatz und subjektiver Einschätzung der festigkeitsrelevanten Sortierkriterien durch die Sortierer, durchgeführt wird. In diesem Zusammenhang kann das Problem einer ungenauen visuellen Sortierung durch zwei Grenzfälle beschrieben werden, die zu einem mangelhaften Sortierergebnis führen würden.


In beiden Fällen würde sich der gerade noch zulässige Verhältniswert (≈ 0,05) von Anzahl Schnitthölzer mit Festigkeiten unterhalb der erf. 5%-Fraktile zu Ausbeute vergrößern. In der Regel geht damit ein Absinken der 5%-Fraktile der Festigkeit einher.

**Tabelle 6:** Vergleichende Gegenüberstellung der 5%-Fraktilen und Ausbeuten:

- 1. Nur maschinelle Festigkeitssortierung
- 2. Maschinelle Festigkeitssortierung + visuelle Sortierung V2

<table>
<thead>
<tr>
<th>Modell □/□K</th>
<th>Breite</th>
<th>Dicke d</th>
<th>Höhe h</th>
<th>Breitenhöhe</th>
<th>dyn. E-Modul (frisches Holz)</th>
<th>Grenzwert [N/mm²]</th>
<th>Kollektiv Brettlamellen 5%-Fraktilen [N/mm²]</th>
<th>Kollektiv Kantbolzer 5%-Fraktilen [N/mm²]</th>
<th>zugehöriger Überprüfungsschritt: Ermittlung der 5%-Fraktilen der Zugfestigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>12□m□</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>48</td>
<td>33,9/209</td>
<td>35,9/159</td>
<td>31,7/50</td>
<td>441</td>
</tr>
<tr>
<td>12□m□</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>48</td>
<td>36,1/191</td>
<td>38,4/147</td>
<td>31,3/44</td>
<td>441</td>
</tr>
</tbody>
</table>

□m□) Maschinelle Festigkeitssortierung
□m□) Maschinelle Festigkeitssortierung + visuelle Sortierung V2, siehe Tabelle 4, Zeile 12

Für den Anwender eines kombinierten Sortierverfahrens wird von Interesse sein, inwieweit seine individuellen betrieblichen Vorraussetzungen (z.B. eingesetztes Personal für die visuelle Sortierung und Maschinenbedienung, Einschnitt, Sägewerkstechnologie oder Rundholzliefungen aus bestimmten Wuchsgebieten) das Sortierergebnis beeinflussen.

Bei der Entwicklung des kombinierten Sortierverfahrens wurden individuelle betriebliche Bedingungen durch eine repräsentative Entnahme des Untersuchungsmaterials nur anteilig erfasst und die visuelle Sortierung nach E DIN 4074 T1 exakt und weitgehend

4.5 Einfluss von Kantenflächenästen

Unter Verwendung von Modell 12/BK wird abschließend noch auszugsweise das Sortierergebnis für den Fall angegeben, dass eine Sortierung der Vorstufe V4 (zusätzliche Berücksichtigung von Kantenflächenästen) durchgeführt wird. In Abgrenzung zur Vorstufenortierung V3, die lediglich eine Umverteilung der Brettlamellen von Sortierklasse S13/V2 nach S10/V2 zur Folge hat und daher in Hinblick auf die Sortierergebnisse in Kap. 4.2 gleichwertig ist, hat eine Vorstufenortierung V4 möglicherweise auch eine Umverteilung von S13/V2 und S10/V2 jeweils nach S7/V2 zur Folge. Mit einem Grenzwert für den maschinellen Sortierparameter von 48 N/mm² nach Modell 12/BK ergibt sich im Vergleich zu den Werten in Tabelle 4, Zeile 12, Spalte 9 und 13 für Brettlamellen folgendes Sortierergebnis:

5%-Fraktil der Biegefestigkeit / Ausbeute: 37,3 N/mm² / 137 Stk.
5%-Fraktil der Zugfestigkeit / Ausbeute: 21,4 N/mm² / 101 Stk.

Die Verschärfung der visuellen Sortierung durch die Berücksichtigung von Kantenflächenästen macht sich insbesondere in einem Rückgang der Ausbeute bezüglich der Biegefestigkeit bemerkbar. Da sich allerdings die Fraktlzahlen nicht verbessern, was bei einer strengerer visuellen Sortierung zu erwarten wäre, kann mit den untersuchten Brettlamellen keine eindeutige Trendänderung im Sortierergebnis gezeigt werden. Es kann allerdings belegt werden, dass Modell 12/BK in Kombination mit der Sortierung V4 geeignet ist, Bretter und Bohlen, die nicht ausschließlich für die BSH-Herstellung bestimmt sind, in die Festigkeitsklasse C35 einzustufen.
5 Zusammenfassung

Es konnte die prinzipielle Eignung von drei unterschiedlichen kombinierten Sortierverfahren für die Klassifizierung von Schnittholz in die Festigkeitsklasse C35 anhand von Sortierergebnissen belegt werden. Diese Verfahren sind Kombinationen, die zum einen aus einer maschinellen Festigkeitssortierung, die 1. den dynamischen E-Modul von frischem Holz, 2. denjenigen von trockenem Holz oder 3. die Bruttorohdichte von jedem Stück Schnittholz zur Festigkeitsvorhersage erfordert, und zum anderen aus einer visuellen Sortierung in Anlehnung an E DIN 4074 T1 bestehen.

Kombinierte Verfahren, die auf dem dynamischen E-Modul beruhen, eignen sich für die gemeinsame Festigkeitssortierung von Brettlamellen und Kanthölzern in die Festigkeitsklasse C35. Hierbei muss einschränkend gesagt werden, dass die geringen Ausbeuten an Kanthölzern in den untersuchten Sortierergebnissen die Ermittlung statistischer gesicherter Kennwerte nicht zulassen. Hier wäre noch weiteres Datenmaterial für Kanthölzer erforderlich.

Kombinierte Verfahren, deren maschinelle Sortierung unter anderem auf der Ermittlung der Bruttorohdichte beruht, sind für die Sortierung von Brettlamellen geeignet. Da die Biegefestigkeit mit der Bruttorohdichte der untersuchten Kanthölzer weniger gut korreliert ist als bei Brettlamellen, ist die Folge eine weniger gute Festigkeitsvorhersage für Kanthölzer.

Mit den Ergebnissen dieser Forschungsarbeit ist die Kombination von der visuellen Sortierung nach E DIN 4074, einem Verfahren mit langer Tradition und hohem Bekanntheitsgrad, und maschineller Festigkeitssortierung gelungen. Die anwendungsbezogene Aufbereitung der Forschungsergebnisse ermöglicht eine zügige praktische Umsetzung der kombinierten visuellen und maschinellen Festigkeitssortierung.

Die nach E DIN 4074 T4 vorgeschriebene Anfangsprüfung bei Einführung des kombinierten Verfahrens in einen Betrieb sowie jährliche Überprüfungen werden die Anwendbarkeit des kombinierten Sortierverfahrens unter praktischen und individuellen Betriebsbedingungen in Zukunft unter Beweis stellen.
Literatur


Zitierte Normen


DIN EN 408, Ausgabe April 1996. Bauholz für tragende Zwecke und Brettischholz – Bestimmung einiger physikalischer und mechanischer Eigenschaften


Abkürzungen und Definitionen

Breite b: Breite des Schnittholzes

Brettlamellen: Bretter und Bohlen, die für die BSH-Herstellung vorgesehen sind


Dicke d: Dicke von Brettlamellen – das kleinere Querschnittsmaß bei flachkant-Biegeprüfung

Dynamischer Biege-E-Modul: An Prüfkörpern nach EN 408 mittels Biegeschwingungen bestimmt


Höhe h: Höhe von Kanthölzern – das größere Querschnittsmaß bei hochkant-Biegeprüfung

MASOPA: maschineller Sortierparameter

\( f_{m,p} \): bezeichnet den Zahlenwert des maschinellen Sortierparameters als Vorhersagewert für die Biegefestigkeit für ein bestimmtes Schnittholz
Anlagen

Visuelle Sortierung A-1 bis A-19
Maschinelle Sortierung B-1 bis B-7
Biege- und Zugfestigkeit, E-Modul und Rohdichte C-1 bis C-12
Anzahl der Beobachtungen D-1 bis D-2
Vergleich der Materialeigenschaften E-1
Regressionsmodelle für Brettlamellen und Kanthölzer gemeinsam F-1 bis F-31
Regressionsmodelle für Brettlamellen alleine G-1 bis G-13
Bild A1: Häufigkeitsdiagramme der Ästigkeiten für den Einzelast nach E DIN 4074 T1 von Brettlamellen
Bild A1: (Fortsetzung) Häufigkeitsdiagramme der Ästigkeiten für den Einzelast nach E DIN 4074 T1 von Brettlamellen
Bild A2: Häufigkeitsdiagramme der Ästigkeiten für die Astansammlung nach E DIN 4074 T1 von Brettlamellen
Bild A2: (Fortsetzung) Häufigkeitsdiagramme der Ästigkeiten für die Astansammlung nach E DIN 4074 T1 von Brettlamellen
Bild A3: Häufigkeitsdiagramme des Verhältnisses E für Kantenflächenäste nach E DIN 4074 T1 von Brettlamellen
Bild A3: (Fortsetzung) Häufigkeitsdiagramme des Verhältnisses E für Kantennäste nach E DIN 4074 T1 von Brettlamellen
Bild A4: Häufigkeitsdiagramme der Ästigkeiten für den Einzelast nach E DIN 4074 T1 von Kanthölzern
Bild A4: (Fortsetzung) Häufigkeitsdiagramme der Ästigkeiten für den Einzelast nach E DIN 4074 T1 von Kanthölzern
Bild A5: Vorhandensein der Markröhre bei Brettlamellen und Kanthölzern
Bild A6: Zahlenmäßige Zusammensetzung der Sortierung V1 von Brettlamellen
Bild A7: Zahlenmäßige Zusammensetzung der Sortierung V2 von Brettlamellen
Bild A8: Zahlenmäßige Zusammensetzung der Sortierung V3 von Brettlamellen
Bild A9: Zahlenmäßige Zusammensetzung der Sortierung V4 von Brettlamellen
Anlage A-14

Visuelle Sortierung

Bild A10: Zahlenmäßige Zusammensetzung der Sortierung V1 von Kanthölzern
Bild A11: Zahlenmäßige Zusammensetzung der Sortierung V2 von Kanthölzern
Bild A12: Zahlenmäßige Zusammensetzung des Sortierung V3 von Kanthölzern

Bild A14: Sortierung V3: Biegefestigkeit von Brettlamellen in Abhängigkeit von der Ästigkeit – Astansammlung nach E DIN 4074 T1 maßgebend

Bild A16: Sortierung V3: Zugfestigkeit von Brettlamellen in Abhängigkeit von der Ästigkeit – Astansammlung nach E DIN 4074 T1 maßgebend
Bild A17: Sortierung V3: Biegefestigkeit von Kanthölzern in Abhängigkeit von der Ästigkeit – Einzelast nach E DIN 4074 T1

Bild A18: Sortierung V3: Zugfestigkeit von Kanthölzern in Abhängigkeit von der Ästigkeit – Einzelast nach E DIN 4074 T1
Bild B1: Mittelwerte der Bruttorohdichte

Bild B2: Mittelwerte des dynamischen E-Moduls
<table>
<thead>
<tr>
<th>Reihe</th>
<th>BS</th>
<th>BQ</th>
<th>BP</th>
<th>BO</th>
<th>BL</th>
<th>BK</th>
<th>BJ</th>
<th>BC</th>
<th>BA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>455</td>
<td>421</td>
<td>438</td>
<td>453</td>
<td>452</td>
<td>453</td>
<td>453</td>
<td>453</td>
<td>434</td>
</tr>
<tr>
<td>Mittelwert</td>
<td>S 37.8</td>
<td>33.9</td>
<td>34.9</td>
<td>34.4</td>
<td>34.8</td>
<td>34.4</td>
<td>37.0</td>
<td>37.0</td>
<td>42.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Breite</th>
<th>Mittelwert</th>
<th>S 175</th>
<th>175</th>
<th>187</th>
<th>161</th>
<th>216</th>
<th>216</th>
<th>101</th>
<th>91.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dicke</td>
<td>Mittelwert</td>
<td>S 1.08</td>
<td>1.08</td>
<td>1.08</td>
<td>1.08</td>
<td>1.08</td>
<td>1.08</td>
<td>1.08</td>
<td>1.08</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>422.3</td>
<td>499.9</td>
<td>216</td>
<td>0.93</td>
<td>11500</td>
<td>2050</td>
</tr>
<tr>
<td>36.3</td>
<td>36.3</td>
<td>216</td>
<td>0.93</td>
<td>12400</td>
<td>2050</td>
</tr>
<tr>
<td>36.3</td>
<td>36.3</td>
<td>129</td>
<td>0.76</td>
<td>12400</td>
<td>2050</td>
</tr>
<tr>
<td>36.3</td>
<td>36.3</td>
<td>152</td>
<td>0.93</td>
<td>12400</td>
<td>2050</td>
</tr>
<tr>
<td>36.3</td>
<td>36.3</td>
<td>187</td>
<td>0.93</td>
<td>12400</td>
<td>2050</td>
</tr>
<tr>
<td>36.3</td>
<td>36.3</td>
<td>216</td>
<td>0.76</td>
<td>12400</td>
<td>2050</td>
</tr>
<tr>
<td>36.3</td>
<td>36.3</td>
<td>216</td>
<td>0.76</td>
<td>12400</td>
<td>2050</td>
</tr>
</tbody>
</table>

**Tabelle B1:** Mittelwerte und Standardabweichungen der maschinell messbaren Eigenschaften von Brettlamellen und Kanthölzern
<table>
<thead>
<tr>
<th>Reihe</th>
<th>Alle Kollektive</th>
<th>Brettlamellen</th>
<th>Kanthölzer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>443</td>
<td>447</td>
<td>447</td>
</tr>
<tr>
<td></td>
<td>454</td>
<td>453</td>
<td>453</td>
</tr>
<tr>
<td></td>
<td>499</td>
<td>499</td>
<td>499</td>
</tr>
<tr>
<td></td>
<td>436</td>
<td>439</td>
<td>428</td>
</tr>
<tr>
<td></td>
<td>414</td>
<td>439</td>
<td>428</td>
</tr>
<tr>
<td></td>
<td>523</td>
<td>523</td>
<td>523</td>
</tr>
<tr>
<td></td>
<td>522</td>
<td>522</td>
<td>522</td>
</tr>
<tr>
<td></td>
<td>614</td>
<td>614</td>
<td>614</td>
</tr>
<tr>
<td></td>
<td>588</td>
<td>591</td>
<td>599</td>
</tr>
<tr>
<td></td>
<td>578</td>
<td>578</td>
<td>580</td>
</tr>
<tr>
<td></td>
<td>558</td>
<td>561</td>
<td>575</td>
</tr>
<tr>
<td></td>
<td>67,9</td>
<td>67,9</td>
<td>67,9</td>
</tr>
<tr>
<td></td>
<td>59,0</td>
<td>59,0</td>
<td>59,0</td>
</tr>
<tr>
<td></td>
<td>60,0</td>
<td>60,0</td>
<td>60,0</td>
</tr>
<tr>
<td></td>
<td>61,2</td>
<td>61,2</td>
<td>61,2</td>
</tr>
<tr>
<td></td>
<td>166</td>
<td>166</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td>138</td>
<td>138</td>
<td>138</td>
</tr>
<tr>
<td>Breite/Höhe [mm]</td>
<td>Mittelwert</td>
<td>S</td>
<td>Mittelwert</td>
</tr>
<tr>
<td></td>
<td>49,5</td>
<td>0,77</td>
<td>1,19</td>
</tr>
<tr>
<td></td>
<td>50,5</td>
<td>1,01</td>
<td>1,19</td>
</tr>
<tr>
<td></td>
<td>59,7</td>
<td>1,12</td>
<td>1,19</td>
</tr>
<tr>
<td></td>
<td>79,2</td>
<td>0,97</td>
<td>1,19</td>
</tr>
<tr>
<td></td>
<td>78,9</td>
<td>1,01</td>
<td>1,19</td>
</tr>
<tr>
<td></td>
<td>48,0</td>
<td>0,97</td>
<td>1,19</td>
</tr>
<tr>
<td></td>
<td>48,0</td>
<td>1,01</td>
<td>1,19</td>
</tr>
<tr>
<td></td>
<td>59,9</td>
<td>0,97</td>
<td>1,19</td>
</tr>
<tr>
<td></td>
<td>59,9</td>
<td>1,01</td>
<td>1,19</td>
</tr>
<tr>
<td></td>
<td>77,8</td>
<td>0,97</td>
<td>1,19</td>
</tr>
<tr>
<td></td>
<td>77,8</td>
<td>1,01</td>
<td>1,19</td>
</tr>
<tr>
<td>Dicke/Höhe [mm]</td>
<td>Mittelwert</td>
<td>S</td>
<td>Mittelwert</td>
</tr>
<tr>
<td></td>
<td>101</td>
<td>1,15</td>
<td>2,10</td>
</tr>
<tr>
<td></td>
<td>244</td>
<td>1,15</td>
<td>2,10</td>
</tr>
<tr>
<td></td>
<td>184</td>
<td>1,15</td>
<td>2,10</td>
</tr>
<tr>
<td></td>
<td>184</td>
<td>1,15</td>
<td>2,10</td>
</tr>
<tr>
<td></td>
<td>103</td>
<td>1,15</td>
<td>2,10</td>
</tr>
<tr>
<td></td>
<td>168</td>
<td>1,15</td>
<td>2,10</td>
</tr>
<tr>
<td></td>
<td>240</td>
<td>1,15</td>
<td>2,10</td>
</tr>
<tr>
<td></td>
<td>240</td>
<td>1,15</td>
<td>2,10</td>
</tr>
<tr>
<td></td>
<td>1,25</td>
<td>0,68</td>
<td>3,16</td>
</tr>
</tbody>
</table>

Tabelle B1: (Fortsetzung) Mittelwerte und Standardabweichungen der maschinell messbaren Eigenschaften von Brettlamellen und Kanthölzern
Bild B3: Dynamischer E-Modul in Abhängigkeit von der Bruttorohdichte bei Brettlamellen

Bild B4: Dynamischer E-Modul in Abhängigkeit von der Bruttorohdichte bei Kanthölzern
Bild B5: Dynamischer E-Modul (trockenes Holz) in Abhängigkeit vom dynamischen E-Modul (frisches Holz), Regressionsgerade: \( y = 704 + 1,07 \cdot x \).

\(^1\) Diese Wertepaare weisen außergewöhnlich kleine Werte für die Frequenz der Längsschwingung von frischem Holz auf. Hier liegt eine offensichtliche Fehlmessung vor.
Bild B6: Biegefestigkeit in Abhängigkeit vom dynamischen E-Modul bei Brettlamellen und Kanthölzern, Regressionsgerade und 95%-Vertrauensbereich

Bild B7: Biegefestigkeit in Abhängigkeit von der Bruttorohdichte bei Brettlamellen und Kanthölzern, Regressionsgerade und 95%-Vertrauensbereich
Bild B8: Zugfestigkeit in Abhängigkeit vom dynamischen E-Modul bei Brettlamellen und Kanthölzern, Regressionsgerade und 95%-Vertrauensbereich

Bild B9: Zugfestigkeit in Abhängigkeit von der Bruttorohdichte bei Brettlamellen und Kanthölzern, Regressionsgerade und 95%-Vertrauensbereich
**Bild C1:** Versuchsauflauf gemäß EN 408 mit Wegaufnehmer im Schwerpunkt aller Federsteifigkeiten zur Kompensation von Einflüssen aus Veränderung der Querkrümmung während des Versuchs. Jede Feder erfasst ¼ der Brettbreite, hier dargestellt: Seitenbrett mit Marklage unten "u".

**Bild C2:** Statischer Biege-E-Modul (je Prüfkörper eine Messung mit Marklage oben "o" und Marklage unten "u") in Abhängigkeit vom dynamischen Biege E-Modul ermittelt an Prüfkörpern nach EN 408. Der statische Biege-E-Modul wurde mit der auf Bild C1 dargestellten Vorrichtung ermittelt. m: Prüfkörper mit Mark
Bild C3: Mittelwerte der Biegefestigkeiten

Bild C4: Mittelwerte der Zugfestigkeiten
<table>
<thead>
<tr>
<th>Reihe</th>
<th>Mittelwert</th>
<th>Mittelwert</th>
<th>Mittelwert</th>
<th>Mittelwert</th>
<th>Mittelwert</th>
<th>Mittelwert</th>
<th>Mittelwert</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Biegefestigkeit [N/mm²]</td>
<td>Zugfestigkeit [N/mm²]</td>
<td>Rohdichte nach EN 408 bei 12% Feuchte [kg/m³]</td>
<td>Holzfeuchte der Biegeproben [%]</td>
<td>Holzfeuchte der Zugproben [%]</td>
<td>Holzfeuchte aller Proben [%]</td>
<td></td>
</tr>
<tr>
<td>BS</td>
<td>48,9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BQ</td>
<td>38,9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP</td>
<td>38,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BO</td>
<td>35,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BL</td>
<td>52,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BK</td>
<td>57,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BJ</td>
<td>49,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC</td>
<td>50,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BB</td>
<td>46,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>45,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Tabelle C1:** Mittelwerte und Standardabweichungen der Biege- sowie Zugfestigkeit, Rohdichte und Holzfeuchte
| Reihe | Alle Kollektive | Brettlamellen | Kantholzer | KR | KN | KM | KH | KG | KF | KE | KD |
|-------|----------------|--------------|------------|----|----|----|----|----|----|----|----|----|
| Biegefestigkeit [N/mm²] | | | | | | | | | | | |
| 38,3 | 38,2 | 28,5 | 39,4 | 33,2 | 34,9 | 38,4 | 38,7 | 28,6 | 31,7 | 33,3 | 24,5 | 13,8 |
| 7,8  | 3,1  | 3,8  | 11,6 | 13,7 | 14,1 | 11,4 | 12,0 | 14,4 | 15,2 | 13,7 | 14,1 | 12,9 |
| Zugfestigkeit [N/mm²] | | | | | | | | | | | |
| 31,2 | 34,0 | 28,5 | 39,4 | 33,2 | 34,9 | 38,7 | 31,7 | 28,6 | 31,7 | 33,3 | 24,5 | 13,8 |
| 6,9  | 10,7 | 10,5 | 9,5  | 14,1 | 8,0  | 11,7 | 12,9 | 13,7 | 8,0  | 14,1 | 8,0  | 11,7 |
| Rohdichte nach EN 408 bei 12% Holzfeuchte [kg/m³] | | | | | | | | | | | |
| 426  | 439  | 485  | 506  | 51,1 | 65,9 | 51,1 | 51,1 | 65,9 | 51,1 | 65,9 | 51,1 | 65,9 |
| 36,8 | 29,2 | 51,1 | 51,1 | 51,1 | 65,9 | 51,1 | 51,1 | 65,9 | 51,1 | 65,9 | 51,1 | 65,9 |
| Holzfeuchte der Biegeproben [%] | | | | | | | | | | | |
| 11,9 | 11,8 | 12,5 | 12,8 | 12,6 | 12,6 | 11,1 | 11,9 | 10,2 | 11,0 | 11,2 | 11,0 | 11,0 |
| 0,29 | 0,43 | 0,40 | 0,27 | 0,41 | 0,41 | 0,27 | 0,41 | 0,27 | 0,41 | 0,41 | 0,27 | 0,27 |
| Holzfeuchte der Zugproben [%] | | | | | | | | | | | |
| 12,7 | 13,2 | 13,7 | 13,9 | 13,5 | 13,5 | 13,7 | 12,7 | 12,7 | 12,7 | 12,7 | 12,7 | 12,7 |
| 0,42 | 0,56 | 0,38 | 0,34 | 0,34 | 0,34 | 0,34 | 0,34 | 0,34 | 0,34 | 0,34 | 0,34 | 0,34 |
| Holzfeuchte aller Proben [%] | | | | | | | | | | | |
| 12,3 | 12,5 | 13,1 | 13,3 | 13,1 | 13,1 | 13,1 | 12,3 | 12,3 | 12,3 | 12,3 | 12,3 | 12,3 |
| 0,53 | 0,83 | 0,75 | 0,68 | 0,68 | 0,68 | 0,68 | 0,68 | 0,68 | 0,68 | 0,68 | 0,68 | 0,68 |

Tabelle C1: (Fortsetzung) Mittelwerte und Standardabweichungen der Biege- sowie Zugfestigkeit, Rohdichte und Holzfeuchte
Bild C5: Häufigkeitsverteilungen der Biege- und Zugfestigkeiten nach den Kollektiven "Brettlamellen" und "Kanthölzer" getrennt
Bild C6: Biegefestigkeit in Abhängigkeit von der Rohdichte nach EN 408 (u=12%) von Brettlamellen

Bild C7: Biegefestigkeit in Abhängigkeit von der Rohdichte nach EN 408 (u=12%) von Kanthölzern
Bild C8: Zugfestigkeit in Abhängigkeit von der Rohdichte nach EN 408 (u=12%) von Brettlamellen

Bild C9: Zugfestigkeit in Abhängigkeit von der Rohdichte nach EN 408 (u=12%) von Kanthölzern
Bild C10: Häufigkeitsverteilung der Rohdichte nach EN 408 (u=12%) von Brettlamellen und Kanthölzern
<table>
<thead>
<tr>
<th>Reihe</th>
<th>Statischer Biege-E-Modul [N/mm²]</th>
<th>Dynamischer Biege-E-Modul [N/mm²]</th>
<th>Statischer Zug-E-Modul [N/mm²]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mittelwert</td>
<td>S</td>
<td>Mittelwert</td>
</tr>
<tr>
<td>BA</td>
<td>10100</td>
<td>2100</td>
<td>10800</td>
</tr>
<tr>
<td>BC</td>
<td>9970</td>
<td>3760</td>
<td>11900</td>
</tr>
<tr>
<td>BK</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BL</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BQ</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BS</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

**Tabelle C2:** Mittelwerte und Standardabweichungen von statischem sowie dynamischem Biege-E-Modul und statischem Zug-E-Modul ermittelt an Prüfkörpern nach EN 408
<table>
<thead>
<tr>
<th>Reihe</th>
<th>Mittelwert</th>
<th>Statistischer Biege-E-Modul [N/mm²]</th>
<th>Mittelwert</th>
<th>Dynamischer Biege-E-Modul [N/mm²]</th>
<th>Mittelwert</th>
<th>Statistischer Zug-E-Modul [N/mm²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>KD</td>
<td>10600</td>
<td>1730</td>
<td>s</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>KE</td>
<td>11400</td>
<td>1920</td>
<td>s</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>KG</td>
<td>15000</td>
<td>3030</td>
<td>s</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>KF</td>
<td>13000</td>
<td>2690</td>
<td>s</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>KF</td>
<td>13000</td>
<td>2690</td>
<td>s</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>KN</td>
<td>10900</td>
<td>2250</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>KM</td>
<td>10900</td>
<td>2250</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>KT</td>
<td>10900</td>
<td>2250</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>KR</td>
<td>11800</td>
<td>2780</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Tabelle C2: (Fortsetzung) Mittelwerte und Standardabweichungen von statistischem sowie dynamischem Biege-E-Modul und statistischem Zug-E-Modul von Prüfkörpern nach EN 408
Bild C11: Dynamischer Biege-E-Modul in Abhängigkeit vom dynamischen E-Modul (ermittelt aus Längsschwingungen) von Brettlamellen, X = S10/V2 und S13/V2 und deren Regressionsgerade sowie 95%-Vertrauensgrenzen für Mittelwerte, O = Ausschuss und S7/V2

Bild C12: Statischer Biege-E-Modul in Abhängigkeit vom dynamischen E-Modul (ermittelt aus Längsschwingungen) von Kanthölzern, X = S10/V2 und S13/V2 und deren Regressionsgerade sowie 95%-Vertrauensgrenzen für Mittelwerte, O = Ausschuss und S7/V2
Bild C13: Statischer Zug-E-Modul in Abhängigkeit vom dynamischen E-Modul (ermittelt aus Längsschwingungen) von Brettemellen, X = S10/V2 und S13/V2 und deren Regressionsgerade sowie 95%-Vertrauensgrenzen für Mittelwerte, O = Ausschuss und S7/V2

Bild C14: Statischer Zug-E-Modul in Abhängigkeit vom dynamischen E-Modul (ermittelt aus Längsschwingungen) von Kanthölzern, X = S10/V2 und S13/V2 und deren Regressionsgerade sowie 95%-Vertrauensgrenzen für Mittelwerte, O = Ausschuss und S7/V2
<table>
<thead>
<tr>
<th>Prüfkörper aus Reihe/ Beobachtung</th>
<th>BA</th>
<th>BB</th>
<th>BC</th>
<th>BJ</th>
<th>BK</th>
<th>BL</th>
<th>BO</th>
<th>BP</th>
<th>BQ</th>
<th>BS</th>
<th>Σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ursprünglicher Umfang der Probe</td>
<td>57</td>
<td>55</td>
<td>50</td>
<td>60</td>
<td>60</td>
<td>61</td>
<td>89</td>
<td>56</td>
<td>64</td>
<td>60</td>
<td>612</td>
</tr>
<tr>
<td>Vorhandensein der Markröhe</td>
<td>57</td>
<td>55</td>
<td>50</td>
<td>60</td>
<td>60</td>
<td>61</td>
<td>89</td>
<td>56</td>
<td>64</td>
<td>60</td>
<td>612</td>
</tr>
<tr>
<td>Kantenflächenast nach DIN 4074 T1</td>
<td>57</td>
<td>55</td>
<td>50</td>
<td>60</td>
<td>60</td>
<td>61</td>
<td>80</td>
<td>56</td>
<td>64</td>
<td>60</td>
<td>603</td>
</tr>
<tr>
<td>Einzelast nach DIN 4074 T1</td>
<td>57</td>
<td>55</td>
<td>50</td>
<td>59</td>
<td>60</td>
<td>61</td>
<td>80</td>
<td>56</td>
<td>64</td>
<td>60</td>
<td>602</td>
</tr>
<tr>
<td>Astansammlung nach DIN 4074 T1</td>
<td>57</td>
<td>55</td>
<td>50</td>
<td>59</td>
<td>60</td>
<td>61</td>
<td>80</td>
<td>56</td>
<td>64</td>
<td>60</td>
<td>602</td>
</tr>
<tr>
<td>Sortierung V1 5)</td>
<td>57</td>
<td>54</td>
<td>50</td>
<td>59</td>
<td>60</td>
<td>61</td>
<td>80</td>
<td>56</td>
<td>64</td>
<td>60</td>
<td>601</td>
</tr>
<tr>
<td>Sortierung V2 5)</td>
<td>57</td>
<td>55</td>
<td>50</td>
<td>60</td>
<td>60</td>
<td>61</td>
<td>89</td>
<td>56</td>
<td>64</td>
<td>60</td>
<td>612</td>
</tr>
<tr>
<td>Sortierung V3 5)</td>
<td>57</td>
<td>55</td>
<td>50</td>
<td>60</td>
<td>60</td>
<td>61</td>
<td>89</td>
<td>56</td>
<td>64</td>
<td>60</td>
<td>612</td>
</tr>
<tr>
<td>Sortierung V4 5)</td>
<td>57</td>
<td>55</td>
<td>50</td>
<td>60</td>
<td>60</td>
<td>61</td>
<td>89</td>
<td>56</td>
<td>64</td>
<td>60</td>
<td>612</td>
</tr>
<tr>
<td>Bruttorohdichte des trockenen Schnittholzes</td>
<td>57</td>
<td>55</td>
<td>50</td>
<td>60</td>
<td>60</td>
<td>61</td>
<td>89</td>
<td>56</td>
<td>64</td>
<td>60</td>
<td>612</td>
</tr>
<tr>
<td>dynamischer-E-Modul des trockenen Schnittholzes</td>
<td>57</td>
<td>55</td>
<td>50</td>
<td>60</td>
<td>60</td>
<td>61</td>
<td>89</td>
<td>56</td>
<td>64</td>
<td>60</td>
<td>612</td>
</tr>
<tr>
<td>Holzfeuchte Biegeprobe nach EN 408</td>
<td>29</td>
<td>26</td>
<td>25</td>
<td>30</td>
<td>30</td>
<td>31</td>
<td>47</td>
<td>28</td>
<td>33</td>
<td>8</td>
<td>287</td>
</tr>
<tr>
<td>Biege-E-Modul nach EN 408</td>
<td>29</td>
<td>26</td>
<td>25</td>
<td>n.b. 1)</td>
<td>80</td>
</tr>
<tr>
<td>Dynamischer Biege-E-Modul des trockenen Schnittholzes</td>
<td>n.b. 4)</td>
<td>n.b. 4)</td>
<td>n.b. 4)</td>
<td>30</td>
<td>30</td>
<td>31</td>
<td>47</td>
<td>28</td>
<td>33</td>
<td>45</td>
<td>244</td>
</tr>
<tr>
<td>Biegefestigkeit nach EN 408</td>
<td>29</td>
<td>26</td>
<td>25</td>
<td>30</td>
<td>30</td>
<td>31</td>
<td>47</td>
<td>28</td>
<td>33</td>
<td>60</td>
<td>339</td>
</tr>
<tr>
<td>Zug-E-Modul nach EN 408</td>
<td>28</td>
<td>27</td>
<td>25</td>
<td>30</td>
<td>30</td>
<td>29</td>
<td>42</td>
<td>28</td>
<td>31</td>
<td>n.b. 5)</td>
<td>270</td>
</tr>
<tr>
<td>Zugfestigkeit nach EN 408</td>
<td>28</td>
<td>27</td>
<td>25</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>42</td>
<td>28</td>
<td>31</td>
<td>n.b. 5)</td>
<td>271</td>
</tr>
<tr>
<td>Holzfeuchte Zugprobe nach EN 408</td>
<td>28</td>
<td>27</td>
<td>25</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>42</td>
<td>28</td>
<td>31</td>
<td>n.b. 5)</td>
<td>271</td>
</tr>
<tr>
<td>Bruttorohdichte des frischen Schnittholzes</td>
<td>57</td>
<td>55</td>
<td>50</td>
<td>60</td>
<td>60</td>
<td>61</td>
<td>89</td>
<td>56</td>
<td>64</td>
<td>n.b. 4)</td>
<td>552</td>
</tr>
<tr>
<td>dynamischer-E-Modul des frischen Schnittholzes</td>
<td>57</td>
<td>55</td>
<td>50</td>
<td>60</td>
<td>60</td>
<td>61</td>
<td>89</td>
<td>56</td>
<td>64</td>
<td>n.b. 4)</td>
<td>552</td>
</tr>
<tr>
<td>Rohdichte nach EN 408 (u=12%)</td>
<td>57</td>
<td>53</td>
<td>50</td>
<td>60</td>
<td>60</td>
<td>61</td>
<td>89</td>
<td>56</td>
<td>64</td>
<td>60</td>
<td>610</td>
</tr>
</tbody>
</table>

n.b.: diese Eigenschaft wurde nicht bestimmt
1) 1) 1) ersatzweise wurde der dynamische Biege-E-Modul ermittelt
2) 2) 2) aufgrund der zerstörenden Prüfung konnten diese Werte nicht mehr bestimmt werden
3) 3) 3) Die Holzfeuchte wurde stichprobenartig an 8 Prüfkörpern bestimmt. Bei der Ermittlung der Rohdichte nach EN 408 (u=12%) der restlichen 52 Prüfkörper wurde vereinfachend eine Holzfeuchte von 12% unterstellt.
4) 4) 4) Die Reihe BS stammt aus der Güteüberwachung (Bestimmung der Biegefestigkeit). Diese Werte konnten daher nicht bestimmt werden.
5) 5) 5) Zur unterschiedlichen Summe: War für die Klassifizierung in Ausschuss offensichtlich ein sonstiges Merkmal (DIN 4074 T1) ausschlaggebend wurde die Ästigkeit (DIN 4074 T1) zum Teil nicht ermittelt.

Tabelle D1: Übersicht über die Anzahl der gültigen Beobachtungen für die Untersuchungen an Brettlamellen
<table>
<thead>
<tr>
<th>Prüfkörper aus Reihe/Beobachtung</th>
<th>KD</th>
<th>KE</th>
<th>KF</th>
<th>KG</th>
<th>KH</th>
<th>KM</th>
<th>KN</th>
<th>KR</th>
<th>( \Sigma )</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ursprünglicher Umfang der Probe</td>
<td>53</td>
<td>54</td>
<td>57</td>
<td>55</td>
<td>55</td>
<td>60</td>
<td>89</td>
<td>62</td>
<td>485</td>
</tr>
<tr>
<td>Vorhandensein der Markrhöre</td>
<td>53</td>
<td>52</td>
<td>57</td>
<td>53</td>
<td>53</td>
<td>60</td>
<td>88</td>
<td>62</td>
<td>478</td>
</tr>
<tr>
<td>Einzelast nach DIN 4074 T1</td>
<td>53</td>
<td>52</td>
<td>57</td>
<td>52</td>
<td>53</td>
<td>59</td>
<td>87</td>
<td>61</td>
<td>474</td>
</tr>
<tr>
<td>Sortierung V1 (^2)</td>
<td>53</td>
<td>52</td>
<td>57</td>
<td>52</td>
<td>53</td>
<td>59</td>
<td>87</td>
<td>61</td>
<td>474</td>
</tr>
<tr>
<td>Sortierung V2 (^2)</td>
<td>53</td>
<td>52</td>
<td>57</td>
<td>53</td>
<td>53</td>
<td>60</td>
<td>89</td>
<td>62</td>
<td>479</td>
</tr>
<tr>
<td>Sortierung V3</td>
<td>53</td>
<td>52</td>
<td>57</td>
<td>53</td>
<td>53</td>
<td>60</td>
<td>89</td>
<td>62</td>
<td>479</td>
</tr>
<tr>
<td>Brutto Rohdichte des trockenen Schnittholzes</td>
<td>53</td>
<td>52</td>
<td>57</td>
<td>54</td>
<td>53</td>
<td>60</td>
<td>89</td>
<td>62</td>
<td>480</td>
</tr>
<tr>
<td>dynamischer-E-Modul des trockenen Schnittholzes</td>
<td>53</td>
<td>52</td>
<td>56</td>
<td>53</td>
<td>54</td>
<td>60</td>
<td>89</td>
<td>62</td>
<td>479</td>
</tr>
<tr>
<td>Holzfeuchte Biegeprobe nach EN 408</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>30</td>
<td>44</td>
<td>43</td>
<td>249</td>
</tr>
<tr>
<td>Biege-E-Modul nach EN 408</td>
<td>27</td>
<td>26</td>
<td>29</td>
<td>27</td>
<td>27</td>
<td>30</td>
<td>44</td>
<td>42</td>
<td>252</td>
</tr>
<tr>
<td>Dynamischer Biege-E-Modul des trockenen Schnittholzes</td>
<td>n.b. (^1)</td>
<td>n.b. (^1)</td>
<td>n.b. (^1)</td>
<td>n.b. (^1)</td>
<td>n.b. (^1)</td>
<td>30</td>
<td>n.b. (^1)</td>
<td>n.b. (^1)</td>
<td>30</td>
</tr>
<tr>
<td>Biegefestigkeit nach EN 408</td>
<td>27</td>
<td>26</td>
<td>29</td>
<td>27</td>
<td>27</td>
<td>30</td>
<td>44</td>
<td>42</td>
<td>252</td>
</tr>
<tr>
<td>Zug-E-Modul nach EN 408</td>
<td>26</td>
<td>26</td>
<td>28</td>
<td>27</td>
<td>27</td>
<td>30</td>
<td>44</td>
<td>20</td>
<td>228</td>
</tr>
<tr>
<td>Zugfestigkeit nach EN 408</td>
<td>26</td>
<td>26</td>
<td>28</td>
<td>27</td>
<td>27</td>
<td>30</td>
<td>44</td>
<td>20</td>
<td>228</td>
</tr>
<tr>
<td>Holzfeuchte Zugprobe nach EN 408</td>
<td>26</td>
<td>26</td>
<td>28</td>
<td>27</td>
<td>27</td>
<td>30</td>
<td>44</td>
<td>20</td>
<td>228</td>
</tr>
<tr>
<td>Brutto Rohdichte des frischen Schnittholzes</td>
<td>53</td>
<td>54</td>
<td>57</td>
<td>55</td>
<td>55</td>
<td>60</td>
<td>89</td>
<td>62</td>
<td>485</td>
</tr>
<tr>
<td>dynamischer-E-Modul des frischen Schnittholzes</td>
<td>53</td>
<td>54</td>
<td>56</td>
<td>55</td>
<td>55</td>
<td>60</td>
<td>89</td>
<td>62</td>
<td>484</td>
</tr>
<tr>
<td>Rohdichte nach EN 408 ((u=12%))</td>
<td>51</td>
<td>52</td>
<td>55</td>
<td>54</td>
<td>54</td>
<td>60</td>
<td>88</td>
<td>62</td>
<td>476</td>
</tr>
</tbody>
</table>

n.b.: dieser Wert wurde nicht bestimmt
\(^1\) Die Ermittlung des dynamischen Biege-E-Moduls beschränkte sich bis auf die Reihe KM auf Brettlamellen.
\(^2\) Zur unterschiedlichen Summe: War für die Klassifizierung in Ausschuss offensichtlich ein sonstiges Merkmal (DIN 4074 T1) ausschlaggebend wurde die Ästigkeit (DIN 4074 T1) nicht ermittelt

**Tabelle D2:** Übersicht über die Anzahl der gültigen Beobachtungen für die Untersuchungen an Kanthölzern
Bild E1: Mittelwerte des dynamischen E-Moduls nach Reihen und Versuchstyp getrennt

Bild E2: Mittelwerte der Bruttorohdichte nach Reihen und Versuchstyp getrennt
<table>
<thead>
<tr>
<th>Modell-Nr.</th>
<th>MASOPA in [N/mm²]</th>
<th>Konstante [-]</th>
<th>Breite [mm]</th>
<th>Dicke/Höhe [mm]</th>
<th>Bruttorohrdichte (trockenes Holz) [kg/m³]</th>
<th>Dyn. E-Modul (trockenes Holz) [N/mm²]</th>
<th>Dyn. E-Modul (frisches Holz) [N/mm²]</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/BK</td>
<td>fm,p =</td>
<td>-13,1</td>
<td></td>
<td></td>
<td>+0,13200</td>
<td></td>
<td></td>
<td>0,464</td>
</tr>
<tr>
<td>2/BK</td>
<td>fm,p =</td>
<td>-24,3</td>
<td>+0,054000</td>
<td></td>
<td>+0,14100</td>
<td></td>
<td></td>
<td>0,525</td>
</tr>
<tr>
<td>3/BK</td>
<td>fm,p =</td>
<td>-12,5</td>
<td>-0,0520</td>
<td>+0,14200</td>
<td></td>
<td></td>
<td></td>
<td>0,561</td>
</tr>
<tr>
<td>4/BK</td>
<td>fm,p =</td>
<td>-14,2</td>
<td>+0,007930</td>
<td>-0,0477</td>
<td>+0,14300</td>
<td></td>
<td></td>
<td>0,562</td>
</tr>
<tr>
<td>5/BK</td>
<td>fm,p =</td>
<td>-3,19</td>
<td></td>
<td></td>
<td>+0,00390</td>
<td></td>
<td></td>
<td>0,680</td>
</tr>
<tr>
<td>6/BK</td>
<td>fm,p =</td>
<td>-7,44</td>
<td>+0,035200</td>
<td></td>
<td>+0,00387</td>
<td></td>
<td></td>
<td>0,698</td>
</tr>
<tr>
<td>7/BK</td>
<td>fm,p =</td>
<td>+1,18</td>
<td>-0,0407</td>
<td>+0,00387</td>
<td></td>
<td></td>
<td></td>
<td>0,724</td>
</tr>
<tr>
<td>8/BK</td>
<td>fm,p =</td>
<td>+2,78</td>
<td>-0,008920</td>
<td>-0,0456</td>
<td>+0,00387</td>
<td></td>
<td></td>
<td>0,724</td>
</tr>
<tr>
<td>9/BK</td>
<td>fm,p =</td>
<td>+11,9</td>
<td></td>
<td>-0,06120</td>
<td>+0,00488</td>
<td></td>
<td></td>
<td>0,692</td>
</tr>
<tr>
<td>10/BK</td>
<td>fm,p =</td>
<td>+4,14</td>
<td>+0,029900</td>
<td>-0,04450</td>
<td>+0,00459</td>
<td></td>
<td></td>
<td>0,704</td>
</tr>
<tr>
<td>11/BK</td>
<td>fm,p =</td>
<td>+10,3</td>
<td>-0,0379</td>
<td>-0,03820</td>
<td>+0,00448</td>
<td></td>
<td></td>
<td>0,728</td>
</tr>
<tr>
<td>12/BK</td>
<td>fm,p =</td>
<td>+13,4</td>
<td>-0,013200</td>
<td>-0,0449</td>
<td>+0,00454</td>
<td></td>
<td></td>
<td>0,729</td>
</tr>
<tr>
<td>13/BK</td>
<td>fm,p =</td>
<td>+0,318</td>
<td></td>
<td></td>
<td>+0,00412</td>
<td></td>
<td></td>
<td>0,648</td>
</tr>
<tr>
<td>14/BK</td>
<td>fm,p =</td>
<td>-5,54</td>
<td>+0,042100</td>
<td></td>
<td>+0,00417</td>
<td></td>
<td></td>
<td>0,678</td>
</tr>
<tr>
<td>15/BK</td>
<td>fm,p =</td>
<td>+4,11</td>
<td>-0,0467</td>
<td>+0,00422</td>
<td></td>
<td></td>
<td></td>
<td>0,713</td>
</tr>
<tr>
<td>16/BK</td>
<td>fm,p =</td>
<td>+4,98</td>
<td>-0,004740</td>
<td>-0,0492</td>
<td>+0,00422</td>
<td></td>
<td></td>
<td>0,713</td>
</tr>
</tbody>
</table>
Bild F1: Biegefestigkeit von Brettlamellen und Kanthölzern in Abhängigkeit vom maschinellen Sortierparameter nach Modell 4/BK, X = S10/V2 und S13/V2 und deren Regressionsgerade, O = Ausschuss und S7/V2
Bild F2: Zugfestigkeit von Brettlamellen und Kanthölzern in Abhängigkeit vom maschinellen Sortierparameter nach Modell 4/BK, X = S10/V2 und S13/V2 und deren Regressionsgerade, O = Ausschuss und S7/V2
Bild F3: Biegefestigkeit von Brettlamellen in Abhängigkeit vom maschinellen Sortierparameter nach Modell 4/BK nach Sortierklassen getrennt, durchgezogene Linien: Sortierklassengrenze bei 55 N/mm² und charakteristische Biegefestigkeit von C35, 35N/mm²
Bild F5: Biegefestigkeit von Kanthölzern in Abhängigkeit vom maschinellen Sortierparameter nach Modell 4/BK nach Sortierklassen getrennt, durchgezogene Linien: Sortierklassengrenze bei 55 N/mm² und charakteristische Biegefestigkeit von C35, 35N/mm²
Bild F6: Zugfestigkeit von Kanthölzern in Abhängigkeit vom maschinellen Sortierparameter nach Modell 4/BK nach Sortierklassen getrennt, durchgezogene Linien: Sortierklassengrenze bei 55 N/mm² und charakteristische Zugfestigkeit von C35, 21 N/mm²
## Tabelle F2: Statistische Kennwerte des Sortierergebnisses von Brettlamellen und Kanthölzern, MASOPA nach Modell 4/BK, Anpassungsschritt

<table>
<thead>
<tr>
<th>Modell 4/BK</th>
<th>Reihe</th>
<th>Maße</th>
<th>n mit ( \bar{f}_{\text{ma}}&gt; 55 )</th>
<th>n aus Anzahl</th>
<th>Biegefestigkeit ([\text{N/mm}^2])</th>
<th>char. Wert</th>
<th>min. Wert</th>
<th>char. Wert</th>
<th>Mittelwert ([\text{N/mm}^2])</th>
<th>char. Wert</th>
<th>Mittelwert ([\text{N/mm}^2])</th>
<th>char. Wert</th>
<th>Rohdichte nach EN408 ([\text{kg/m}^3])</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA</td>
<td>100/48</td>
<td>3</td>
<td>26</td>
<td>29</td>
<td>57,2</td>
<td>5,63</td>
<td>9,07</td>
<td>-</td>
<td>51,6</td>
<td>702</td>
<td>490</td>
<td>9,32</td>
<td>2,53</td>
</tr>
<tr>
<td>BC</td>
<td>175/36</td>
<td>4</td>
<td>30</td>
<td>31</td>
<td>56,2</td>
<td>4,74</td>
<td>3,21</td>
<td>-</td>
<td>49,8</td>
<td>610</td>
<td>551</td>
<td>8,90</td>
<td>2,53</td>
</tr>
<tr>
<td>BB</td>
<td>220/48</td>
<td>4</td>
<td>25</td>
<td>26</td>
<td>63,9</td>
<td>64,4</td>
<td>11,7</td>
<td>-</td>
<td>48,7</td>
<td>516</td>
<td>501</td>
<td>15,8</td>
<td>2,53</td>
</tr>
<tr>
<td>BS</td>
<td>175/48</td>
<td>6</td>
<td>30</td>
<td>28</td>
<td>56,1</td>
<td>66,8</td>
<td>16,7</td>
<td>-</td>
<td>33,0</td>
<td>471</td>
<td>486</td>
<td>27,6</td>
<td>2,53</td>
</tr>
<tr>
<td>BQ</td>
<td>220/20</td>
<td>6</td>
<td>30</td>
<td>33</td>
<td>55,9</td>
<td>56,8</td>
<td>11,5</td>
<td>-</td>
<td>45,6</td>
<td>507</td>
<td>471</td>
<td>16,4</td>
<td>2,53</td>
</tr>
<tr>
<td>BP</td>
<td>175/36</td>
<td>6</td>
<td>30</td>
<td>28</td>
<td>56,1</td>
<td>56,8</td>
<td>11,5</td>
<td>-</td>
<td>45,6</td>
<td>501</td>
<td>486</td>
<td>16,4</td>
<td>2,53</td>
</tr>
<tr>
<td>BO</td>
<td>220/48</td>
<td>6</td>
<td>25</td>
<td>31</td>
<td>55,9</td>
<td>56,8</td>
<td>11,5</td>
<td>-</td>
<td>45,6</td>
<td>501</td>
<td>486</td>
<td>16,4</td>
<td>2,53</td>
</tr>
<tr>
<td>BL</td>
<td>100/20</td>
<td>6</td>
<td>25</td>
<td>31</td>
<td>55,9</td>
<td>56,8</td>
<td>11,5</td>
<td>-</td>
<td>45,6</td>
<td>501</td>
<td>486</td>
<td>16,4</td>
<td>2,53</td>
</tr>
<tr>
<td>BK</td>
<td>175/36</td>
<td>6</td>
<td>25</td>
<td>31</td>
<td>55,9</td>
<td>56,8</td>
<td>11,5</td>
<td>-</td>
<td>45,6</td>
<td>501</td>
<td>486</td>
<td>16,4</td>
<td>2,53</td>
</tr>
<tr>
<td>BJ</td>
<td>220/48</td>
<td>6</td>
<td>25</td>
<td>31</td>
<td>55,9</td>
<td>56,8</td>
<td>11,5</td>
<td>-</td>
<td>45,6</td>
<td>501</td>
<td>486</td>
<td>16,4</td>
<td>2,53</td>
</tr>
<tr>
<td>BB</td>
<td>175/36</td>
<td>6</td>
<td>25</td>
<td>31</td>
<td>55,9</td>
<td>56,8</td>
<td>11,5</td>
<td>-</td>
<td>45,6</td>
<td>501</td>
<td>486</td>
<td>16,4</td>
<td>2,53</td>
</tr>
</tbody>
</table>

Anlage F-8: Regressionsmodelle für Brettlamellen und Kanthölzer gemeinsam
Tabelle F2: (Fortsetzung) Statistische Kennwerte des Sortierergebnisses von Brettlamellen und Kanthölzern, MASOPA nach Modell 4/BK, Anpassungsschritt
<table>
<thead>
<tr>
<th>Modell 4/BK</th>
<th>Reihe</th>
<th>Maße</th>
<th>Zugfestigkeit [N/mm²]</th>
<th>dynamischer E-Modul [N/mm²]</th>
<th>Rohdichte nach EN408 [kg/m³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS</td>
<td>175/48</td>
<td>1</td>
<td>50,6</td>
<td>17000</td>
<td>508</td>
</tr>
<tr>
<td>BQ</td>
<td>220/20</td>
<td>3</td>
<td>3,3</td>
<td>13600</td>
<td>507</td>
</tr>
<tr>
<td>BP</td>
<td>220/48</td>
<td>10</td>
<td>3,9</td>
<td>16600</td>
<td>533</td>
</tr>
<tr>
<td>BO</td>
<td>100/20</td>
<td>5</td>
<td>3,3</td>
<td>16300</td>
<td>536</td>
</tr>
<tr>
<td>BK</td>
<td>175/36</td>
<td>25</td>
<td>3,3</td>
<td>14700</td>
<td>511</td>
</tr>
<tr>
<td>BJ</td>
<td>175/36</td>
<td>30</td>
<td>3,3</td>
<td>14700</td>
<td>526</td>
</tr>
<tr>
<td>BC</td>
<td>100/48</td>
<td>30</td>
<td>3,3</td>
<td>14700</td>
<td>526</td>
</tr>
<tr>
<td>BB</td>
<td>220/48</td>
<td>28</td>
<td>3,3</td>
<td>14700</td>
<td>526</td>
</tr>
<tr>
<td>BA</td>
<td>100/48</td>
<td>27</td>
<td>3,3</td>
<td>14700</td>
<td>526</td>
</tr>
</tbody>
</table>

**Tabelle F3:** Statistische Kennwerte des Sortierergebnisses von Brettlamellen und Kanthölzern, MASOPA nach Modell 4/BK, Überprüfungsschritt
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>n mit ( f_{10} \geq 5.5 ) &amp; n aus Anzahl</td>
<td>30,5</td>
<td>30,5</td>
<td>13,200</td>
<td>544</td>
<td>544</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[$N/(mm²)$]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zugfestigkeit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[$N/(mm²)$]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dynamicer E-Modul</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[$N/(mm²)$]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rohdichte nach EN408</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$[kg/m³]$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bild F7: Biegefestigkeit von Brettablättern und Kanthölzern in Abhängigkeit vom maschinellen Sortierparameter nach Modell 12/BK, X = S10/V2 und S13/V2 und deren Regressionsgerade, O = Ausschuss und S7/V2
Bild F8: Zugfestigkeit von Brettlamellen und Kanthölzern in Abhängigkeit vom maschinellen Sortierparameter nach Modell 12/BK, X = S10/V2 und S13/V2 und deren Regressionsgerade, O = Ausschuss und S7/V2
Bild F9: Biegefestigkeit von Brettlamellen in Abhängigkeit vom maschinellen Sortierparameter nach Modell 12/BK nach Sortierklassen getrennt, durchgezogene Linien: Sortierklassengrenze bei 48 N/mm² und charakteristische Biegefestigkeit von C35, 35N/mm²
Bild F10: Zugfestigkeit von Brettlamellen in Abhängigkeit vom maschinellen Sortierparameter nach Modell 12/BK nach Sortierklassen getrennt, durchgezogene Linien: Sortierklassengrenze bei 48 N/mm² und charakteristische Zugfestigkeit von C35, 21 N/mm²
Bild F11: Biegefestigkeit von Kanthölzern in Abhängigkeit vom maschinellen Sortierparameter nach Modell 12/BK nach Sortierklassen getrennt, durchgezogene Linien: Sortierklassengrenze bei 48 N/mm² und charakteristische Biegefestigkeit von C35, 35N/mm².
Bild F12: Zugfestigkeit von Kanthölzern in Abhängigkeit vom maschinellen Sortierparameter nach Modell 12/BK nach Sortierklassen getrennt, durchgezogene Linien: Sortierklassengrenze bei 48 N/mm² und charakteristische Zugfestigkeit von C35, 21 N/mm²
<table>
<thead>
<tr>
<th>Modell 12/BK</th>
<th>Reihe</th>
<th>BA</th>
<th>BB</th>
<th>BC</th>
<th>BJ</th>
<th>BK</th>
<th>BL</th>
<th>BO</th>
<th>BP</th>
<th>BQ</th>
<th>BS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maße</td>
<td></td>
<td>100/48</td>
<td>220/48</td>
<td>175/36</td>
<td>100/20</td>
<td>175/36</td>
<td>220/48</td>
<td>100/20</td>
<td>175/36</td>
<td>220/20</td>
<td>175/48</td>
</tr>
<tr>
<td>n mit ( f_{m,p} &gt; 48 )</td>
<td></td>
<td>8</td>
<td>11</td>
<td>11</td>
<td>12</td>
<td>25</td>
<td>16</td>
<td>7</td>
<td>9</td>
<td>5</td>
<td>43</td>
</tr>
<tr>
<td>n aus Anzahl</td>
<td></td>
<td>29</td>
<td>26</td>
<td>25</td>
<td>30</td>
<td>30</td>
<td>31</td>
<td>47</td>
<td>28</td>
<td>33</td>
<td>60</td>
</tr>
<tr>
<td>Biegefestigkeit [N/mm²]</td>
<td>Mittelwert</td>
<td>53,3</td>
<td>55,8</td>
<td>62,0</td>
<td>61,8</td>
<td>59,6</td>
<td>60,8</td>
<td>55,8</td>
<td>48,9</td>
<td>57,3</td>
<td>54,8</td>
</tr>
<tr>
<td></td>
<td>s</td>
<td>6,06</td>
<td>12,7</td>
<td>13,3</td>
<td>13,7</td>
<td>13,7</td>
<td>12,2</td>
<td>10,6</td>
<td>10,4</td>
<td>6,31</td>
<td>10,8</td>
</tr>
<tr>
<td></td>
<td>char. Wert</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>37,5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>33,0</td>
</tr>
<tr>
<td></td>
<td>min. Wert</td>
<td>44,2</td>
<td>35,9</td>
<td>46,2</td>
<td>37,5</td>
<td>36,0</td>
<td>42,3</td>
<td>40,9</td>
<td>32,1</td>
<td>49,6</td>
<td>31,1</td>
</tr>
<tr>
<td>dynamischer E-Modul [N/mm²]</td>
<td>Mittelwert</td>
<td>13800</td>
<td>14400</td>
<td>14700</td>
<td>14300</td>
<td>14700</td>
<td>14900</td>
<td>14100</td>
<td>13900</td>
<td>14100</td>
<td>14700</td>
</tr>
<tr>
<td></td>
<td>s</td>
<td>859</td>
<td>1270</td>
<td>1630</td>
<td>1430</td>
<td>1460</td>
<td>1470</td>
<td>1290</td>
<td>827</td>
<td>874</td>
<td>1490</td>
</tr>
<tr>
<td>Rohdichte nach EN408 [kg/m³]</td>
<td>Mittelwert</td>
<td>470</td>
<td>456</td>
<td>498</td>
<td>463</td>
<td>450</td>
<td>463</td>
<td>485</td>
<td>446</td>
<td>465</td>
<td>457</td>
</tr>
<tr>
<td></td>
<td>s</td>
<td>19,7</td>
<td>23,6</td>
<td>35,6</td>
<td>30,3</td>
<td>37,9</td>
<td>34,0</td>
<td>46,0</td>
<td>23,5</td>
<td>40,7</td>
<td>39,7</td>
</tr>
<tr>
<td></td>
<td>char. Wert</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>387</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>391</td>
</tr>
<tr>
<td>Modell 12/BK</td>
<td>Reihe</td>
<td>Maße</td>
<td>n mit ( f_{mp} \geq 48 )</td>
<td>n aus Anzahl</td>
<td>Mittelwert</td>
<td>char. Wert</td>
<td>min. Wert</td>
<td>Mittelwert</td>
<td>char. Wert</td>
<td>min. Wert</td>
<td>Mittelwert</td>
</tr>
<tr>
<td>-------------</td>
<td>-------</td>
<td>------</td>
<td>--------------------------</td>
<td>-------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td>KD</td>
<td>50/100</td>
<td>1</td>
<td>27</td>
<td>46.6</td>
<td>-</td>
<td>8.56</td>
<td>10.5</td>
<td>-</td>
<td>4.72</td>
<td>-</td>
<td>455</td>
</tr>
<tr>
<td>KE</td>
<td>80/180</td>
<td>1</td>
<td>26</td>
<td>57.0</td>
<td>-</td>
<td>8.56</td>
<td>10.5</td>
<td>-</td>
<td>47.2</td>
<td>-</td>
<td>474</td>
</tr>
<tr>
<td>KG</td>
<td>60/180</td>
<td>1</td>
<td>27</td>
<td>46.6</td>
<td>-</td>
<td>8.56</td>
<td>10.5</td>
<td>-</td>
<td>47.2</td>
<td>-</td>
<td>474</td>
</tr>
<tr>
<td>KM</td>
<td>80/240</td>
<td>1</td>
<td>29</td>
<td>46.6</td>
<td>-</td>
<td>8.56</td>
<td>10.5</td>
<td>-</td>
<td>47.2</td>
<td>-</td>
<td>474</td>
</tr>
<tr>
<td>KH</td>
<td>60/180</td>
<td>0</td>
<td>30</td>
<td>51.9</td>
<td>-</td>
<td>10.5</td>
<td>-</td>
<td>-</td>
<td>47.2</td>
<td>-</td>
<td>474</td>
</tr>
<tr>
<td>KN</td>
<td>80/240</td>
<td>0</td>
<td>30</td>
<td>51.9</td>
<td>-</td>
<td>10.5</td>
<td>-</td>
<td>-</td>
<td>47.2</td>
<td>-</td>
<td>474</td>
</tr>
<tr>
<td>KR</td>
<td>60/180</td>
<td>5</td>
<td>44</td>
<td>51.2</td>
<td>-</td>
<td>10.5</td>
<td>-</td>
<td>-</td>
<td>47.2</td>
<td>-</td>
<td>474</td>
</tr>
<tr>
<td>Brettlamellen</td>
<td>60</td>
<td>4</td>
<td>44</td>
<td>51.2</td>
<td>-</td>
<td>10.5</td>
<td>-</td>
<td>-</td>
<td>47.2</td>
<td>-</td>
<td>474</td>
</tr>
</tbody>
</table>

*Tabelle F4: (Forts.) Statistische Kennwerte des Sortierergebnisses von Brettlamellen und Kanthölzern, MASOPA nach Modell 12/BK, Anpassungsschritt*
<table>
<thead>
<tr>
<th>Modell 12/BK</th>
<th>BS</th>
<th>BQ</th>
<th>BP</th>
<th>BO</th>
<th>BL</th>
<th>BK</th>
<th>BJ</th>
<th>BC</th>
<th>BB</th>
<th>BA</th>
<th>Reihe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maße</td>
<td>100/48</td>
<td>175/48</td>
<td>220/48</td>
<td>175/56</td>
<td>175/56</td>
<td>100/20</td>
<td>175/56</td>
<td>175/56</td>
<td>100/20</td>
<td>220/48</td>
<td>175/56</td>
</tr>
<tr>
<td>n mit.</td>
<td>5</td>
<td>13</td>
<td>17</td>
<td>8</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>n aus.</td>
<td>28</td>
<td>27</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>42</td>
<td>30</td>
<td>30</td>
<td>42</td>
<td>28</td>
<td>31</td>
</tr>
<tr>
<td>Zugfestigkeit [N/mm²]</td>
<td></td>
</tr>
<tr>
<td>Mittelwert</td>
<td>38,7</td>
<td>37,3</td>
<td>40,1</td>
<td>44,1</td>
<td>44,2</td>
<td>44,2</td>
<td>44,1</td>
<td>44,1</td>
<td>44,2</td>
<td>44,1</td>
<td>44,1</td>
</tr>
<tr>
<td>s</td>
<td>11,3</td>
<td>7,71</td>
<td>10,6</td>
<td>14,4</td>
<td>14,4</td>
<td>14,4</td>
<td>14,4</td>
<td>14,4</td>
<td>14,4</td>
<td>14,4</td>
<td>14,4</td>
</tr>
<tr>
<td>char. Wert</td>
<td>23,0</td>
<td>24,7</td>
<td>26,6</td>
<td>20,3</td>
<td>21,0</td>
<td>13,6</td>
<td>27,1</td>
<td>22,3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Rohdichte nach EN 408 [Kg/m³]</td>
<td></td>
</tr>
<tr>
<td>Mittelwert</td>
<td>14700</td>
<td>14700</td>
<td>13900</td>
<td>15300</td>
<td>14900</td>
<td>14900</td>
<td>15000</td>
<td>14400</td>
<td>143700</td>
<td>13700</td>
<td>-</td>
</tr>
<tr>
<td>s</td>
<td>1610</td>
<td>1110</td>
<td>1360</td>
<td>2110</td>
<td>1870</td>
<td>1870</td>
<td>1490</td>
<td>1120</td>
<td>1110</td>
<td>1110</td>
<td>-</td>
</tr>
<tr>
<td>char. Wert</td>
<td>470</td>
<td>473</td>
<td>452</td>
<td>507</td>
<td>482</td>
<td>482</td>
<td>483</td>
<td>461</td>
<td>469</td>
<td>469</td>
<td>-</td>
</tr>
</tbody>
</table>

Tabelle F5: Statistische Kennwerte des Sorriergebnisses von Brettlamellen und Kanthölzern, MASOPA nach Modell 12/BK, Überprüfungsschritt
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>KD 50/100</td>
<td>1</td>
<td>45,6</td>
<td>7,10</td>
<td>38,5</td>
<td>48,3</td>
<td>39,4</td>
<td>42,0</td>
<td>35,4</td>
<td>42,1</td>
<td>39,6</td>
</tr>
<tr>
<td>KE 50/240</td>
<td>2</td>
<td>46,4</td>
<td>7,45</td>
<td>38,8</td>
<td>49,2</td>
<td>39,2</td>
<td>42,6</td>
<td>35,4</td>
<td>42,1</td>
<td>39,6</td>
</tr>
<tr>
<td>KG 50/100</td>
<td>3</td>
<td>51,4</td>
<td>7,10</td>
<td>38,8</td>
<td>49,2</td>
<td>39,2</td>
<td>42,6</td>
<td>35,4</td>
<td>42,1</td>
<td>39,6</td>
</tr>
<tr>
<td>KH 50/180</td>
<td>4</td>
<td>50,0</td>
<td>8,13</td>
<td>38,8</td>
<td>49,2</td>
<td>39,2</td>
<td>42,6</td>
<td>35,4</td>
<td>42,1</td>
<td>39,6</td>
</tr>
<tr>
<td>KR 50/240</td>
<td>5</td>
<td>47,8</td>
<td>8,13</td>
<td>38,8</td>
<td>49,2</td>
<td>39,2</td>
<td>42,6</td>
<td>35,4</td>
<td>42,1</td>
<td>39,6</td>
</tr>
<tr>
<td>KN 50/100</td>
<td>6</td>
<td>41,3</td>
<td>7,10</td>
<td>38,8</td>
<td>49,2</td>
<td>39,2</td>
<td>42,6</td>
<td>35,4</td>
<td>42,1</td>
<td>39,6</td>
</tr>
<tr>
<td>KM 50/180</td>
<td>7</td>
<td>41,3</td>
<td>7,13</td>
<td>38,8</td>
<td>49,2</td>
<td>39,2</td>
<td>42,6</td>
<td>35,4</td>
<td>42,1</td>
<td>39,6</td>
</tr>
<tr>
<td>KB 50/240</td>
<td>8</td>
<td>47,8</td>
<td>7,13</td>
<td>38,8</td>
<td>49,2</td>
<td>39,2</td>
<td>42,6</td>
<td>35,4</td>
<td>42,1</td>
<td>39,6</td>
</tr>
</tbody>
</table>

Tabelle F5: (Forts.) Statistische Kennwerte des Sortierergebnisses von Brettlamellen und Kanthölzern, MASOPA nach Modell 12/BK, Überprüfungsschritt
Bild F13: Biegefestigkeit von Brettlamellen und Kanthölzern in Abhängigkeit vom maschinellen Sortierparameter nach Modell 16/BK, X = S10/V2 und S13/V2 und deren Regressionsgerade, O = Ausschuss und S7/V2
Bild F14: Zugfestigkeit von Brettlamellen und Kanthölzern in Abhängigkeit vom maschinellen Sortierparameter nach Modell 16/BK, X = S10V2 und S13/V2 und deren Regressionsgerade, O = Ausschuss und S7/V2
Bild F15: Biegefestigkeit von Brettlamellen in Abhängigkeit vom maschinellen Sortierparameter nach Modell 16/BK nach Sortierklassen getrennt; durchgezogene Linien: Sortierklassengrenze bei 48 N/mm² und charakteristische Biegefestigkeit von C35, 35N/mm²
Bild F16: Zugfestigkeit von Brettlamellen in Abhängigkeit vom maschinellen Sortierparameter nach Modell 16/BK nach Sortierklassen getrennt, durchgezogene Linien: Sortierklassengrenze bei 48 N/mm² und charakteristische Zugfestigkeit von C35, 21 N/mm²
Bild F17: Biegefestigkeit von Kanthölzern in Abhängigkeit vom maschinellen Sortierparameter nach Modell 16/BK nach Sortierklassen getrennt, durchgezogene Linien: Sortierklassengrenze bei 48 N/mm² und charakteristische Biegefestigkeit von C35, 35N/mm²
Bild F18: Zugfestigkeit von Kanthölzern in Abhängigkeit vom maschinellen Sortierparameter nach Modell 16/BK nach Sortierklassen getrennt, durchgezogene Linien: Sortierklassengrenze bei 48 N/mm² und charakteristische Zugfestigkeit von C35, 21 N/mm²
<table>
<thead>
<tr>
<th>Reihe</th>
<th>Modell 16/BK</th>
<th>Maße</th>
<th>n mit $f_{mp}&gt;48$</th>
<th>n aus Anzahl</th>
<th>Biegfestigkeit [N/mm²]</th>
<th>char. Wert</th>
<th>Min. Wert</th>
<th>char. Wert</th>
<th>char. Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA</td>
<td>100/48</td>
<td>9</td>
<td>11</td>
<td>29</td>
<td>51,4</td>
<td>8,00</td>
<td>-</td>
<td>36,4</td>
<td>-</td>
</tr>
<tr>
<td>BB</td>
<td>220/48</td>
<td>26</td>
<td>25</td>
<td>56,8</td>
<td>12,3</td>
<td>-</td>
<td>-</td>
<td>46,2</td>
<td>-</td>
</tr>
<tr>
<td>BO</td>
<td>175/36</td>
<td>28</td>
<td>22</td>
<td>60,0</td>
<td>14,0</td>
<td>-</td>
<td>-</td>
<td>37,5</td>
<td>-</td>
</tr>
<tr>
<td>BL</td>
<td>100/20</td>
<td>31</td>
<td>30</td>
<td>61,6</td>
<td>13,4</td>
<td>-</td>
<td>-</td>
<td>36,0</td>
<td>-</td>
</tr>
<tr>
<td>BK</td>
<td>220/48</td>
<td>31</td>
<td>30</td>
<td>59,6</td>
<td>12,0</td>
<td>-</td>
<td>-</td>
<td>42,3</td>
<td>-</td>
</tr>
<tr>
<td>BJ</td>
<td>175/36</td>
<td>31</td>
<td>30</td>
<td>60,0</td>
<td>10,7</td>
<td>-</td>
<td>-</td>
<td>40,9</td>
<td>-</td>
</tr>
<tr>
<td>BC</td>
<td>220/48</td>
<td>31</td>
<td>30</td>
<td>59,6</td>
<td>9,86</td>
<td>-</td>
<td>-</td>
<td>32,0</td>
<td>-</td>
</tr>
<tr>
<td>BK</td>
<td>175/36</td>
<td>31</td>
<td>30</td>
<td>57,4</td>
<td>5,73</td>
<td>-</td>
<td>-</td>
<td>49,6</td>
<td>-</td>
</tr>
</tbody>
</table>

Tabelle F6: Statistische Kennwerte des Sortierergebnisses von Brettlamellen und Kanthölzern, MASOPA nach Modell 16/BK, Anpassungsschritt
<table>
<thead>
<tr>
<th>Modell 16/BK</th>
<th>Reihe</th>
<th>K</th>
<th>Kd</th>
<th>Kg</th>
<th>Kf</th>
<th>Ke</th>
<th>Kd</th>
<th>N/mm²</th>
<th>char. W.</th>
</tr>
</thead>
<tbody>
<tr>
<td>16/BK</td>
<td>50/100</td>
<td>2</td>
<td>1</td>
<td>19</td>
<td>0</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>154</td>
<td>45</td>
</tr>
<tr>
<td>16/BK</td>
<td>50/240</td>
<td>27</td>
<td>29</td>
<td>27</td>
<td>30</td>
<td>44</td>
<td>42</td>
<td>252</td>
<td>531</td>
<td>577</td>
</tr>
<tr>
<td>16/BK</td>
<td>50/180</td>
<td>26</td>
<td>27</td>
<td>27</td>
<td>30</td>
<td>44</td>
<td>42</td>
<td>252</td>
<td>531</td>
<td>577</td>
</tr>
<tr>
<td>16/BK</td>
<td>50/240</td>
<td>27</td>
<td>29</td>
<td>27</td>
<td>30</td>
<td>44</td>
<td>42</td>
<td>252</td>
<td>531</td>
<td>577</td>
</tr>
<tr>
<td>16/BK</td>
<td>50/180</td>
<td>26</td>
<td>27</td>
<td>27</td>
<td>30</td>
<td>44</td>
<td>42</td>
<td>252</td>
<td>531</td>
<td>577</td>
</tr>
<tr>
<td>16/BK</td>
<td>50/240</td>
<td>27</td>
<td>29</td>
<td>27</td>
<td>30</td>
<td>44</td>
<td>42</td>
<td>252</td>
<td>531</td>
<td>577</td>
</tr>
<tr>
<td>16/BK</td>
<td>50/180</td>
<td>26</td>
<td>27</td>
<td>27</td>
<td>30</td>
<td>44</td>
<td>42</td>
<td>252</td>
<td>531</td>
<td>577</td>
</tr>
<tr>
<td>16/BK</td>
<td>50/240</td>
<td>27</td>
<td>29</td>
<td>27</td>
<td>30</td>
<td>44</td>
<td>42</td>
<td>252</td>
<td>531</td>
<td>577</td>
</tr>
<tr>
<td>16/BK</td>
<td>50/180</td>
<td>26</td>
<td>27</td>
<td>27</td>
<td>30</td>
<td>44</td>
<td>42</td>
<td>252</td>
<td>531</td>
<td>577</td>
</tr>
<tr>
<td>16/BK</td>
<td>50/240</td>
<td>27</td>
<td>29</td>
<td>27</td>
<td>30</td>
<td>44</td>
<td>42</td>
<td>252</td>
<td>531</td>
<td>577</td>
</tr>
<tr>
<td>16/BK</td>
<td>50/180</td>
<td>26</td>
<td>27</td>
<td>27</td>
<td>30</td>
<td>44</td>
<td>42</td>
<td>252</td>
<td>531</td>
<td>577</td>
</tr>
<tr>
<td>16/BK</td>
<td>50/240</td>
<td>27</td>
<td>29</td>
<td>27</td>
<td>30</td>
<td>44</td>
<td>42</td>
<td>252</td>
<td>531</td>
<td>577</td>
</tr>
</tbody>
</table>

Tabelle F6: (Forts.) Statistische Kennwerte des Sortierergebnisses von Brettlamellen und Kanthölzern, MASOPA nach Modell 16/BK, Anpassungsschritt
<table>
<thead>
<tr>
<th>Modell 16/BK</th>
<th>Reihe</th>
<th>Maße</th>
<th>Anzahl</th>
<th>Mittelwert</th>
<th>char. Wert</th>
<th>min. Wert</th>
<th>Mittelwert</th>
<th>char. Wert</th>
<th>Wert</th>
<th>Mittelwert</th>
<th>char. Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BS</td>
<td>175/48</td>
<td>6</td>
<td>38,0</td>
<td>10,2</td>
<td>23,0</td>
<td>14200</td>
<td>38,5</td>
<td>26,5</td>
<td>461</td>
<td>38,5</td>
</tr>
<tr>
<td></td>
<td>BQ</td>
<td>220/20</td>
<td>6</td>
<td>37,3</td>
<td>7,71</td>
<td>24,7</td>
<td>14200</td>
<td>38,5</td>
<td>26,5</td>
<td>461</td>
<td>38,5</td>
</tr>
<tr>
<td></td>
<td>BP</td>
<td>175/36</td>
<td>6</td>
<td>40,9</td>
<td>10,8</td>
<td>26,5</td>
<td>14200</td>
<td>38,5</td>
<td>26,5</td>
<td>461</td>
<td>38,5</td>
</tr>
<tr>
<td></td>
<td>BO</td>
<td>220/48</td>
<td>6</td>
<td>44,3</td>
<td>19,7</td>
<td>27,0</td>
<td>14200</td>
<td>38,5</td>
<td>26,5</td>
<td>461</td>
<td>38,5</td>
</tr>
<tr>
<td></td>
<td>BL</td>
<td>100/20</td>
<td>6</td>
<td>14,6</td>
<td>11,1</td>
<td>16,0</td>
<td>14200</td>
<td>38,5</td>
<td>26,5</td>
<td>461</td>
<td>38,5</td>
</tr>
<tr>
<td></td>
<td>BK</td>
<td>175/36</td>
<td>6</td>
<td>12,4</td>
<td>14,4</td>
<td>14,4</td>
<td>14200</td>
<td>38,5</td>
<td>26,5</td>
<td>461</td>
<td>38,5</td>
</tr>
<tr>
<td></td>
<td>BJ</td>
<td>100/20</td>
<td>6</td>
<td>4,50</td>
<td>14,4</td>
<td>14,4</td>
<td>14200</td>
<td>38,5</td>
<td>26,5</td>
<td>461</td>
<td>38,5</td>
</tr>
<tr>
<td></td>
<td>BC</td>
<td>175/36</td>
<td>6</td>
<td>6,75</td>
<td>14,4</td>
<td>14,4</td>
<td>14200</td>
<td>38,5</td>
<td>26,5</td>
<td>461</td>
<td>38,5</td>
</tr>
<tr>
<td></td>
<td>BB</td>
<td>220/48</td>
<td>6</td>
<td>16,3</td>
<td>14,4</td>
<td>14,4</td>
<td>14200</td>
<td>38,5</td>
<td>26,5</td>
<td>461</td>
<td>38,5</td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>100/48</td>
<td>6</td>
<td>13,1</td>
<td>14,4</td>
<td>14,4</td>
<td>14200</td>
<td>38,5</td>
<td>26,5</td>
<td>461</td>
<td>38,5</td>
</tr>
</tbody>
</table>

Tabelle F7: Statistische Kennwerte des Sortierergebnisses von Brettlamellen und Kanthölzern, MASOPA nach Modell 16/BK, Überprüfungsschritt
<table>
<thead>
<tr>
<th>Modell 16/BK</th>
<th>Reihen</th>
<th>Maße</th>
<th>Anzahl</th>
<th>Mittelwert</th>
<th>char. Wert</th>
<th>Min. Wert</th>
<th>Mittelwert</th>
<th>char. Wert</th>
<th>Rohdichte nach EN 408</th>
<th>[N/mm²]</th>
<th>dynamischer E-Modul</th>
<th>[N/mm²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alle Kollektive</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Brettlamellen</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Kant-Hölzer</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>KR</td>
<td>50/100</td>
<td>4</td>
<td>2</td>
<td>7,45</td>
<td>-</td>
<td>46,4</td>
<td>-</td>
<td>12,1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>KN</td>
<td>50/100</td>
<td>4</td>
<td>2</td>
<td>7,45</td>
<td>-</td>
<td>46,4</td>
<td>-</td>
<td>12,1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>KM</td>
<td>50/100</td>
<td>4</td>
<td>2</td>
<td>7,45</td>
<td>-</td>
<td>46,4</td>
<td>-</td>
<td>12,1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>KH</td>
<td>50/100</td>
<td>4</td>
<td>2</td>
<td>7,45</td>
<td>-</td>
<td>46,4</td>
<td>-</td>
<td>12,1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>KG</td>
<td>50/100</td>
<td>4</td>
<td>2</td>
<td>7,45</td>
<td>-</td>
<td>46,4</td>
<td>-</td>
<td>12,1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>KF</td>
<td>50/100</td>
<td>4</td>
<td>2</td>
<td>7,45</td>
<td>-</td>
<td>46,4</td>
<td>-</td>
<td>12,1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>KE</td>
<td>50/100</td>
<td>4</td>
<td>2</td>
<td>7,45</td>
<td>-</td>
<td>46,4</td>
<td>-</td>
<td>12,1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>KD</td>
<td>50/100</td>
<td>4</td>
<td>2</td>
<td>7,45</td>
<td>-</td>
<td>46,4</td>
<td>-</td>
<td>12,1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle F7: (Forts.) Statistische Kennwerte des Sortierergebnisses von Brettlamellen und Kanthölzern, MASOPA nach Modell 16/BK, Überprüfungsschritt
<table>
<thead>
<tr>
<th>Modell-Nr.</th>
<th>MASOPA in [N/mm²]</th>
<th>Konstante [(\times)]</th>
<th>Breite [mm]</th>
<th>Dicke/Höhe [mm]</th>
<th>Bruttorohdichte (trockenes Holz) [kg/m³]</th>
<th>Dyn. E-Modul (trockenes Holz) [N/mm²]</th>
<th>Dyn. E-Modul (frisches Holz) [N/mm²]</th>
<th>(r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/B</td>
<td>fm,p =</td>
<td>-45,8</td>
<td></td>
<td></td>
<td>+0,21300</td>
<td></td>
<td></td>
<td>0,586</td>
</tr>
<tr>
<td>2/B</td>
<td>fm,p =</td>
<td>-43,8</td>
<td>-0,009780</td>
<td></td>
<td>+0,21300</td>
<td></td>
<td></td>
<td>0,587</td>
</tr>
<tr>
<td>3/B</td>
<td>fm,p =</td>
<td>-47,9</td>
<td></td>
<td>+0,0960</td>
<td>+0,21000</td>
<td></td>
<td></td>
<td>0,590</td>
</tr>
<tr>
<td>4/B</td>
<td>fm,p =</td>
<td>-44,8</td>
<td>-0,017100</td>
<td>+0,1160</td>
<td>+0,20800</td>
<td></td>
<td></td>
<td>0,592</td>
</tr>
<tr>
<td>5/B</td>
<td>fm,p =</td>
<td>-8,58</td>
<td></td>
<td></td>
<td></td>
<td>+0,00452</td>
<td></td>
<td>0,728</td>
</tr>
<tr>
<td>6/B</td>
<td>fm,p =</td>
<td>-4,04</td>
<td>-0,027600</td>
<td></td>
<td></td>
<td>+0,00454</td>
<td></td>
<td>0,733</td>
</tr>
<tr>
<td>7/B</td>
<td>fm,p =</td>
<td>-7,12</td>
<td></td>
<td>-0,0659</td>
<td></td>
<td>+0,00460</td>
<td></td>
<td>0,729</td>
</tr>
<tr>
<td>8/B</td>
<td>fm,p =</td>
<td>-3,58</td>
<td>-0,025400</td>
<td>-0,0369</td>
<td></td>
<td>+0,00458</td>
<td></td>
<td>0,733</td>
</tr>
<tr>
<td>9/B</td>
<td>fm,p =</td>
<td>-18,0</td>
<td></td>
<td></td>
<td></td>
<td>+0,03350</td>
<td>+0,00410</td>
<td>0,730</td>
</tr>
<tr>
<td>10/B</td>
<td>fm,p =</td>
<td>-12,3</td>
<td>-0,025600</td>
<td></td>
<td></td>
<td>+0,02830</td>
<td>+0,00418</td>
<td>0,734</td>
</tr>
<tr>
<td>11/B</td>
<td>fm,p =</td>
<td>-16,1</td>
<td></td>
<td>-0,0578</td>
<td></td>
<td>+0,03120</td>
<td>+0,00419</td>
<td>0,731</td>
</tr>
<tr>
<td>12/B</td>
<td>fm,p =</td>
<td>-11,7</td>
<td>-0,023800</td>
<td>-0,0316</td>
<td></td>
<td>+0,02740</td>
<td>+0,00423</td>
<td>0,735</td>
</tr>
<tr>
<td>13/B</td>
<td>fm,p =</td>
<td>-8,52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+0,00525</td>
<td>0,726</td>
</tr>
<tr>
<td>14/B</td>
<td>fm,p =</td>
<td>-4,04</td>
<td>-0,027600</td>
<td></td>
<td></td>
<td></td>
<td>+0,00528</td>
<td>0,732</td>
</tr>
<tr>
<td>15/B</td>
<td>fm,p =</td>
<td>-9,86</td>
<td></td>
<td>+0,0523</td>
<td></td>
<td></td>
<td>+0,00521</td>
<td>0,727</td>
</tr>
<tr>
<td>16/B</td>
<td>fm,p =</td>
<td>-5,59</td>
<td>-0,033000</td>
<td>+0,0954</td>
<td></td>
<td></td>
<td>+0,00520</td>
<td>0,735</td>
</tr>
</tbody>
</table>
**Bild G1:** Biegefestigkeit von Brettlamellen in Abhängigkeit vom maschinellen Sortierparameter nach Modell 4/B, $X = S10/V2$ und $S13/V2$ und deren Regressionsgerade, $O =$ Ausschuss und $S7/V2$
Bild G2: Zugfestigkeit von Brettlamellen in Abhängigkeit vom maschinellen Sortierparameter nach Modell 4/B, X = S10/V2 und S13/V2 und deren Regressionsgerade, O = Ausschuss und S7/V2
Bild G3: Biegefestigkeit von Brettlamellen in Abhängigkeit vom maschinellen Sortierparameter nach Modell 4/B nach Sortierklassen getrennt, durchgezogene Linien: Sortierklassengrenze bei 52 N/mm² und charakteristische Biegefestigkeit von C35, 35N/mm²
<table>
<thead>
<tr>
<th>Modell 4/B</th>
<th>Reihe</th>
<th>Maße</th>
<th>n mit.</th>
<th>n aus Anzahl</th>
<th>Biegefestigkeit $[\text{N/mm}^2]$</th>
<th>char. Wert</th>
<th>min. Wert</th>
<th>char. Wert</th>
<th>Mittelwert $[\text{N/mm}^2]$</th>
<th>char. Wert</th>
<th>Mittelwert $[\text{N/mm}^2]$</th>
<th>char. Wert</th>
<th>mittlere Dichte nach EN4408 $[\text{kg/m}^3]$</th>
<th>char. Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS</td>
<td>2200/48</td>
<td>100/20</td>
<td>175/36</td>
<td>175/48</td>
<td>102</td>
<td>28</td>
<td>33</td>
<td>60</td>
<td>6</td>
<td>28</td>
<td>33</td>
<td>60</td>
<td>12.9</td>
<td>30.8</td>
</tr>
<tr>
<td>BQ</td>
<td>2200/48</td>
<td>100/20</td>
<td>175/36</td>
<td>175/48</td>
<td>102</td>
<td>28</td>
<td>33</td>
<td>60</td>
<td>6</td>
<td>28</td>
<td>33</td>
<td>60</td>
<td>12.9</td>
<td>30.8</td>
</tr>
<tr>
<td>BP</td>
<td>2200/48</td>
<td>100/20</td>
<td>175/36</td>
<td>175/48</td>
<td>102</td>
<td>28</td>
<td>33</td>
<td>60</td>
<td>6</td>
<td>28</td>
<td>33</td>
<td>60</td>
<td>12.9</td>
<td>30.8</td>
</tr>
<tr>
<td>BO</td>
<td>2200/48</td>
<td>100/20</td>
<td>175/36</td>
<td>175/48</td>
<td>102</td>
<td>28</td>
<td>33</td>
<td>60</td>
<td>6</td>
<td>28</td>
<td>33</td>
<td>60</td>
<td>12.9</td>
<td>30.8</td>
</tr>
<tr>
<td>Bl</td>
<td>2200/48</td>
<td>100/20</td>
<td>175/36</td>
<td>175/48</td>
<td>102</td>
<td>28</td>
<td>33</td>
<td>60</td>
<td>6</td>
<td>28</td>
<td>33</td>
<td>60</td>
<td>12.9</td>
<td>30.8</td>
</tr>
<tr>
<td>BK</td>
<td>2200/48</td>
<td>100/20</td>
<td>175/36</td>
<td>175/48</td>
<td>102</td>
<td>28</td>
<td>33</td>
<td>60</td>
<td>6</td>
<td>28</td>
<td>33</td>
<td>60</td>
<td>12.9</td>
<td>30.8</td>
</tr>
<tr>
<td>BJ</td>
<td>2200/48</td>
<td>100/20</td>
<td>175/36</td>
<td>175/48</td>
<td>102</td>
<td>28</td>
<td>33</td>
<td>60</td>
<td>6</td>
<td>28</td>
<td>33</td>
<td>60</td>
<td>12.9</td>
<td>30.8</td>
</tr>
<tr>
<td>BC</td>
<td>2200/48</td>
<td>100/20</td>
<td>175/36</td>
<td>175/48</td>
<td>102</td>
<td>28</td>
<td>33</td>
<td>60</td>
<td>6</td>
<td>28</td>
<td>33</td>
<td>60</td>
<td>12.9</td>
<td>30.8</td>
</tr>
<tr>
<td>BB</td>
<td>2200/48</td>
<td>100/20</td>
<td>175/36</td>
<td>175/48</td>
<td>102</td>
<td>28</td>
<td>33</td>
<td>60</td>
<td>6</td>
<td>28</td>
<td>33</td>
<td>60</td>
<td>12.9</td>
<td>30.8</td>
</tr>
<tr>
<td>BA</td>
<td>2200/48</td>
<td>100/20</td>
<td>175/36</td>
<td>175/48</td>
<td>102</td>
<td>28</td>
<td>33</td>
<td>60</td>
<td>6</td>
<td>28</td>
<td>33</td>
<td>60</td>
<td>12.9</td>
<td>30.8</td>
</tr>
</tbody>
</table>

Tabelle G2: Statistische Kennwerte des Sortierergebnisses von Brettlamellen, Maschineller Sortierparameter nach Modell 4/B
| Modell 4/B | Reihe | BA   | BB   | BC   | BJ   | BK   | BL   | BO   | BP   | BQ   | BS   | Brett- 
onn
lamellen |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Maße</td>
<td></td>
<td>100/48</td>
<td>220/48</td>
<td>175/36</td>
<td>100/20</td>
<td>175/36</td>
<td>220/48</td>
<td>100/20</td>
<td>175/36</td>
<td>220/20</td>
<td>175/48</td>
<td>-</td>
</tr>
<tr>
<td>n mit f_{m,p} &gt; 52</td>
<td></td>
<td>5</td>
<td>7</td>
<td>4</td>
<td>12</td>
<td>10</td>
<td>11</td>
<td>4</td>
<td>8</td>
<td>3</td>
<td>-</td>
<td>64</td>
</tr>
<tr>
<td>n aus Anzahl</td>
<td></td>
<td>28</td>
<td>27</td>
<td>25</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>42</td>
<td>28</td>
<td>31</td>
<td>-</td>
<td>271</td>
</tr>
<tr>
<td>Zugfestigkeit</td>
<td>Mittelwert</td>
<td>38,3</td>
<td>41,0</td>
<td>43,0</td>
<td>47,2</td>
<td>45,2</td>
<td>45,9</td>
<td>20,8</td>
<td>38,5</td>
<td>32,2</td>
<td>-</td>
<td>41,6</td>
</tr>
<tr>
<td></td>
<td>s</td>
<td>11,5</td>
<td>6,77</td>
<td>8,73</td>
<td>17,5</td>
<td>13,8</td>
<td>14,5</td>
<td>6,42</td>
<td>13,4</td>
<td>4,28</td>
<td>-</td>
<td>14,1</td>
</tr>
<tr>
<td>char. Wert</td>
<td></td>
<td>-</td>
<td>21,4</td>
</tr>
<tr>
<td>min. Wert</td>
<td></td>
<td>23,0</td>
<td>31,9</td>
<td>31,4</td>
<td>25,3</td>
<td>28,0</td>
<td>21,0</td>
<td>15,2</td>
<td>27,0</td>
<td>28,1</td>
<td>-</td>
<td>15,2</td>
</tr>
<tr>
<td>dynamischer E-Modul</td>
<td>Mittelwert</td>
<td>14300</td>
<td>14500</td>
<td>13700</td>
<td>16100</td>
<td>15700</td>
<td>15400</td>
<td>13100</td>
<td>13700</td>
<td>14100</td>
<td>-</td>
<td>14900</td>
</tr>
<tr>
<td></td>
<td>s</td>
<td>2280</td>
<td>1330</td>
<td>2270</td>
<td>1880</td>
<td>2050</td>
<td>1650</td>
<td>1950</td>
<td>1520</td>
<td>1060</td>
<td>-</td>
<td>1960</td>
</tr>
<tr>
<td>Rohdichte nach EN408</td>
<td>Mittelwert</td>
<td>469</td>
<td>489</td>
<td>504</td>
<td>528</td>
<td>506</td>
<td>507</td>
<td>504</td>
<td>492</td>
<td>484</td>
<td>-</td>
<td>503</td>
</tr>
<tr>
<td></td>
<td>s</td>
<td>36,0</td>
<td>26,9</td>
<td>24,8</td>
<td>29,1</td>
<td>29,2</td>
<td>41,5</td>
<td>8,92</td>
<td>20,0</td>
<td>17,7</td>
<td>-</td>
<td>32,4</td>
</tr>
<tr>
<td>char. Wert</td>
<td></td>
<td>-</td>
<td>450</td>
</tr>
</tbody>
</table>
Bild G5: Biegefestigkeit von Brettlamellen in Abhängigkeit vom maschinellen Sortierparameter nach Modell 12/B, X = S10/V2 und S13/V2 und deren Regressionsgerade, O = Ausschuss und S7/V2
Bild G6: Zugfestigkeit von Brettlamellen in Abhängigkeit vom maschinellen Sortierparameter nach Modell 12/B, X = S10/V2 und S13/V2 und deren Regressionsgerade, O = Ausschuss und S7/V2
Bild G7: Biegefestigkeit von Brettlamellen in Abhängigkeit vom maschinellen Sortierparameter nach Modell 12/B nach Sortierklassen getrennt, durchgezogene Linien: Sortierklassengrenze bei 48 N/mm² und charakteristische Biegefestigkeit von C35, 35N/mm²
Bild G8: Zugfestigkeit von Brettlamellen in Abhängigkeit vom maschinellen Sortierparameter nach Modell 12/B nach Sortierklassen getrennt, durchgezogene Linien: Sortierklassengrenze bei 48 N/mm² und charakteristische Zugfestigkeit von C35, 21 N/mm²
<table>
<thead>
<tr>
<th>Modell 12/B</th>
<th>Reihen</th>
<th>Maße</th>
<th>n mit f_{np} &gt; 48</th>
<th>n aus Anzahl</th>
<th>Bleifestigkeit [N/mm²]</th>
<th>char. Wert</th>
<th>E-Modul [N/mm²]</th>
<th>char. Wert</th>
<th>Rohdichte nach EN408 [kg/m³]</th>
<th>char. Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS</td>
<td>100/48</td>
<td>9</td>
<td>29</td>
<td>51,4</td>
<td>8,00</td>
<td>36,4</td>
<td>35,9</td>
<td>470</td>
<td>18,4</td>
<td>1240</td>
</tr>
<tr>
<td>BQ</td>
<td>100/48</td>
<td>11</td>
<td>26</td>
<td>56,8</td>
<td>12,3</td>
<td>46,2</td>
<td>470</td>
<td>520</td>
<td>19,5</td>
<td>1900</td>
</tr>
<tr>
<td>BP</td>
<td>100/48</td>
<td>12</td>
<td>25</td>
<td>62,0</td>
<td>13,3</td>
<td>46,2</td>
<td>498</td>
<td>820</td>
<td>19,5</td>
<td>1900</td>
</tr>
<tr>
<td>BO</td>
<td>100/48</td>
<td>15</td>
<td>30</td>
<td>61,3</td>
<td>14,0</td>
<td>42,3</td>
<td>498</td>
<td>900</td>
<td>23,1</td>
<td>1300</td>
</tr>
<tr>
<td>BL</td>
<td>100/48</td>
<td>23</td>
<td>30</td>
<td>60,1</td>
<td>13,7</td>
<td>36,0</td>
<td>454</td>
<td>1000</td>
<td>27,9</td>
<td>1300</td>
</tr>
<tr>
<td>BK</td>
<td>100/48</td>
<td>10</td>
<td>31</td>
<td>55,8</td>
<td>12,3</td>
<td>36,0</td>
<td>470</td>
<td>1000</td>
<td>35,2</td>
<td>1300</td>
</tr>
<tr>
<td>BJ</td>
<td>100/48</td>
<td>7</td>
<td>28</td>
<td>55,8</td>
<td>10,6</td>
<td>36,0</td>
<td>470</td>
<td>1000</td>
<td>35,2</td>
<td>1300</td>
</tr>
<tr>
<td>BC</td>
<td>100/48</td>
<td>43</td>
<td>60</td>
<td>57,0</td>
<td>12,0</td>
<td>36,8</td>
<td>470</td>
<td>1000</td>
<td>35,2</td>
<td>1300</td>
</tr>
<tr>
<td>BB</td>
<td>100/48</td>
<td>148</td>
<td>339</td>
<td>54,8</td>
<td>10,0</td>
<td>33,0</td>
<td>470</td>
<td>1000</td>
<td>35,2</td>
<td>1300</td>
</tr>
</tbody>
</table>

Tabelle G3: Statistische Kennwerte des Sortierergebnisses von Brettlamellen, Maschineller Sortierparameter nach Modell 12/B
<table>
<thead>
<tr>
<th>Modell 12/B</th>
<th>Reihe</th>
<th>BA</th>
<th>BB</th>
<th>BC</th>
<th>BJ</th>
<th>BK</th>
<th>BL</th>
<th>BO</th>
<th>BP</th>
<th>BQ</th>
<th>BS</th>
<th>Brettlamellen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maße</td>
<td>100/48</td>
<td>220/48</td>
<td>175/36</td>
<td>100/20</td>
<td>175/36</td>
<td>220/48</td>
<td>100/20</td>
<td>175/36</td>
<td>220/20</td>
<td>175/48</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>n mit ( f_{m,p} &gt; 48 )</td>
<td>5</td>
<td>13</td>
<td>11</td>
<td>16</td>
<td>18</td>
<td>19</td>
<td>9</td>
<td>8</td>
<td>5</td>
<td>-</td>
<td>104</td>
<td></td>
</tr>
<tr>
<td>n aus Anzahl</td>
<td>28</td>
<td>27</td>
<td>25</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>42</td>
<td>28</td>
<td>31</td>
<td>-</td>
<td>271</td>
<td></td>
</tr>
<tr>
<td>Zugfestigkeit [N/mm²]</td>
<td>Mittelwert</td>
<td>38,7</td>
<td>37,3</td>
<td>41,2</td>
<td>45,8</td>
<td>41,7</td>
<td>44,2</td>
<td>21,9</td>
<td>38,7</td>
<td>29,0</td>
<td>-</td>
<td>39,5</td>
</tr>
<tr>
<td>s</td>
<td>11,3</td>
<td>7,71</td>
<td>11,3</td>
<td>19,4</td>
<td>14,0</td>
<td>12,6</td>
<td>5,92</td>
<td>13,2</td>
<td>5,50</td>
<td>-</td>
<td>14,1</td>
<td></td>
</tr>
<tr>
<td>char. Wert</td>
<td>-</td>
<td>21,1</td>
<td></td>
</tr>
<tr>
<td>min. Wert</td>
<td>23,0</td>
<td>24,7</td>
<td>26,6</td>
<td>25,3</td>
<td>24,3</td>
<td>21,0</td>
<td>13,6</td>
<td>27,1</td>
<td>22,3</td>
<td>-</td>
<td>13,6</td>
<td></td>
</tr>
<tr>
<td>dynamischer E-Modul [N/mm²]</td>
<td>Mittelwert</td>
<td>14700</td>
<td>14200</td>
<td>14100</td>
<td>15500</td>
<td>14900</td>
<td>14800</td>
<td>13200</td>
<td>13900</td>
<td>14100</td>
<td>-</td>
<td>14500</td>
</tr>
<tr>
<td>s</td>
<td>1610</td>
<td>1110</td>
<td>1320</td>
<td>1990</td>
<td>1870</td>
<td>1490</td>
<td>1130</td>
<td>1280</td>
<td>899</td>
<td>-</td>
<td>1610</td>
<td></td>
</tr>
<tr>
<td>Rohdichte nach EN408 [kg/m³]</td>
<td>Mittelwert</td>
<td>470</td>
<td>473</td>
<td>458</td>
<td>511</td>
<td>481</td>
<td>483</td>
<td>465</td>
<td>488</td>
<td>476</td>
<td>-</td>
<td>481</td>
</tr>
<tr>
<td>s</td>
<td>35,4</td>
<td>26,5</td>
<td>26,8</td>
<td>39,8</td>
<td>36,4</td>
<td>43,9</td>
<td>35,1</td>
<td>30,0</td>
<td>22,4</td>
<td>-</td>
<td>37,5</td>
<td></td>
</tr>
<tr>
<td>char. Wert</td>
<td>-</td>
<td>419</td>
<td></td>
</tr>
</tbody>
</table>